Matrix factorizations and families of curves of genus 15

Frank-Olaf Schreyer

Universität des Saarlandes E-Mail: schreyer@math.uni-sb.de.

August 9, 2014 ICM 2014 Sattelite Conference, Daejeon

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

The moduli spaces \mathcal{M}_g of curves of genus g is

- unirational for $g \leq 14$, [Severi, Sernesi, Chang-Ran, Verra],
- ▶ of general type for g = 22 and g ≥ 24, [Harris-Mumford, Eisenbud-Harris, Farkas].

The cases in between are not fully understood:

- *M*₂₃ has positive Kodaira dimension [Farkas],
- ► *M*₁₅ is rationally connected [Bruno-Verra] ,
- \mathcal{M}_{16} is uniruled [Chang-Ran, Farkas].

In this talk I report on an attempt to prove the unirationality of $\mathcal{M}_{15}.$

(日) (日) (日) (日) (日) (日) (日)

By Brill-Noether theory,

$$W_d^r(C) = \{L \in \operatorname{Pic}^d C \mid h^0(L) \ge r+1\}$$

has dimension at least

$$\rho = g - (r+1)(g - d + r),$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

By Brill-Noether theory,

a general curve of genus $15 = 5 \cdot 3$ has a finite number of smooth models of degree 16 in \mathbb{P}^4 .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$\widetilde{\mathcal{M}}_{15}$

By Brill-Noether theory,

a general curve of genus $15=5\cdot 3$ has a finite number of smooth models of degree 16 in $\mathbb{P}^4.$ Let

$$\mathcal{H} \subset \mathsf{Hilb}_{16t+1-15}(\mathbb{P}^4)$$

be the corresponding component of the Hilbert scheme, and let

$$\widetilde{\mathcal{M}}_{\mathsf{15}} \subset \{(\mathcal{C}, \mathcal{L}) \mid \mathcal{C} \in \mathcal{M}_{\mathsf{15}}, \mathcal{L} \in \mathit{W}^{\mathsf{4}}_{\mathsf{16}}(\mathcal{C})\}
ightarrow \mathcal{M}_{\mathsf{15}}$$

(日) (日) (日) (日) (日) (日) (日)

be the component of the Hurwitz scheme, which dominates generically finite to one. So $\mathcal{H}//PGL(5)$ is birational to $\widetilde{\mathcal{M}}_{15}$.

$\widetilde{\mathcal{M}}_{15}$

By Brill-Noether theory,

a general curve of genus $15=5\cdot 3$ has a finite number of smooth models of degree 16 in $\mathbb{P}^4.$ Let

$$\mathcal{H} \subset \mathsf{Hilb}_{16t+1-15}(\mathbb{P}^4)$$

be the corresponding component of the Hilbert scheme, and let

$$\widetilde{\mathcal{M}}_{15} \subset \{(\mathcal{C}, \mathcal{L}) \mid \mathcal{C} \in \mathcal{M}_{15}, \mathcal{L} \in \mathit{W}^{4}_{16}(\mathcal{C})\}
ightarrow \mathcal{M}_{15}$$

be the component of the Hurwitz scheme, which dominates generically finite to one. So $\mathcal{H}//PGL(5)$ is birational to $\widetilde{\mathcal{M}}_{15}$.

Our main result connects the moduli space $\tilde{\mathcal{M}}_{15}$ to a moduli space of certain matrix factorizations of cubic threefolds.

Main Results

Theorem

The moduli space $\widetilde{\mathcal{M}}_{15}$ of curves of genus 15 together with a g_{16}^4 is birational to a component of the moduli space of matrix factorizations of type

$$\mathcal{O}^{18}(-3) \xrightarrow{\psi} \mathcal{O}^{15}(-1) \oplus \mathcal{O}^{3}(-2) \xrightarrow{\varphi} \mathcal{O}^{18}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

of cubic forms on \mathbb{P}^4 .

Theorem $\widetilde{\mathcal{M}}_{15}$ is uniruled.

Overview

- 1. Introduction
- 2. Review of matrix factorizations
- 3. The structure theorem
- 4. Constructions
- 5. Tangent space computations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

6. Conclusion

Matrix factorizations [Eisenbud, 1980]

R a regular local ring, $f \in \mathfrak{m}^2$. A *matrix factorization* of *f* is a pair (φ, ψ) of matrices satisfying

$$\psi \circ \varphi = f \ id_G$$
 and $\varphi \circ \psi = f \ id_F$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $M = \operatorname{coker} \varphi$ is a maximal Cohen-Macaulay R/f-module.

Matrix factorizations [Eisenbud, 1980]

R a regular local ring, $f \in \mathfrak{m}^2$. A *matrix factorization* of *f* is a pair (φ, ψ) of matrices satisfying

 $\psi \circ \varphi = f \ id_G$ and $\varphi \circ \psi = f \ id_F$.

 $M = \operatorname{coker} \varphi$ is a maximal Cohen-Macaulay R/f-module.

Conversely, if *M* is a MCM on R/f, then as *R*-module *M* has a short resolution

$$0 \longleftarrow M \longleftarrow F \longleftarrow G \longleftarrow 0.$$

and multiplication with f on this complex is null homotopic

which yields a matrix factorization (φ, ψ).

2-periodic resolutions

As an R/f-module, M has the infinite 2-periodic resolution

$$0 \leftarrow M \leftarrow \overline{F} \xleftarrow{\varphi} \overline{G} \xleftarrow{\psi} \overline{F} \xleftarrow{\varphi} \overline{G} \xleftarrow{\psi} \dots$$

where $\overline{F} = F \otimes R/f$ and $\overline{G} = G \otimes R/f$. In particular, this sequence is exact, and the dual sequence corresponding to the matrix factorization (ψ^t, φ^t) is exact as well.

2-periodic resolutions

As an R/f-module, M has the infinite 2-periodic resolution

$$0 \leftarrow M \leftarrow \overline{F} \xleftarrow{\varphi} \overline{G} \xleftarrow{\psi} \overline{F} \xleftarrow{\varphi} \overline{G} \xleftarrow{\psi} \dots$$

where $\overline{F} = F \otimes R/f$ and $\overline{G} = G \otimes R/f$.

The resolution of an arbitrary R/f-module N is eventually 2-periodic. If

$$0 \leftarrow N \leftarrow F_0 \leftarrow F_1 \leftarrow F_2 \leftarrow \ldots \leftarrow F_c \leftarrow 0$$

is the finite resolution of N as R-module then

$$0 \leftarrow \mathsf{N} \leftarrow \overline{\mathsf{F}}_0 \leftarrow \overline{\mathsf{F}}_1 \leftarrow \overline{\mathsf{F}}_2 \oplus \overline{\mathsf{F}}_0 \leftarrow \overline{\mathsf{F}}_3 \oplus \overline{\mathsf{F}}_1 \leftarrow \ldots \leftarrow \overline{\mathsf{F}}_{\textit{ev}} \leftarrow \overline{\mathsf{F}}_{\textit{odd}} \leftarrow \ldots$$

is a R/f-resolution, where

$$F_{ev} = \bigoplus_{i \equiv 0 \mod 2} F_i$$
 and $F_{odd} = \bigoplus_{i \equiv 1 \mod 2} F_i$.

MCM-approximation

The high syzygy modules over a Cohen-Macaulay ring are MCM.

In case of an hypersurface, $M = \operatorname{coker}(\overline{F}_{odd} \to \overline{F}_{ev})$ is a MCM module. There is a natural surjection from M to N with kernel P,

$$0 \leftarrow \textit{N} \leftarrow \textit{M} \leftarrow \textit{P} \leftarrow 0$$

where P is a module of finite projective dimension

$$\operatorname{pd}_{R/f} P < \infty.$$

The graded case: replace *R* by $S = k[x_0, ..., x_n]$

If $f \in S$ is a homogeneous form f degree *d* then we have to take the grading into account:

A matrix factorization is now given by a pair

$$G \xrightarrow{\varphi} F \xrightarrow{\psi} G(d)$$

of maps between graded free S-modules.

The *i*-th term in the (not necessarily minimal) eventually 2-peroidic S/f-resolution obtained from an S-resolution F. is

$$\overline{F}_i \oplus \overline{F}_{i-2}(-d) \oplus \ldots \oplus \overline{F}_0(-id/2)$$

or

$$\overline{F}_i \oplus \overline{F}_{i-2}(-d) \oplus \ldots \oplus \overline{F}_1(-(i-1)d/2)$$

(ロ) (同) (三) (三) (三) (○) (○)

in case *i* is even or odd, respectively.

Vector bundles on hypersurfaces

If $X = V(f) \subset \mathbb{P}^n$ is a smooth hypersurface then an MCM module

 $M = \operatorname{coker} \varphi$

sheafifies to a vector bundle

$$\mathcal{F} = \widetilde{M}$$

on X with no intermediate cohomology,

 $H^{p}(X, \mathcal{F}(t)) = 0$ for all p with 0 .

If det $\varphi = \lambda f^r$ with $\lambda \in K$ a scalar, then

rank
$$\mathcal{F} = r$$
.

(日) (日) (日) (日) (日) (日) (日)

Section 3. The structure theorem

We begin now with the proof of the main theorem.

Theorem

The moduli space $\widetilde{\mathcal{M}}_{15}$ of curves of genus 15 together with a g_{16}^4 is birational to a component of the moduli space of matrix factorizations of type

$$\mathcal{O}^{18}(-3) \xrightarrow{\psi} \mathcal{O}^{15}(-1) \oplus \mathcal{O}^{3}(-2) \xrightarrow{\varphi} \mathcal{O}^{18}$$

(日) (日) (日) (日) (日) (日) (日)

of cubic forms on \mathbb{P}^4 .

Postulation

For $C \subset \mathbb{P}^4$ be a smooth curve of degree d = 16 and genus g = 15. We have

(ロ) (同) (三) (三) (三) (○) (○)

- $S_C = S/I_C$, the homogeneous coordinate ring, and
- $H^0_*(\mathcal{O}_C) = \oplus_n H^0(\mathcal{O}_C(n))$, the ring of sections.

Postulation

For $C \subset \mathbb{P}^4$ be a smooth curve of degree d = 16 and genus g = 15. We have

- $S_C = S/I_C$, the homogeneous coordinate ring, and
- $H^0_*(\mathcal{O}_C) = \oplus_n H^0(\mathcal{O}_C(n))$, the ring of sections.

Proposition

As S-modules these rings have free resolution with Betti tables

	0	1	2	3	4			0	1	2	3
0	1					-	0	1			
1						and	1				
2		1					2	3	16	15	0
3		15	30	18	3		3			0	3

iff C has maximal rank and (C, L) is not a ramification point of $\widetilde{\mathcal{M}}_{15} \rightarrow \mathcal{M}_{15}$. In particular a general curve C lies on a unique cubic X.

Syzygies $H^0_*(\mathcal{O}_C)$ of as S_X -module

From now on, $C \subset \mathbb{P}^4$ will always denote a general curve of degree 16 and genus 15.

The eventual 2-periodic resolution of $H^0_*(\mathcal{O}_C)$ as an $S_X = S/f$ has the shape

	0	1	2	3	4	5	6	• • •	
0	1								
1			1						
2	3	16	15		1				
3			3	<mark>3</mark> +16	15		1		
4					3	19	15	•••	
÷							3		

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

This is not a minimal resolution.

Syzygies $H^0_*(\mathcal{O}_C)$ of as S_X -module

From now on, $C \subset \mathbb{P}^4$ will always denote a general curve of degree 16 and genus 15.

Proposition

The minimal resolution of $H^0_*(\mathcal{O}_C)$ as an $S_X = S/f$ has the shape

	0	1	2	3	4	5	6	• • •
0	1							
1								
2	3	15	15					
3			3	18	15			
4					3	18	15	•••
÷							3	

From C to a matrix factorization

Corollary

A general curve C determines a matrix factorization of shape

	0	1	2	
1	15			
2	3	18	15	
3			3	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

From C to a matrix factorization

Corollary

A general curve C determines a matrix factorization of shape

	0	1	2	
1	15			
2	3	18	15	
3			3	

Define \mathcal{F} via

$$0 \leftarrow \mathcal{F} \leftarrow \mathcal{O}_X^{18}(-3) \xleftarrow{\varphi} \mathcal{O}_X^{15}(-4) \oplus \mathcal{O}_X^3(-5)).$$

The composition

$$\mathcal{O}_X^3(-2) \leftarrow \mathcal{F} \leftarrow \mathcal{O}_X^{18}(-3)$$

is surjective with a summand $\mathcal{O}_X^3(-3)$ in the kernel, since there are only 5 linear forms on \mathbb{P}^4 .

From the matrix factorization back to C

Theorem (Structure Theorem)

Given the matrix factorization associated to C then the complex

$$\mathbf{0} \leftarrow \ \mathcal{O}_X^{\mathbf{3}}(-\mathbf{2}) \xleftarrow{\alpha}{\leftarrow} \mathcal{F} \xleftarrow{\beta}{\leftarrow} \mathcal{O}_X^{\mathbf{3}}(-\mathbf{3}) \leftarrow \mathbf{0}$$

is a monad for the ideal sheaf $\mathcal{J}_{C/X}$ of $C \subset X$, i.e. α is surjective, β injective and

$$\mathcal{J}_{\mathcal{C}/\mathcal{X}} \cong \ker \alpha / \operatorname{im} \beta.$$

 \mathcal{F} is a rank 7 vector bundle on the cubic X, because

deg det
$$\begin{pmatrix} 18 & 15 \\ . & 3 \end{pmatrix} = 15 + 3 \cdot 2 = 7 \cdot 3.$$

Proof of the main theorem

Since it is an open condition on matrix factorizations of shape

to lead to a monad of a smooth curve of genus 15 and degree 16, this completes the proof of the main theorem.

We now could study the moduli space $\mathcal{M}_X(7; c_1\mathcal{F}, c_2\mathcal{F}, c_3\mathcal{F})$ of vector bundles on the cubic threefold *X*.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Different approach: construct auxiliary modules N, whose syzygies would lead to a desired matrix factorization.

Possible shape of Betti tables $\beta(N)$ are

(ロ) (同) (三) (三) (三) (○) (○)

Different approach: construct auxiliary modules N, whose syzygies would lead to a desired matrix factorization.

Possible shape of Betti tables $\beta(N)$ are

	0	1	2	3	4			Δ	1	2	Q	Λ
0	а						~	0	-	2	0	-
1	b	С	d			or	0	а	D	•.	·	•
ว	~	Ũ	0	f	h	0.	1		С	d	е	
2	•	•	е	1	11		2				f	h
3					i		-	•	•	•		.,

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

with (a + d + h, b + e + i, c + f) = (3, 15, 18) or (15, 3, 18) for the first case

Different approach: construct auxiliary modules N, whose syzygies would lead to a desired matrix factorization.

Possible shape of Betti tables $\beta(N)$ are

with (a + d + h, b + e + i, c + f) = (3, 15, 18) or (15, 3, 18)for the first case, and (a + d + h, b + e, c + f) = (18, 15, 3) or (18, 3, 15) in the second case.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Different approach: construct auxiliary modules N, whose syzygies would lead to a desired matrix factorization.

Possible shape of Betti tables $\beta(N)$ are

A computation shows: There

are 39 of the tables in the Boij-Söderberg cone with $\operatorname{codim} \beta(N) \ge 3$, in all case we have equality.

Four candiate tables

$\deg \beta(N) = 11$									
	0	1	2	3					
0	5	9							
1		3	13	6					
2									

1 2 3

1

3

2 . . . 2 15 13 .

.

 $\frac{\deg\beta(N)=13}{\mid 0 \quad 1 \quad 2}$

.

0

1 2

$\deg eta(N) = 14$										
	0	1	2	3	4					
0	2	•	•	•						
1	1	9								
2			14	9	1					
deg	$\deg \beta(N) = 14$									
	0	1	2	3	_					
0	6	11								
1		2	12	4						
2			•	1						

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

In all cases we will assume that

$$\mathcal{L} = \widetilde{N}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

is a line bundle on a auxiliary curve *E* of degree $d_E = \deg \beta(N)$.

In all cases we will assume that

$$\mathcal{L} = \widetilde{N}$$

is a line bundle on a auxiliary curve *E* of degree $d_E = \deg \beta(N)$.

Since pd_S(N) ≤ 4, N ⊂ H⁰_{*}(L) = ⊕_{n∈Z}H⁰(L(n)) and local cohomology measures the difference

$$0 o N o H^0_*(\mathcal{L}) o H^1_\mathfrak{m}(N) o 0.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

In all cases we will assume that

$$\mathcal{L} = \widetilde{N}$$

is a line bundle on a auxiliary curve *E* of degree $d_E = \deg \beta(N)$.

Since pd_S(N) ≤ 4, N ⊂ H⁰_{*}(L) = ⊕_{n∈Z}H⁰(L(n)) and local cohomology measures the difference

$$0 o N o H^0_*(\mathcal{L}) o H^1_\mathfrak{m}(N) o 0.$$

Since H¹_m(N) is dual to Ext⁴_S(N, S(−5)) the 4-th map in the resolution gives us an idea about N.

In all cases we will assume that

$$\mathcal{L} = \widetilde{N}$$

is a line bundle on a auxiliary curve *E* of degree $d_E = \deg \beta(N)$.

Since pd_S(N) ≤ 4, N ⊂ H⁰_{*}(L) = ⊕_{n∈Z}H⁰(L(n)) and local cohomology measures the difference

$$0 o N o H^0_*(\mathcal{L}) o H^1_\mathfrak{m}(N) o 0.$$

Since H¹_m(N) is dual to Ext⁴_S(N, S(−5)) the 4-th map in the resolution gives us an idea about N.

The genus g_E and the degree $d_{\mathcal{L}} = \deg \mathcal{L}$ are however not yet determined. Their choice is motivated by a dimension count.

The easiest case is perhaps $d_E = 11$ with Betti table

	0	1	2	3
0	5	9		
1		3	13	6
2				0

Altogether we get g_E + 32 parameters, and to obtain (at least) 42 motivates the choice g_E = 10.

The easiest case is perhaps $d_E = 11$ with Betti table

	0	1	2	3
0	5	9		
1		3	13	6
2				0

It is natural to assume that $h^0 \mathcal{O}_E(1) = 5$. Riemann-Roch $\Rightarrow h^1 \mathcal{O}_E(1) = g_E - d_E + 4 = g_E - 7$.

Altogether we get g_E + 32 parameters, and to obtain (at least) 42 motivates the choice g_E = 10.

(ロ) (同) (三) (三) (三) (○) (○)

The easiest case is perhaps $d_E = 11$ with Betti table

	0	1	2	3
0	5	9		
1		3	13	6
2				0

It is natural to assume that $h^0 \mathcal{O}_E(1) = 5$. Riemann-Roch $\Rightarrow h^1 \mathcal{O}_E(1) = g_E - d_E + 4 = g_E - 7$. Parameter count:

$$\dim\{(E, \mathcal{O}_E(1))\} = 4g_E - 3 - 5 \cdot h^1 \mathcal{O}_E(1) = 32 - g_E$$

$$\dim\{X \mid X \supset E\} = 34 - (3d_E + 1 - g_E) = g_E$$

Finally $h^1(\mathcal{L}) = 0$ can be read of the Betti table, so \mathcal{L} is non-special and we obtain further g_E parameters. Altogether we get $g_E + 32$ parameters, and to obtain (at least) 42 motivates the choice $g_E = 10$.

 $g_E = 10 \Rightarrow h^1(\mathcal{O}_E(1)) = 3$, so *E* has a plane model *E'* of degree 18 - 11 = 7 with $\delta = {6 \choose 2} - 10 = 5$ double points. So we can choose 5+10 points in \mathbb{P}^2 ,

$$E' \in |7h - \sum_{1=1}^{5} 2p_i - \sum_{j=1}^{10} q_j|,$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

and take $\mathcal{L} = \omega_E(q_1 + q_2 + q_3 - (q_4 + \ldots + q_{10})).$

 $g_E = 10 \Rightarrow h^1(\mathcal{O}_E(1)) = 3$, so *E* has a plane model *E'* of degree 18 - 11 = 7 with $\delta = {6 \choose 2} - 10 = 5$ double points. So we can choose 5+10 points in \mathbb{P}^2 ,

$$E' \in |7h - \sum_{1=1}^{5} 2p_i - \sum_{j=1}^{10} q_j|,$$

and take $\mathcal{L} = \omega_E(q_1 + q_2 + q_3 - (q_4 + \ldots + q_{10}))$. By checking an example with *Macaulay2* over a finite field we conclude:

Theorem (Family 1)

There exists a 42-dimensional unirational family of tuples

$$(E, \mathcal{O}_E(1), X, \mathcal{L})$$
 with $(d_E, g_E, d_{\mathcal{L}}) = (11, 10, 14)$

such that $N = H^0_*(\mathcal{L})$ leads to a matrix factorization of desired shape. The general one gives a smooth curve $C \subset \mathbb{P}^4$ of degree 16 and genus 15.

In case of

	0	1	2	3	4
0	2				
1	1	9			
2			14	9	1

we have $N \subset H^0_*(\mathcal{L})$ with cokern K(-1). The resolution of N and $H^0_*(\mathcal{L})$ differ by a Koszul complex on 5 linear forms.

In case of

	0	1	2	3	4
0	2				
1	1	9			
2			14	9	1

we have $N \subset H^0_*(\mathcal{L})$ with cokern K(-1). The resolution of N and $H^0_*(\mathcal{L})$ differ by a Koszul complex on 5 linear forms. Thus the Betti table is $H^0_*(\mathcal{L})$ is

	0	1	2	3	
0	2				
1	2	14	10		
2			4	4	

In case of

	0	1	2	3	4
0	2				
1	1	9			
2			14	9	1

we have $N \subset H^0_*(\mathcal{L})$ with cokern K(-1). The resolution of N and $H^0_*(\mathcal{L})$ differ by a Koszul complex on 5 linear forms. Thus the Betti table is $H^0_*(\mathcal{L})$ is

	0	1	2	3	
0	2				
1	2	14	10		
2			4	4	

So *E* has a model in \mathbb{P}^3 and to pass from $H^0_*(\mathcal{L})$ to *N* amounts to the choice a point in a \mathbb{P}^1 .

The dimension count suggest to take $g_E = 11$. Riemann-Roch $\Rightarrow h^1(\mathcal{O}_E(1)) = 1$, hence

$$\mathcal{O}_E(1) \cong \omega_E(-(p_1 + \ldots + p_6)).$$

Theorem (Family 2)

There exists a 42-dimensional uniruled family of tuples

 $(E, \mathcal{O}_E(1), X, \mathcal{L}, N)$ with $(d_E, g_E, d_{\mathcal{L}}) = (14, 11, 8)$

The dimension count suggest to take $g_E = 11$. Riemann-Roch $\Rightarrow h^1(\mathcal{O}_E(1)) = 1$, hence

$$\mathcal{O}_E(1) \cong \omega_E(-(p_1 + \ldots + p_6)).$$

Take the line bundle $\mathcal{L} = \omega_E(-h)$, where *h* denotes the hyperplane class of the model $E \subset \mathbb{P}^3$ of degree 12, that is a Chang-Ran curve of genus 11.

Theorem (Family 2)

There exists a 42-dimensional uniruled family of tuples

 $(E, \mathcal{O}_E(1), X, \mathcal{L}, N)$ with $(d_E, g_E, d_{\mathcal{L}}) = (14, 11, 8)$

The dimension count suggest to take $g_E = 11$. Riemann-Roch $\Rightarrow h^1(\mathcal{O}_E(1)) = 1$, hence

$$\mathcal{O}_E(1) \cong \omega_E(-(p_1 + \ldots + p_6)).$$

Take the line bundle $\mathcal{L} = \omega_E(-h)$, where *h* denotes the hyperplane class of the model $E \subset \mathbb{P}^3$ of degree 12, that is a Chang-Ran curve of genus 11. I do not know how to choose a Chang-Ran curve together with 6 points unirationally.

Theorem (Family 2)

There exists a 42-dimensional uniruled family of tuples

 $(E, \mathcal{O}_E(1), X, \mathcal{L}, N)$ with $(d_E, g_E, d_{\mathcal{L}}) = (14, 11, 8)$

The dimension count suggest to take $g_E = 11$. Riemann-Roch $\Rightarrow h^1(\mathcal{O}_E(1)) = 1$, hence

$$\mathcal{O}_E(1) \cong \omega_E(-(p_1 + \ldots + p_6)).$$

Take the line bundle $\mathcal{L} = \omega_E(-h)$, where *h* denotes the hyperplane class of the model $E \subset \mathbb{P}^3$ of degree 12, that is a Chang-Ran curve of genus 11.

But over

a finite field \mathbb{F}_q there are plenty of points in $E(\mathbb{F}_q)$ which are easy to pick with a probabilistic method.

Theorem (Family 2)

There exists a 42-dimensional uniruled family of tuples

 $(E, \mathcal{O}_E(1), X, \mathcal{L}, N)$ with $(d_E, g_E, d_{\mathcal{L}}) = (14, 11, 8)$

Section 3. Tangent space computations

All what is needed to conclude from family 1 that $\widetilde{\mathcal{M}}_{15}$ is unirational, is to prove that the map gives an isomorphism on tangent spaces in a random example. Since the association

$$(N,X)\mapsto (M,X)$$

might not be surjective, this is a nontrivial assertion. So we want to study the natural map

$$Ext^{1}_{\mathcal{S}_{X}}(N,N)_{0} \rightarrow Ext^{1}_{\mathcal{S}_{X}}(M,M)_{0}.$$

5. Tangent space diagram

The relevant diagram is

$$\begin{array}{rcccc} \mathsf{Ext}^1_{\mathcal{S}_X}(M, \mathcal{P}) \to & \mathsf{Ext}^1_{\mathcal{S}_X}(M, \mathcal{M}) & \to & \mathsf{Ext}^1_{\mathcal{S}_X}(M, \mathcal{N}) & \to & \mathsf{Ext}^2_{\mathcal{S}_X}(M, \mathcal{P}) \\ & \uparrow \\ & \mathsf{Ext}^1_{\mathcal{S}_X}(N, \mathcal{N}) \\ & \uparrow \\ & \mathsf{Hom}_{\mathcal{S}_X}(\mathcal{P}, \mathcal{N}) \end{array}$$

deduced from the MCM approximation

$$0 \leftarrow \textit{N} \leftarrow \textit{M} \leftarrow \textit{P} \leftarrow 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

5. Tangent space diagram

The relevant diagram is

$$\begin{array}{ccccccc} \mathsf{Ext}^1_{\mathcal{S}_X}(M,P) \to & \mathsf{Ext}^1_{\mathcal{S}_X}(M,M) & \xrightarrow{\cong} & \mathsf{Ext}^1_{\mathcal{S}_X}(M,N) & \to \mathsf{Ext}^2_{\mathcal{S}_X}(M,P) \\ \| & & \uparrow & \| \\ 0 & & \mathsf{Ext}^1_{\mathcal{S}_X}(N,N) & 0 \\ & & \uparrow \\ & & \mathsf{Hom}_{\mathcal{S}_X}(P,N) \end{array}$$

deduced from the MCM approximation

$$0 \leftarrow \textit{N} \leftarrow \textit{M} \leftarrow \textit{P} \leftarrow 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

5. Tangent space diagram

The relevant diagram is

$$\begin{array}{ccccccc} \mathsf{Ext}^1_{\mathcal{S}_X}(M,P) \to & \mathsf{Ext}^1_{\mathcal{S}_X}(M,M) & \xrightarrow{\cong} & \mathsf{Ext}^1_{\mathcal{S}_X}(M,N) & \to \mathsf{Ext}^2_{\mathcal{S}_X}(M,P) \\ \| & & \uparrow & \| \\ 0 & & \mathsf{Ext}^1_{\mathcal{S}_X}(N,N) & 0 \\ & & \uparrow \\ & & \mathsf{Hom}_{\mathcal{S}_X}(P,N) \end{array}$$

deduced from the MCM approximation

$$0 \leftarrow N \leftarrow M \leftarrow P \leftarrow 0.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

 $\dim Ext^{1}_{S_{X}}(M, M)_{0} = \dim Ext^{1}_{S_{X}}(N, N)_{0} = 32 \text{ as expected}, \\ Hom_{S_{X}}(P, N)_{0} \hookrightarrow Ext^{1}_{S_{X}}(N, N)_{0}, \text{ but}$

Dimensions of the families

Proposition For a randomly chosen example,

dim
$$Hom_{S_{\chi}}(P, N)_0 = \begin{cases} 3 & \text{in case of family 1} \\ 0 & \text{in case of family 2} \end{cases}$$

Hence family 1 leads to a 39-dimensional subvariety of $\widetilde{\mathcal{M}}_{15}$ and family 2 dominates. Inparticular $\widetilde{\mathcal{M}}_{15}$ is unirruled.

Section 6. Conclusion

Altogether I managed to construct 20 families of pairs (X, N) all of dimension at least 42, of which

- 17 families are unirational,
- 3 are (possibly) not, since they required the choice of additional points on the auxiliary curve *E*.
- The three non-unirational families dominate.
- Most of the unirational families lead to 39-dimensional subvarieties of *M*₁₅. One has dimension 40, another one dimension 41.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Could this be just bad luck?

A conjecture I think no.

٠

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

A conjecture

I think no. A good explanation could be

Conjecture

The maximal rationally connected fibration of $\widetilde{\mathcal{M}}_{15}$ has a three dimensional base.

٠

I think no. A good explanation could be

Conjecture

The maximal rationally connected fibration of $\widetilde{\mathcal{M}}_{15}$ has a three dimensional base.

Theorem

The probabilistic algorithm, which for a finite field \mathbb{F}_q selects randomly curves of genus 15, has running time $O((\log q)^3)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

I think no. A good explanation could be

Conjecture

The maximal rationally connected fibration of $\widetilde{\mathcal{M}}_{15}$ has a three dimensional base.

Theorem

The probabilistic algorithm, which for a finite field \mathbb{F}_q selects randomly curves of genus 15, has running time $O((\log q)^3)$.

I expect that the algorithm picks points from a subset of *M*₁₅(𝔽_q) of density about 47%. The image of *M*₁₅(𝔽_q) should have density about 63%. The same should hold for the image of the 𝔽_q-rational points of the parameter space in *M*₁₅(𝔽_q).

I think no. A good explanation could be

Conjecture

The maximal rationally connected fibration of $\widetilde{\mathcal{M}}_{15}$ has a three dimensional base.

Theorem

The probabilistic algorithm, which for a finite field \mathbb{F}_q selects randomly curves of genus 15, has running time $O((\log q)^3)$.

- I expect that the algorithm picks points from a subset of *M*₁₅(F_q) of density about 47%.
- ► A unirational description of M₁₅ would lead to an algorithm with running time O((log q)²).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

I think no. A good explanation could be

Conjecture

The maximal rationally connected fibration of $\widetilde{\mathcal{M}}_{15}$ has a three dimensional base.

Theorem

The probabilistic algorithm, which for a finite field \mathbb{F}_q selects randomly curves of genus 15, has running time $O((\log q)^3)$.

- I expect that the algorithm picks points from a subset of *M*₁₅(F_q) of density about 47%.
- ► A unirational description of M₁₅ would lead to an algorithm with running time O((log q)²).
- For any fixed genus g there exists an algorithm which selects points from a subset of M_g(𝔽_q) of positive density in running time O((log q)³).

I think no. A good explanation could be

Conjecture

The maximal rationally connected fibration of $\widetilde{\mathcal{M}}_{15}$ has a three dimensional base.

Theorem

The probabilistic algorithm, which for a finite field \mathbb{F}_q selects randomly curves of genus 15, has running time $O((\log q)^3)$.

- I expect that the algorithm picks points from a subset of *M*₁₅(F_q) of density about 47%.
- ► A unirational description of M₁₅ would lead to an algorithm with running time O((log q)²).
- For any fixed genus g there exists an algorithm which selects points from a subset of M_g(𝔽_q) of positive density in running time O((log q)³).

Thank you!