UNIVERSITÄT DES SAARLANDES Fachrichtung Mathematik
Prof. Dr. Frank-Olaf Schreyer

Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Algebraic Geometry Summer Term 2018

Exercise Sheet 8. Hand in by Friday, June 15.
Exercise 1 The following picture shows plane curves with different types of singularities:

node

triple point

tacnode

cusps

The curves are defined by the polynomials below:

$$
\begin{gathered}
\text { (a) } y^{2}=\left(1-x^{2}\right)^{3}, \quad \text { (b) } y^{2}=x^{2}-x^{4}, \\
\text { (c) } y^{3}-3 x^{2} y=\left(x^{2}+y^{2}\right)^{2}, \quad \text { (d) } y^{2}=x^{4}-x^{6} .
\end{gathered}
$$

Which curve corresponds to which polynomial?

Exercise 2

Let R be a ring, and let M be an R-modules. TFAE
(1) $M=0$
(2) $M_{\mathfrak{p}}=0$ for evey prime ideal $\mathfrak{p} \in R$.
(3) $M_{\mathfrak{m}}=0$ for every maximal ideal $\mathfrak{m} \in R$.

Exercise 3

Let R be a ring, let M^{\prime}, M and $M^{\prime \prime}$ be R-modules, and let $M^{\prime} \rightarrow M$ and $M \rightarrow M^{\prime \prime}$ be are R-module homomorphism. TFAE
(1) $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is a short exact sequence.
(2) $0 \rightarrow M_{\mathfrak{p}}^{\prime} \rightarrow M_{\mathfrak{p}} \rightarrow M_{\mathfrak{p}}^{\prime \prime} \rightarrow 0$ is a short exact sequence for every prime ideal $\mathfrak{p} \in R$.
(3) $0 \rightarrow M_{\mathfrak{m}}^{\prime} \rightarrow M_{\mathfrak{m}} \rightarrow M_{\mathfrak{m}}^{\prime \prime} \rightarrow 0$ is a short exact sequence for every maximal ideal $\mathfrak{m} \in R$.

Exercise 4

Compute the intersection multiplicities at $p=(0,0) \in \mathbb{A}^{2}$ of each pair of curves from Exercise 1.

