UNIVERSITÄT DES SAARLANDES Fachrichtung Mathematik
 Prof. Dr. Frank-Olaf Schreyer

Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Computer Algebra Summer Term 2019

Exercise Sheet 5. Hand in by Tuesday, May 21.

Exercise 1

Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ an ideal, $A=V(I)$ the corresponding algebraic set, and let $L(I)$ be the initial ideal with respect to the lexicographic order. Suppose there exist an $N \in \mathbb{N}$ such that

$$
\left\langle x_{1}, \ldots x_{k}\right\rangle^{N} \subset L(I) \subset\left\langle x_{1}, \ldots x_{k}\right\rangle .
$$

Prove:

$$
\operatorname{dim} A=n-k .
$$

If in addition, $L(I)$ is generated by monomials in $K\left[x_{1}, \ldots, x_{k}\right]$ then every component C of A has dimension $\operatorname{dim} C=n-k$.

Exercise 2

Let $A \in \mathbb{Z}^{n \times n}$ be a square matrix with $\operatorname{det} A \neq 0$. Prove: $G=\operatorname{coker} A=\mathbb{Z}^{n} /$ image A is a finite abelian group of order

$$
|G|=|\operatorname{det} A| .
$$

Exercise 3

Let R be a PID, and $A \in R^{n \times n}$. Prove the following third version of the classification theorem: There exist invertible matrices $S, T \in G L(n, R)$ such that $S A T^{-1}$ is a diagonal matrix with entries d_{1}, \ldots, d_{n} such that $d_{i} \mid d_{i+1}$.
(The d_{i} are called the elementary divisors of A.)

Exercise 4

Let R be a ring and M an R-module, e.g. $M=R$. A subset $S \subset R$ is called multiplicative, if
(1) $1 \in S$, and
(2) $u, v \in S \Longrightarrow u v \in S$
holds.

Let $S \subset R$ be multiplicative. Prove that

$$
\begin{aligned}
\left(m_{1}, u_{1}\right) \sim\left(m_{2}, u_{2}\right) \Longleftrightarrow \exists & v \in S \text { such that } \\
& v\left(u_{2} m_{1}-u_{1} m_{2}\right)=0 \in M
\end{aligned}
$$

defines an equivalence relation on $M \times S$.
Let $M\left[S^{-} 1\right]:=(M \times S) / \sim$ denote the set of equivalence classes, and $\frac{m}{u} \in M\left[S^{-1}\right]$ the class represented by (m, u). Prove that the formulas

$$
\frac{m_{1}}{u_{1}}+\frac{m_{2}}{u_{2}}:=\frac{u_{2} m_{1}+u_{1} m_{2}}{u_{1} u_{2}}
$$

and

$$
\frac{r}{u_{1}} \cdot \frac{m}{u_{2}}:=\frac{r m}{u_{1} u_{2}}
$$

gives $R\left[S^{-1}\right]$ the structure of a ring and $M\left[S^{-1}\right]$ the structure of an $R\left[S^{-1}\right]$-module.

