UNIVERSITÄT DES SAARLANDES Fachrichtung Mathematik
 Prof. Dr. Frank-Olaf Schreyer

Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Computer Algebra Summer Term 2019

Exercise Sheet 7. Hand in by Tuesday, June 4.
Exercise 1. Determine experimentally the percentage of monic polynomials of degree n in $\mathbb{F}_{p}[x]$ which have a linear factor.
Can you prove your observation?
Exercise 2. Prove that there are precisely $q^{n}-q^{n-1}$ square free monic polynomials of degree n in $\mathbb{F}_{q}[x]$.
Hint: Every monic polynomial f of degree n can be uniquely factored into monic polynomials $f=f_{1} f_{2}$, where f_{1} is square free and f_{2} is a square.

Now consider the generating functions

$$
\sum_{d \geq 0} q^{d} t^{d}, \sum_{d \geq 0} q^{d} t^{2 d} \in \mathbb{Z}[[t]]
$$

for the number of monic polynomials respectively squares of monic polynomials.
Exercise 3. Consider the primitive polynomials

$$
f=2 x^{6}-9 x^{5}+11 x^{4}-14 x^{3}+15 x^{2}-6 x+6
$$

and

$$
g=5 x^{6}+3 x^{5}-x^{4}-5 x^{3}-4 x^{2}+8
$$

in $\mathbb{Z}[x]$. Factor f and g modulo several primes, and make a guess about their factorisation in $\mathbb{Z}[x]$ (use e.g. Macaulay2). Can you prove you guess?

Exercise 4.

(1) Count the number of partitions of 5 occurring in the factorisation of about 100 randomly chosen polynomials of degree 5 in $\mathbb{F}_{p}[x]$ where is p is a moderate size prime p.
(2) Compare this with the factorisation in $\mathbb{Z} / q[x]$ for a fixed randomly choose primitive polynomial $f \in \mathbb{Z}[x]$ for 100 different primes q.
Compute the probability that a fixed partition of 5 occurs in case (1).

