UNIVERSITÄT DES SAARLANDES Fachrichtung Mathematik
 Prof. Dr. Frank-Olaf Schreyer

Universität des Saarlandes - Campus E2 4 - D-66123 Saarbrücken

Computer Algebra Summer Term 2019

Exercise Sheet 8. Hand in by Tuesday, June 11.
Exercise 1. Let $q=2^{d}$ be a power of 2 and \mathbb{F}_{q} a field with q elements. Consider the polynomial

$$
h=x+x^{2}+x^{4}+\ldots+x^{2^{d-1}}
$$

and the map

$$
\widetilde{h}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}, a \mapsto h(a) .
$$

Prove: \widetilde{h} is \mathbb{F}_{2} linear and takes values in $\mathbb{F}_{2} \subset \mathbb{F}_{q}$.
Exercise 2. Let $f=f_{1} f_{2}$ be a square free polynomial which is the product of two irreducible monic polynomials in $\mathbb{F}_{2}[x]$ of degree d. Use the Chinese remainder theorem to prove that for precisely half of the polynomials $g \in \mathbb{F}_{2}[x]$ of degree $<2 d$ the $g c d(f, h(g))$ is a proper factor of f.
Design a probabilistic algorithms, which from an square equal degree product $f=f_{1} f_{2} \cdots f_{k}$
(1) finds an nontrivial factor,
(2) finds the irreducible factors $f_{1}, f_{2}, \ldots, f_{k}$.

Exercise 3. Consider $x^{4}-1 \in \mathbb{Z}[x]$ and the factorisation

$$
x^{4}-1 \equiv(x-2)\left(x^{3}+2 x^{2}-x-2\right) \quad \bmod 5 .
$$

Extend this factorisation to a factorisation mod 25 and mod 625 .

Exercise 4. Consider $f=x^{3}-x+t \in \mathbb{Q}[t, x]$. Then

$$
f \equiv x(x-1)(x+1) \quad \bmod t .
$$

Extend this factorisation to a facorisation $\bmod t^{2}$.

