Sheet No. 01

To be discussed on Thursday, 7 May

1. Show that $\mathbb{Z} / a \otimes \mathbb{Z} / b \cong \mathbb{Z} / \operatorname{gcd}(a, b)$ for every $a, b \in \mathbb{Z}$.
2. Let $A \in \mathbb{Z}^{n \times n}$ be an integer matrix with $\operatorname{det}(A) \neq 0$ and let $G=\operatorname{coker}\left(\mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{n}\right)$. Prove that $|G|=|\operatorname{det}(A)|$.
3. Let R be any ring. Define

$$
R[[x]]=\left\{\sum_{n=0}^{\infty} a_{n} x^{n}: a_{n} \in R\right\},
$$

the ring of general power series with coefficients in R , with sum and product defined as

$$
\begin{aligned}
& \left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) x^{n}, \\
& \left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \cdot\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty} \sum_{p+q=n}\left(a_{p} b_{q}\right) x^{n} .
\end{aligned}
$$

Prove that R Noetherian implies $R[[x]]$ Noetherian.
4. Prove that $\mathcal{C}[0,1]$, the ring of continous functions defined on $[0,1]$, is not Noetherian.

