UNIVERSITÄT DES SAARLANDES Fachrichtung Mathematik Prof. Dr. Frank-Olaf Schreyer

Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Algebraic Geometry Summer Term 2018

Exercise Sheet 6. Hand in by Friday, June 1.

Exercise 1

Given polynomials $f_1, \ldots, f_r \in \mathbb{Z}[x_1, \ldots, x_n]$, consider the ideal $I_0 \subset \mathbb{Q}[x_1, \ldots, x_n]$ generated the f_i 's and for a finite prime field $\mathbb{F}_p = \mathbb{Z}/(p)$ the ideal $I_p \subset \mathbb{F}_p[x_1, \ldots, x_n]$ generated by the polynomials $\overline{f_j}$ obtained by coefficient reduction mod p. Prove that for all but finitely many primes p the initial ideals $in(I_0)$ and $in(I_p)$ are minimally generated by the same set of monomials.

Exercise 2

Let $P = K[x_1, \ldots, x_n]$ denote the polynomial ring over a field K.

- (1) Prove the division algorithm for a system of polynomial vectors $f_1, \ldots, f_r \subset P^s$ with respect to a global monomial order > on P^s .
- (2) Define Gröbner basis and formulate Buchberger's criterion for submodues $I \subset P^s$!

Exercise 3

Consider the ideal $I \subset K[x_1, \ldots z_5]$ generated by the 3×3 minors of the matrix

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ y_1 & y_2 & y_3 & y_4 & y_5 \\ z_1 & z_2 & z_3 & z_4 & z_5 \end{pmatrix}$$

Compute a free resolution of P/I as a *P*-module and the dimension dim V(I).

Exercise 4

Let $R = K[x_1, \ldots, x_n]/I$ be a finitely generated (commutative) K-algebra and consider an R-module homomorphism $\varphi \colon R^r \to R^s$ defined by an $s \times r$ matrix $A = (a_{ij})$ with entries in R. Design an algorithm which computes generators of ker φ .