UNIVERSITÄT DES SAARLANDES Fachrichtung Mathematik
 Prof. Dr. Frank-Olaf Schreyer

Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Algebraic Geometry Summer Term 2018

Exercise Sheet 6. Hand in by Friday, June 1.

Exercise 1

Given polynomials $f_{1}, \ldots, f_{r} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, consider the ideal $I_{0} \subset \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ generated the f_{i} 's and for a finite prime field $\mathbb{F}_{p}=\mathbb{Z} /(p)$ the ideal $I_{p} \subset \mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ generated by the polynomials f_{j} obtained by coefficient reduction $\bmod p$. Prove that for all but finitely many primes p the initial ideals $i n\left(I_{0}\right)$ and $i n\left(I_{p}\right)$ are minimally generated by the same set of monomials.

Exercise 2

Let $P=K\left[x_{1}, \ldots, x_{n}\right]$ denote the polynomial ring over a field K.
(1) Prove the division algorithm for a system of polynomial vectors $f_{1}, \ldots, f_{r} \subset P^{s}$ with respect to a global monomial order $>$ on P^{s}.
(2) Define Gröbner basis and formulate Buchberger's criterion for submodues $I \subset P^{s}$!

Exercise 3

Consider the ideal $I \subset K\left[x_{1}, \ldots z_{5}\right]$ generated by the 3×3 minors of the matrix

$$
\left(\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} \\
z_{1} & z_{2} & z_{3} & z_{4} & z_{5}
\end{array}\right)
$$

Compute a free resolution of P / I as a P-module and the dimension $\operatorname{dim} V(I)$.

Exercise 4

Let $R=K\left[x_{1}, \ldots, x_{n}\right] / I$ be a finitely generated (commutative) K-algebra and consider an R-module homomorphism $\varphi: R^{r} \rightarrow R^{s}$ defined by an $s \times r$ matrix $A=\left(a_{i j}\right)$ with entries in R. Design an algorithm which computes generators of $\operatorname{ker} \varphi$.

