UNIVERSITÄT DES SAARLANDES Fachrichtung Mathematik
 Prof. Dr. Frank-Olaf Schreyer

Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Algebraic Geometry Summer Term 2018

Exercise Sheet 5. Hand in by Friday, May 25.

Exercise 1

Let $P=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring and let $>$ be a global monomial order on the free P-module P^{s} of rank s.
(1) Prove the division theorem for a system $f_{1}, \ldots, f_{r} \in$ P^{s} of polynomial vectors.
(2) Define Gröbner basis for submodules $I \subset P^{s}$ and formulate Buchberger's criterion.

Exercise 2

Design an algorithm which answers $-f \in \operatorname{rad}\left(f_{1}, \ldots, f_{f}\right)$? and in case of true returns an integer N and coefficients a_{1}, \ldots, a_{r} such that

$$
f^{N}=a_{1} f_{1}+\ldots+a_{r} f_{r} .
$$

Exercise 3

Compute the Zariski closure C of the set

$$
\left\{\left(t^{2}+1, t\left(t^{2}+1\right) \mid t \in \mathbb{R}\right\} \subset \mathbb{A}^{2}(\mathbb{C})\right.
$$

and determine its \mathbb{R}-rational points $C(\mathbb{R})$.

Exercise 4

Let $g_{1}, g_{2}, h \in K[x]$ be three polynomials of degree $\leq d$, and consider the rational map

$$
\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}
$$

defined by $\left(f_{1}, f_{2}\right)=\left(\frac{g_{1}}{h}, \frac{g_{2}}{h}\right)$. Prove that the Zariski closure of the image $\varphi(U) \subset \mathbb{A}^{2}$ for $U=\mathbb{A}^{1} \backslash V(h)$ is defined by a polynomial $F \in K\left[y_{1}, y_{2}\right]$ of degree $\leq d$ unless $\varphi(U)$ is a point.

