UNIVERSITÄT DES SAARLANDES Fachrichtung Mathematik Prof. Dr. Frank-Olaf Schreyer

Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Algebraic Geometry Summer Term 2018

Exercise Sheet 8. Hand in by Friday, June 15.

Exercise 1 The following picture shows plane curves with different types of singularities:

node triple point tacnode cusps The curves are defined by the polynomials below:

(a)
$$y^2 = (1 - x^2)^3$$
, (b) $y^2 = x^2 - x^4$,
(c) $y^3 - 3x^2y = (x^2 + y^2)^2$, (d) $y^2 = x^4 - x^6$.

Which curve corresponds to which polynomial?

Exercise 2

Let R be a ring, and let M be an R-modules. TFAE

- (1) M = 0
- (2) $M_{\mathfrak{p}} = 0$ for every prime ideal $\mathfrak{p} \in R$.
- (3) $M_{\mathfrak{m}} = 0$ for every maximal ideal $\mathfrak{m} \in R$.

Exercise 3

Let R be a ring, let M',M and M'' be R-modules, and let $M'\to M$ and $M\to M''$ be are R-module homomorphism. TFAE

- (1) $0 \to M' \to M \to M'' \to 0$ is a short exact sequence.
- (2) $0 \to M'_{\mathfrak{p}} \to M_{\mathfrak{p}} \to M''_{\mathfrak{p}} \to 0$ is a short exact sequence for every prime ideal $\mathfrak{p} \in R$.

(3) $0 \to M'_{\mathfrak{m}} \to M_{\mathfrak{m}} \to M''_{\mathfrak{m}} \to 0$ is a short exact sequence for every maximal ideal $\mathfrak{m} \in R$.

Exercise 4

Compute the intersection multiplicities at $p = (0, 0) \in \mathbb{A}^2$ of each pair of curves from Exercise 1.