UNIVERSITÄT DES SAARLANDES Fachrichtung Mathematik Prof. Dr. Frank-Olaf Schreyer

Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Algebraic Geometry Summer Term 2018

Exercise Sheet 9. Hand in by Friday, June 22.

Exercise 1 Show that Hilbert's syzygy theorem holds for $R = K[[x_1, \ldots, x_n]]$: Every finitely generated *R*-module *M* has a finite free resolution of length at most *n*, by finitely generated free *R*-modules.

Exercise 2

Consider K[x, y] with the local monomial order $>_{ldrlex}$, that is $>_{(-1,-1)}$ refined by $>_{drlex}$, and the ideals

$$I = (x^3 - y^3, x^2y^2 + xy^3), J = (x^3 - y^3, x^2y^2),$$

and $K = (x^3 - y^4, x^2y^2).$

Compute that $\{x^3 - y^3, x^2y^2 + xy^3, xy^4 - y^5, y^6\}$, $\{x^3 - y^3, x^2y^2, y^5\}$, and $\{x^3 - y^4, x^2y^2, y^6\}$ are Gröbner bases for I, J and K, respectively.

Exercise 3 (Weierstrass Preparation Theorem). If $f \in K[[x_1, \ldots, x_n]]$ is a power series, show:

- (1) By a triangular change of coordinates, we can achieve that f is x_n -general, that is $f(0, x_n) \in K[[x_n]]$ is non-zero.
- (2) If f is x_n -general, there exist a local monomial order on $K[x_1, ..., x_n]$ such that such that $in(f) = in(f(0, x_n))$.
- (3) If f is x_n -general, then (f) is generated by a Weierstrass polynomial

$$p = x_n^d + a_1 x_n^{d-1} + \ldots + a_d \in K[[x_1, \ldots, x_{n-1}]][x_n]$$

with $p(0, x_n) = x_n^d$ that is there exists a unit $u \in k[[x_1, \ldots, x_n]]$ with f = up.

Exercise 4

Using the Weierstrass' preparation theorem, prove that $K[[x_1, \ldots, x_n]]$ is factorial.