UNIVERSITÄT DES SAARLANDES Fachrichtung Mathematik
 Prof. Dr. Frank-Olaf Schreyer

Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Algebraic Geometry Summer Term 2018

Exercise Sheet 12. Hand in by Friday, July 13.
Exercise 1. Let $p_{0}, \ldots, p_{n+1} \in \mathbb{P}^{n}$ be $n+2$ points, such that no $n+1$ of these points lie on a hyperplane. Prove that there exist a unique automorphism $A \in P G L(n+1, \bar{K})$, which maps these points to the points $(1: 0: \ldots: 0),(0: 1$: $0: \ldots: 0), \ldots,((0: \ldots: 0: 1)$ and $(1: 1: \ldots: 1)$.
Exercise 2. Compute a rational paramerization of the plane curve defined by

$$
\begin{aligned}
f= & x^{5}+10 x^{4} y+20 x^{3} y^{2}+130 x^{2} y^{3}-20 x y^{4}+20 y^{5} \\
& -2 x^{4}-40 x^{3} y-150 x^{2} y^{2}-90 x y^{3}-40 y^{4} \\
& +x^{3}+30 x^{2} y+110 x y^{2}+20 y^{3} \in \mathbb{Q}[x, y]
\end{aligned}
$$

with the help of the Macaulay2 or some other Computer algebra system.
Exercise 3. Consider the plane curves $A_{n}=V\left(y^{2}-x^{n+1}\right)$ and $E_{8}=V\left(y^{3}-x^{5}\right)$. Compute a resolution the singularity at the origin via successive blow-ups.

Exercise 4.

Consider the projective closure of the curve X defined by

$$
y^{2}=x\left(x^{2}-1\right)\left(x^{2}-4\right)
$$

in $\mathbb{A}^{1} \times \mathbb{A}^{1} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$. What is the genus of this curve? How does the underlying 2-dimensional real manifold $X(\mathbb{C})$ looks like?

