UNIVERSITÄT DES SAARLANDES Fachrichtung Mathematik
 Prof. Dr. Frank-Olaf Schreyer

Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Algebraic Geometry
 Summer Term 2018

Exercise Sheet 1

Exercise 1.1

Prove that $V\left(y^{2}-x^{3}+x\right) \subset \mathbb{A}^{2}$ has no rational prarametization, but $V\left(y^{2}-x^{2}-x^{3}\right)$ has one.

Exercise 1.2

Let $X=V(I) \subsetneq \mathbb{A}^{n}$ be an proper algebraic subset and K an infinite field.
(1) Prove, that there is an K-rational point $a \in \mathbb{A}^{n}(K) \backslash$ X.
(2) Let $X, Y \subsetneq \mathbb{A}^{n}$ be two algebraic sets and let $U=\mathbb{A}^{n} \backslash$ $X, V=\mathbb{A}^{n} \backslash Y$ their complements. Prove: $U \cap V \neq \emptyset$.

Exercise 1.3**

Compute the \mathbb{Q}-Zariski closure of the point $(\pi, e) \in \mathbb{A}^{2}(\mathbb{C})$ and get famous.
Schanuel's conjecture (1960) implies that $\overline{\{(\pi, e)\}}{ }^{\mathbb{Q}}=\mathbb{A}^{2}(\mathbb{C})$, which means that π and e are algebraically independent over \mathbb{Q}.

Exercise 1.4

Find algebraic sets $A, B \subset{ }^{2}$ such that

$$
I(A)+I(B) \subsetneq I(A \cap B) .
$$

UNIVERSITÄT DES SAARLANDES
 Fachrichtung Mathematik
 Prof. Dr. Frank-Olaf Schreyer
 Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Algebraic Geometry

Summer Term 2018

Exercise Sheet 2

Exercise 2.1

(1) Find a polynomial $f \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$, which vanishes on all points of $\mathbb{A}^{n}\left(\mathbb{F}_{q}\right)$, where \mathbb{F}_{q} denotes the field with q elements.
(2) Compute $I\left(\mathbb{A}^{n}\left(\mathbb{F}_{q}\right)\right)$.

Exercise 2.2

Let $K=\bar{K}$ and let $A=\left\{p_{1}, \ldots, p_{d}\right\}$ be a finite set of points. Proof that

$$
K[A]=K^{A}
$$

is the set of all functions $\{A \rightarrow K\}$. In particular,

$$
\operatorname{dim}_{K-V e c t} K[A]=d
$$

Hint: Construct polynomials f_{p} such that $f_{p}(q)=\delta_{p, q}$ for all $q \in A$.

Exercise 2.3

Prove, that the parabola $A=V\left(y-x^{2}\right)$ and the hyperbola $B=V(x y-1) \subset \mathbb{A}^{2}$ are not isomorphic.

Exercise 2.4

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Prove that $A=V(I) \subset{ }^{2}$ is finite if and only if $d=\operatorname{dim}_{K-V e c t} K\left[x_{1}, \ldots, x_{n}\right]<\infty$, and that d is a bound for the number of points of A.

UNIVERSITÄT DES SAARLANDES
 Fachrichtung Mathematik
 Prof. Dr. Frank-Olaf Schreyer
 Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Algebraic Geometry

Summer Term 2018

Exercise Sheet 3

Exercise 3.1

Let $K=\mathbb{F}_{p}(t)$ and let \bar{K} be the algebraic closure of K. Consider $f=x^{p}-t y^{p} \in K[x, y]$. Prove that f generates a radical ideal in $K[x, y]$, but does not generate a radical ideal in $\bar{K}[x, y]$.

Exercise 3.2

(1) Let $f \in K\left[x_{1}, \ldots, x_{n}\right.$ be a homogeneous polynomial, and let g be an irreducible factor. Prove that g is homogeneous as well.
(2) Consider $q=x^{2}+y^{2} \in \mathbb{Q}[x, y]$. Prove that q generates a prime ideal in $\mathbb{Q}] x, y]$, but does not generate a prime ideal in $\mathbb{C}[x, y]$.

Exercise 3.3

Let C be an algebraic subset of \mathbb{A}^{n} defined over K. Prove that if C is absolutely irreducible, then

$$
\operatorname{trde} g_{K} K(C)=\operatorname{dim} C=\operatorname{trdeg}_{\bar{K}} \bar{K}(C)
$$

Exercise 3.4

Let $\varphi: C \rightarrow \mathbb{A}^{m}$ be an rational map on a variety, and let $U \subset C$ be a domain of definition of φ. Prove that the Zariski closure

$$
\overline{\varphi(U)} \subset \mathbb{A}^{m}
$$

of $\varphi(U)$ is irreducible.

