UNIVERSITÄT DES SAARLANDES

Fachrichtung 6.1 - Mathematik

Prof. Dr. Frank-Olaf Schreyer Christian Bopp, Michael Hahn

Übungen zur Vorlesung Mathematik für Informatiker 2

Sommersemester 2014

Die Lösungen des Übungsblattes sind am 25.06.2014 vor der Vorlesung abzugeben.

Blatt 9 18. Juni 2014

Aufgabe 1 (Unitäre Matrizen). Sei $A \in U(n) \subset \mathbb{C}^{n \times n}$ eine unitäre Matrix. Zeigen Sie: $\exists S \in U(n)$ mit:

$$\bar{S}^{t} A S = D =: \begin{pmatrix} \lambda_{1} & 0 \\ & \ddots & \\ 0 & \lambda_{n} \end{pmatrix},$$

wobei $\lambda_i \in \mathbb{C}$ die Eigenwerte von A sind. Zeigen Sie ferner, dass gilt: $|\lambda_i| = 1$.

Hinweis: Zeigen Sie, dass das orthogonale Komplement W eines Eigenvektors v von A von der Matrix A in sich abgebildet wird, d.h. $AW \subset W$.

Aufgabe 2 (Orthogonale Projektion). Sei \mathbb{R}^4 mit dem standard Skalarprodukt versehen. Seien

$$w_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, w_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, w_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}, w_4 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}.$$

- (a) Orthonormalisieren Sie mit dem Gram-Schmidt-Verfahren die Basis w_1, w_2, w_3, w_4 von \mathbb{R}^4 .
- (b) Bestimmen Sie die orthogonale Projektion von $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^t$ auf $U_2 = \langle w_1, w_2 \rangle$.

Aufgabe 3 (Orthonormalisierungsverfahren).

(a) Berechnen Sie mit dem Gram-Schmidt-Verfahren aus $1, x, x^2, x^3$ eine Orthonormalbasis des Vektorraumes $U = \mathbb{R}[x]_{\leq 3}$ bezüglich der Skalarprodukte

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)x^{2}dx,$$

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)(1-x^{2})dx.$$

(b) Bestimmen Sie bezüglich beider Skalarprodukte aus (a) die orthogonale Projektion $\pi(f)$ von $f = x^2(x^2 - 1) \in \mathbb{R}[x]_{\leq 4}$ auf U und fertigen Sie Zeichnungen (z. B. mit Maple) von f und $f - \pi(f)$ an.

Bitte wenden.

Aufgabe 4 (Fourierkoeffizienten). Sei

$$\varphi: [0, 2\pi[\longrightarrow \mathbb{R}, x \mapsto \begin{cases} 1 &, 0 \le x \le \pi \\ 0 &, sonst \end{cases}$$

die Treppenfunktion.

- (a) Bestimmen Sie die Fourierkoeffizienten von φ für die Fourierreihe $\sum_{k=-\infty}^{\infty} c_k e^{ikx}$.
- (b) Zeichnen Sie (z. B. mit Maple) $\varphi(x)$ sowie

$$\frac{1}{2} + 2 \cdot \sum_{k=1}^{n} \frac{\sin((2k-1)x)}{(2k-1)\pi}$$

für die Werte n=2,5 und 10.