UNIVERSITÄT DES SAARLANDES Fachrichtung Mathematik Prof. Dr. Frank-Olaf Schreyer

Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Algebraic Geometry Summer Term 2018

Exercise Sheet 10. Hand in by Friday, June 29.

Exercise 1 (Noether Normalization, Refined Version). Let S be a finitely generated K-algebra, and let $I \subset S$ be an ideal. There exist integers $\delta \leq d$ and a Noether normalization $K[y_1, \ldots, y_d] \subset S$ such that

$$I \cap K[y_1,\ldots,y_d] = (y_1,\ldots,y_\delta),$$

in other words we can map V(I) onto a linear variety.

Exercise 2. Let *I* be a proper ideal of $K[x_1, \ldots, x_n]$, and let > be a global monomial order on $K[x_1, \ldots, x_n]$. Suppose that, for some c, the following two conditions hold:

(1) in(I) is generated by monomials in $K[x_1, \ldots, x_c]$

(2) $in(I) \supset (x_1, \ldots, x_c)^m$ for some m.

Prove that the composition

 $R = K[x_{c+1}, \dots, x_n] \hookrightarrow K[x_1, \dots, x_n] \to S = K[x_1, \dots, x_n]/I$

is a Noether normalization such that S is a free R-module (of finite rank).

Exercise 3.

Let M be an R-module. Prove that the maximal elements with respect to inclusion of the family

 $\{Ann(m) \mid m \in M\}$

of annihilator ideals $Ann(m) := \{r \in R \mid rm = 0 \in M\}$ are prime ideals.

Exercise 4

Let M be an R-module. An associated prime \mathfrak{p} of M is a prime ideal of the form $\mathfrak{p} = Ann(m)$ for some $m \in M \setminus \{0\}$. We denote with Ass(M) the set associated primes of M. Let

 $0 \to M' \to M \to M'' \to 0$

be a short exact sequence of R-modules. Prove:

$$Ass(M') \subset Ass(M) \subset Ass(M') \cup Ass(M'').$$