UNIVERSITÄT DES SAARLANDES Fachrichtung Mathematik
 Prof. Dr. Frank-Olaf Schreyer

Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Computer Algebra Summer Term 2019

Exercise Sheet 3. Hand in by Tuesday, May 7.

Exercise 1

Let F be an infinite field and let $f \in F\left[x_{1}, \ldots, x_{n}\right]$ be a nonzero polynomial. Prove:
There exists a point $a \in F^{n}$ such that $f(a) \neq 0$.

Exercise 2

Let $F=\mathbb{C}$ and let $f \in \mathbb{C}\left[x_{1}, . ., x_{n}\right]$ be a non-zero polynomial. Prove for every $a \in \mathbb{A}^{n}(\mathbb{C})=\mathbb{C}^{n}$ and every $\epsilon>0$ the ball $B_{\epsilon}(a)$ with radius ϵ around a intersects the complement $\mathbb{C}^{n} \backslash$ $V(f)$ of $V(f)$.
Hint: If $f \in F\left[x_{1}\right]$ is polynomial in one variable of degree $\leq d$, and $b_{1}, \ldots, b_{d+1} \in F$ are pairwise distinct, then $f\left(b_{j}\right)=$ 0 for all $j=1, \ldots, d+1$ holds if and only if f is the zero polynomial.

Exercise 3

Let $I \subset F\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, let $L(I)$ denote its lead ideal with respect to a global monomial order and let $A=$ $V(I) \subset \mathbb{A}^{n}=\mathbb{A}^{n}(\bar{F})$ the corresponding algebraic set. Prove: TFAE:
(1) A is finite.
(2) The set of monomials $\{m \notin L(I)\}$ is finite.
(3) $F\left[x_{1}, \ldots, x_{n}\right] / I$ is finite-dimensional as an F-vector space.
If this is the case, then $|\{m \notin L(I)\}|$ bounds the number of solutions $|A|$, with equality, if $F=\bar{F}$ and $I=I(A)$.

Exercise 4

Show that the parabola $V\left(y-x^{2}\right) \subset \mathbb{A}^{2}$ and the hyperbola $V(x y-1) \subset \mathbb{A}^{2}$ are not isomorphic.

