UNIVERSITÄT DES SAARLANDES Fachrichtung Mathematik
 Prof. Dr. Frank-Olaf Schreyer

Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Computer Algebra Summer Term 2019

Exercise Sheet 6. Hand in by Tuesday, May 28.
Exercise 1. Let $K=\mathbb{F}_{p}(t)$ be the field of rational function over \mathbb{F}_{p}. Consider

$$
f=x^{p}-t
$$

and its splitting field $L \supset K$. Prove that f has only one root in L and conclude that $\operatorname{Gal}(f)=\operatorname{Aut}(L / K)$ is trivial.
Exercise 2. Let $d=d_{1}^{e_{1}} \cdots d_{k}^{e_{k}}$ be an integer with its prime factorisation and let p be a prime number. Prove:

$$
\frac{1}{d} \sum_{S \subset\{1, \ldots, k\}}(-1)^{|S|} p^{d / \Pi_{i \in S} d_{i}}
$$

is the number of monic irreducible polynomials of degree d in $\mathbb{F}_{p}[x]$. Can you prove that this number is an integer without using finite fields?
Exercise 3. Prove:
(1) Let $f \in K[x]$ be an irreducible polynomial of degree r. One arithmetic operation in $L=K[x] /\langle f\rangle$, i.e. addition, multiplication or division by an invertible element, can be done in $O\left(r^{2}\right)$ arithmetic operations in K.
(2) One arithmetic operation in $\mathbb{Z} /\langle m\rangle$ can be done in $O\left((\log m)^{2}\right)$ bit operations.
(3) One arithmetic operation in the finite field \mathbb{F}_{q} can be done in $O\left((\log q)^{2}\right)$ bit operations.

Exercise 4. Design an algorithm to factor polynomials in $\mathbb{Z}[x]$ based on interpolation of polynomials and factorization in \mathbb{Z}. Illustrate your algorithm by factoring $3 x^{4}+12 x^{3}+$ $5 x^{2}-4 x-2 \in \mathbb{Z}[x]$.

