Mathematik für InformatikerInnen 2

Frank-Olaf Schreyer

Universität des Saarlandes, SS 2020

Ziel heute: Die Dimension ist wohldefiniert.

- unverkürzbare Erzeugendensysteme
- unverlängerbare Systeme von linear unabhängigen Vektoren
- Austauschsatz
- ▶ lineare Abbildungen, Homomorphismen
- ► Klassifikation endlich-dimensionaler K-Vektorräume

In der letzten Vorlesung hatten wir die Dimension eines Vektorraums V mit einer Basis v_1, \ldots, v_n als

$$\dim V = n$$

definiert. Diese Definition ist problematisch, da Vektorräume viele verschiedene Basen haben. Wir müssen zeigen, dass je zwei verschiedene Basen aus gleich vielen Vektoren bestehen.

Definition (Erinnerung). Sei V ein K-Vektorraum und seien $v_1, \ldots, v_n \in V$ Vektoren.

1. v_1, \ldots, v_n erzeugen V, wenn jeder Vektor $v \in V$ eine Darstellung

$$v = \lambda_1 v_1 + \ldots + \lambda_n v_n$$

mit $\lambda_1, \ldots, \lambda_n \in K$ besitzt.

2. v_1, \ldots, v_n sind **linear unabhängig**, wenn

$$0 = \lambda_1 v_1 + \ldots + \lambda_n v_n \Rightarrow \lambda_1 = 0, \ldots, \lambda_n = 0$$
 gilt.

3. v_1, \ldots, v_n ist eine **Basis** von V, wenn sie ein linear unabhängiges Erzeugendensystem bilden.

Bemerkung. Ist v_1, \ldots, v_n eine Basis von V, dann hat jeder Vektor $v \in V$ eine eindeutig bestimmte Darstellung

$$v = \lambda_1 v_1 + \cdots + \lambda_n v_n \text{ mit } \lambda_i \in K$$

als Linearkombination.

Beweis. Existenz ist die erste Bedingung, Eindeutigkeit die zweite.

Satz. Sei V ein K-Vektorraum und seien $v_1, \ldots, v_n \in V$ Vektoren. Äquivalent sind:

- 1. v_1, \ldots, v_n bilden eine Basis von V.
- 2. v_1, \ldots, v_n bilden ein unverlängerbares System von linear unabhängigen Vektoren.
- 3. v_1, \ldots, v_n bilden ein unverkürzbares Erzeugendensystem von V.
- 4. Jeder Vektor $v \in V$ hat genau eine Darstellung

$$v = \lambda_1 v_1 + \cdots + \lambda_n v_n \text{ mit } \lambda_i \in K$$

als Linearkombination von v_1, \ldots, v_n .

Beweis. $1. \Rightarrow 4$. gilt nach der vorangegangenen Bemerkung.

- $4. \Rightarrow 2.$ und $4. \Rightarrow 3.$ sind jeweils klar.
- $2. \land 3. \Rightarrow 1.$ gilt nach der Definition einer Basis.

Es bleibt, $2. \Leftrightarrow 3.$ einzusehen.

 $2.\Rightarrow 3.:$ Sei v_1,\ldots,v_n ein unverlängerbares System von linear unabhängigen Vektoren. Mit jedem weiteren Vektor $w\in V$ erhalten wir also ein System von linear abhängigen Vektoren, also:

$$\exists \, \lambda_1, \dots, \lambda_n, \lambda_{n+1} \in K: \quad \lambda_1 v_1 + \dots + \lambda_n v_n + \lambda_{n+1} w = 0,$$

wobei wenigstens ein $\lambda_i \neq 0$. Es ist $\lambda_{n+1} \neq 0$, da v_1, \ldots, v_n linear unabhängig sind. Da K ein Körper ist, gilt $\frac{1}{\lambda_{n+1}} \in K$. Es folgt:

$$w = \left(-\frac{\lambda_1}{\lambda_{n+1}}\right)v_1 + \cdots + \left(-\frac{-\lambda_n}{\lambda_{n+1}}\right) \cdot v_n.$$

Dies gilt für beliebige $w \in V$, d.h. v_1, \ldots, v_n erzeugen V. v_1, \ldots, v_n ist unverkürzbar, das heißt nach Weglassen eines der Vektoren haben wir kein Erzeugendensystem mehr. Wenn wir zum Beispiel v_n weglassen und v_1, \ldots, v_{n-1} noch ein Erzeugendensystem wäre, gäbe es eine Darstellung

$$v_n = \mu_1 v_1 + \cdots + \mu_{n-1} v_{n-1},$$

d.h. v_1, \ldots, v_n wären linear abhängig. Dies widerspricht der Voraussetzung.

 $3. \Rightarrow 2.$: Sei v_1, \ldots, v_n ein unverkürzbares Erzeugendensystem. Dann sind v_1, \ldots, v_n linear unabhängig. In der Tat: Wäre

$$\lambda_1 v_1 + \dots \lambda_n v_n = 0$$

ein nichttriviale Relation, etwa mit $\lambda_n \neq 0$, dann:

$$v_n = \left(\frac{-\lambda_1}{\lambda_n}\right)v_1 + \cdots + \left(\frac{-\lambda_{n-1}}{\lambda_n}\right)v_{n-1}.$$

Doch dann wären schon v_1, \ldots, v_{n-1} erzeugend, im Widerspruch zur Voraussetzung: v_1, \ldots, v_n ließe sich zu dem Erzeugendensystem v_1, \ldots, v_{n-1} verkürzen.

Beispiel. Das Erzeugendensystem

$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

von Vektoren des \mathbb{R}^2 ist verkürzbar. Wir können sogar jeden beliebigen der drei Vektoren weglassen und erhalten immer noch ein System, das ganz \mathbb{R}^2 erzeugt:

$$\mathsf{Spann}(v_1,v_2)=\mathsf{Spann}(v_1,v_3)=\mathsf{Spann}(v_2,v_3)=\mathbb{R}^2.$$

Bei
$$w_1=\begin{pmatrix}1\\0\end{pmatrix}, w_2=\begin{pmatrix}0\\1\end{pmatrix}, w_3=\begin{pmatrix}0\\2\end{pmatrix}$$
 können wir allerdings w_1 nicht weglassen, da w_2 und w_3 nur $\{\begin{pmatrix}a\\b\end{pmatrix}\in\mathbb{R}^2\mid a=0\}\subsetneq\mathbb{R}^2$ erzeugen.

Austauschlemma

Lemma. Sei v_1, \ldots, v_n eine Basis von V und $w \in V$ ein weiterer Vektor mit $w \neq 0$. Dann existiert ein $i \in \{1, ..., n\}$, so dass wir nach Austausch von v; mit w nach wie vor eine Basis haben. Ist etwa i = 1, was man durch Umnummerierung erreichen kann, dann ist also w, v_2, \ldots, v_{n-1} eine Basis von V.

Beweis. w ist eine Linearkombination

$$w = \lambda_1 v_1 + \cdots + \lambda_n v_n$$

für gewisse $\lambda_i \in K$, da v_1, \ldots, v_n ein Erzeugendensystem bilden. Wenigstens ein $\lambda_i \in K$ ist $\neq 0$, da w nicht der Nullvektor ist. Nach Umnummerieren können wir $\lambda_1 \neq 0$ annehmen.

- Wir zeigen:
 - 1. w, v_2, \ldots, v_n ist ein Erzeugendensystem.
 - 2. w, v_2, \ldots, v_n sind linear unabhängig.

Zunächst einmal gilt:

$$v_1 = \frac{1}{\lambda_1}w + \left(\frac{-\lambda_2}{\lambda_1}\right)v_2 + \cdots + \left(\frac{-\lambda_n}{\lambda_1}\right)v_n,$$

da $\frac{1}{\lambda_1} \in K$ existiert.

Sei $u \in V$ ein beliebiger Vektor. Dann existieren $\mu_1, \dots, \mu_n \in K$, so dass

$$u = \mu_1 v_1 + \cdots + \mu_n v_n,$$

da v_1, \ldots, v_n ganz V erzeugen. Also:

$$u = \mu_1 \left(\frac{1}{\lambda_1} w + \left(\frac{-\lambda_2}{\lambda_1} \right) v_2 + \dots + \left(\frac{-\lambda_n}{\lambda_1} \right) v_n \right) + \lambda_2 v_2 + \dots + \mu_n v_n$$
$$= \frac{\mu_1}{\lambda_1} w + \left(\mu - \lambda_2 \frac{\mu_1}{\lambda_1} \right) v_2 + \dots + \left(\mu_n - \lambda_n \frac{\mu_1}{\lambda_1} \right) v_n.$$

D.h., w, v_2, \ldots, v_n erzeugen V.

Zur linearen Unabhängigkeit: Angenommen,

$$0 = \mu_1 \mathbf{w} + \mu_2 \mathbf{v}_2 + \dots + \mu_n \mathbf{v}_n, \quad \mu_i \in K.$$

Einsetzen der Ausgangsgleichung für w liefert

$$0 = \mu_1 \lambda_1 v_1 + (\mu_2 + \mu_1 \lambda_2) v_2 + \dots + (\mu_n + \mu_1 \lambda_n) v_n.$$

Da v_1, \ldots, v_n linear unabhängig sind, folgt

$$\mu_1 \lambda_1 = 0, \quad \mu_2 + \mu_1 \lambda_2 = 0, \quad \dots, \quad \mu_n + \mu_1 \lambda_n = 0 \in K.$$

Nach Voraussetzung gilt $\lambda_1 \neq 0$.

$$\Rightarrow \mu_1 = \frac{1}{\lambda_1} \mu_1 \lambda_1 = 0.$$

Einsetzen liefert: $\mu_2 = \cdots = \mu_n = 0$.

Austauschsatz von Steinitz

nach wie vor eine Basis haben.

Satz. Sei V ein K-Vektorraum und v_1, \ldots, v_r eine Basis von V und w_1, \ldots, w_n eine Familie von linear unabhängigen Vektoren. Dann gilt $n \le r$, und es existieren paarweise verschiedene Indizes $i_1, \ldots, i_n \in \{1, \ldots, r\}$, so dass wir nach Austausch von v_{i_k} mit w_k

Gilt etwa $i_1 = 1, ..., i_n = n$, was durch Umnummerierung von $v_1, ..., v_r$ erreicht werden kann, dann ist also

$$w_1,\ldots,w_n,v_{n+1},\ldots,v_r$$

eine Basis von V.

Achtung: $n \le r$ wird bewiesen und nicht vorausgesetzt.

Beweis. Induktion nach n. Für n=0 ist nichts zu zeigen. Sei also $n\geq 1$ und der Satz für n-1 schon gezeigt.

Dann gilt $r \ge n-1$, und wir müssen nur noch den Fall r=n-1 ausschließen. Nach der Induktionsvoraussetzung können wir nach Umnummerierung von v_1, \ldots, v_r annehmen, dass

$$w_1, \ldots, w_{n-1}, v_n, \ldots, v_r$$

eine Basis ist, denn auch die Familie w_1, \ldots, w_{n-1} ist linear unabhängig. w_n hat eine Darstellung

$$w_n = \lambda_1 w_1 + \dots + \lambda_{n-1} w_{n-1} + \lambda_n v_n + \dots + \lambda_r v_r \text{ mit } \lambda_i \in K.$$

Nicht alle Koeffizienten $\lambda_n,\ldots,\lambda_r$ können 0 sein, denn sonst wären w_1,\ldots,w_n linear abhängig, im Widerspruch zur Voraussetzung. Also ist einer der Koeffizienten $\lambda_n,\ldots,\lambda_r$ nicht 0, und insbesondere ist $n\leq r$. Nach Umnummerieren von v_n,\ldots,v_r können wir annehmen, dass $\lambda_n\neq 0$. Nach dem Austauschlemma ist dann auch

$$W_1, \ldots, W_n, V_{n+1}, \ldots, V_r$$

eine Basis von V.

Definition. Ein K-Vektorraum ist **endlich-dimensional**, wenn es endlich viele Vektoren $v_1, \ldots, v_m \in V$ gibt, die V erzeugen.

Bemerkung. Durch Verkürzen des Erzeugendensystems erhalten wir dann auch eine Basis von V, indem wir Elemente weglassen, solange bis die verbleibenden linear unabhängig sind. Es gibt also eine Basis der Gestalt

$$w_1, \ldots, w_n,$$

wobei $w_k = v_{i_k}$ für geeignete Indizes $i_1, \ldots, i_n \in \{1, \ldots, m\}$ gilt.

Korollar. Je zwei Basen eines endlich-dimensionalen K-Vektorraums V haben gleich viele Elemente. Insbesondere ist

$$\dim V := \left\{ \begin{array}{ll} n, & \textit{falls} \ \exists \ \textit{Basis} \ v_1, \dots, v_n, \\ \infty, & \textit{sonst} \end{array} \right.$$

wohldefiniert.

Basisergänzungssatz

Korollar. Sei v_1, \ldots, v_n eine Familie linear unabhängiger Vektoren in einem endlich-dimensionalen Vektorraum V und sei $r = \dim V(< \infty)$. Dann kann man diese Familie zu einer Basis

$$v_1,\ldots,v_n,v_{n+1},\ldots,v_r$$

von V ergänzen.

Beweis. Nach dem vorigen Korollar ist $n \le r$. Ist n < r, so gibt es, ebenfalls wegen des Korollars, einen Vektor $w \in V \setminus \langle v_1, \dots, v_n \rangle$. Induktiv können wir dies fortführen, bis wir schließlich eine Basis erhalten.

Bemerkung. Man kann die zusätzlichen Vektoren aus jedem (endlichen) Erzeugendensystem w_1, \ldots, w_m auswählen.

Korollar.

- 1. Jeder endlich-dimensionale Vektorraum besitzt eine Basis.
- 2. Ist V ein Vektorraum der Dimension $n=\dim V<\infty$, dann ist jede Familie von mehr als n Vektoren in V linear abhängig.
- 3. Sei $U \subset V$ ein Untervektorraum. Dann gilt: dim $U \leq \dim V$. Ist V endlich-dimensional und dim $U = \dim V$, so folgt U = V.

Bemerkung. Für unendlich-dimensionale Vektorräume

$$U \subset V$$
 mit dim $U = \dim V = \infty$

kann man auf U = V nicht schließen.

Zum Beispiel: $\mathbb{R}[t] \subsetneq C^0[a, b]$, da nicht jede stetige Funktion ein Polynom ist.

Lineare Abbildungen und Vektorraumhomomorphismen

Definition. Es seien V, W zwei K-Vektorräume. Eine K-**lineare Abbildung** (oder **Vektorraumhomomorphismus**) von V nach W ist eine Abbildung

$$f: V \to W$$

die Folgendes erfüllt:

- 1. $f(v_1 + v_2) = f(v_1) + f(v_2) \quad \forall v_1, v_2 \in V$ und
- 2. $f(\lambda v) = \lambda f(v) \quad \forall \lambda \in K, \forall v \in V.$

Beispiel.

1. Sei $V = K^n$ und W ein weiterer K-Vektorraum. Zu einer Familie $A = \{w_1, \dots, w_n\}$ von Vektoren aus W definiert

$$\varphi_{\mathcal{A}} \colon K^n \to W, \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \sum_{l=1}^n x_l w_l$$

eine K-lineare Abbildung.

Beispiel.

2. Sei K ein Körper und $A = (a_{ij}) \in K^{m \times n}$ eine $m \times n$ Matrix mit Einträgen in K. Dann definiert A eine lineare Abbildung

$$f_A: K^n \to K^m, x \mapsto A \cdot x,$$

wobei $A \cdot x$ durch das Matrizenprodukt gegeben ist, also

$$f_{A}(x) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^{n} a_{1j}x_{j} \\ \sum_{j=1}^{n} a_{2j}x_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{mj}x_{j} \end{pmatrix}$$

Merkregel. Die *j*-te Spalte $\begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix}$ ist das Bild des *j*-ten

Einheitsvektors $e_i \in K^n$.

Beispiel.

3. Die Translation um einen Vektor $b \in \mathbb{R}^n, b \neq 0$,

$$\mathbb{R}^n \mapsto \mathbb{R}^n, \quad x \mapsto x + b$$

ist nicht linear, wie die folgende Bemerkung zeigt.

Bemerkung. Ist $f: V \to W$ eine lineare Abbildung zwischen zwei K-Vektorräumen. Dann gilt: $f(0_V) = 0_W$ (kurz: f(0) = 0).

Beweis. Es gilt $0_V = 0_K \cdot 0_V$, also:

$$f(0_V) = f(0_K \cdot 0_V) = 0_K \cdot f(0_V) = 0_W.$$

Monomorphismen, Epimorphismen und Isomorphismen

Definition. Einen injektiven Vektorraumhomomorphismus $f: V \to W$ nennen wir einfach **Monomorphismus**, einen surjektiven nennen wir **Epimorphismus**. Ein bijektiver Vektorraumhomomorphismus $f: V \to W$ heißt **Isomorphismus**; V und W heißen dann **isomorph** $(V \cong W)$.

Bemerkung. Ist f ein Isomorphismus, dann ist die Umkehrabbildung $f^{-1}:W\to V$ ebenfalls ein Isomorphismus.

Beweis. Zu zeigen ist: f^{-1} ist K-linear. Sind $w_1, w_2 \in W$ und $v_j = f^{-1}(w_j), j = 1, 2$, also $w_j = f(v_j)$, dann gilt:

$$w_1 + w_2 = f(v_1) + f(v_2) = f(v_1 + v_2),$$

also:

$$f^{-1}(w_1+w_2) = f^{-1}(f(v_1+v_2)) = v_1+v_2 = f^{-1}(w_1)+f^{-1}(w_2).$$

Klassifikation endlich-dimensionaler K-Vektorräume

Satz. Sei V ein endlich-dimensionaler K-Vektorraum der Dimension dim V = n. Dann ist $V \cong K^n$.

Beweis. Sei $\mathcal{B} = \{v_1, \dots, v_n\}$ eine Basis von V. Dann ist

$$\varphi_{\mathcal{B}}: K^n \to V, e_j \mapsto v_j$$

ein Isomorphismus. In der Tat:

$$\varphi_{\mathcal{B}}\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \lambda_1 v_1 + \ldots + \lambda v_n = 0$$

gilt genau dann, wenn $\lambda_1 = 0, \dots, \lambda_n = 0$ gilt, da v_1, \dots, v_n linear unabhängig sind. Also $\varphi_{\mathcal{B}}^{-1}(0) = \{0\}.$

Gilt nun $\varphi_{\mathcal{B}}(x) = \varphi_{\mathcal{B}}(y)$, so folgt wegen der Linearität $\varphi_{\mathcal{B}}(x-y) = 0$, und deshalb $x-y \in \varphi_{\mathcal{B}}^{-1}(0) = \{0\}$ und damit x=y. Dies zeigt, $\varphi_{\mathcal{B}}$ ist injektiv.

 $\varphi_{\mathcal{B}}$ ist surjektiv, da v_1, \ldots, v_n den Vektorraum V erzeugen.