Mathematik für InformatikerInnen 2

Frank-Olaf Schreyer

Universität des Saarlandes, SS 2020

Basiswechsel, Rang und Normalform für lineare Abbildungen

- Basiswechsel
- Normalform für lineare Abbildungen
- Rang einer Matrix
- Dimensionsformel für Untervektorräume

In der letzten Vorlesung hatten wir gesehen, wie eine linear Abbildung $f\colon V\to W$ durch eine Matrix

$$A=M_{\mathcal{B}}^{\mathcal{A}}(f)$$

beschrieben werden kann, wobei $\mathcal{A} = \{v_1, \ldots, v_n\}$ eine Basis von V und $\mathcal{B} = \{w_1, \ldots, w_n\}$ eine Basis von W ist. Ziel dieser Vorlesung ist es zu verstehen, wie sich Basiswechsel auswirken.

Basiswechsel, 1

Satz und Definition. Es seien V, W zwei endlich-dimensionale K-Vektorräume mit Basen

$$\mathcal{A} = \{v_1, \ldots, v_n\}, \ \mathcal{B} = \{w_1, \ldots, w_m\}$$

und $f: V \to W$ eine lineare Abbildung. $A = M_{\mathcal{B}}^{\mathcal{A}}(f)$ sei die Matrixdarstellung von f bezüglich dieser Basen. Sind $\mathcal{A}' = \{v'_1, \ldots, v'_n\}, \ \mathcal{B}' = \{w'_1, \ldots, w'_m\}, \ dann \ ergibt \ sich \ die Matrixdarstellung <math>B = M_{\mathcal{B}'}^{\mathcal{A}'}(f)$ in den neuen Basen wie folgt:

$$B = TAS^{-1}$$
,

wobei $T = M_{\mathcal{B}'}^{\mathcal{B}}(\mathrm{id}_W)$, $S = M_{\mathcal{A}'}^{\mathcal{A}}(\mathrm{id}_V)$ die sogenannten Basiswechselmatrizen sind.

Hierbei bezeichnen $\mathrm{id}_V:V\to V$ und $\mathrm{id}_W:W\to W$ jeweils die identischen Abbildungen.

Basiswechsel, 2

Mit anderen Worten: Das folgende Diagramm kommutiert:

$$K^{n} \xrightarrow{B} K^{m}$$

$$\begin{cases} \sqrt{\varphi_{A'} & \varphi_{B'}} \\ V \xrightarrow{f} W \end{cases}$$

$$K^{n} \xrightarrow{A} K^{m}.$$

Insbesondere gilt $B = T \cdot A \cdot S^{-1}$.

Beweis. Klar nach Definition der Matrixdarstellung. Beispielsweise kommutiert

$$W \stackrel{\varphi_{\mathcal{B}'}}{\longleftarrow} K^m$$

$$\mathrm{id}_W \bigwedge^{\uparrow} \qquad \bigwedge^{\uparrow} T = M_{\mathcal{B}'}^{\mathcal{B}}(\mathrm{id}_W)$$

$$W \stackrel{\varphi_{\mathcal{B}}}{\longleftarrow} K^m.$$

Klassifikationsatz von linearen Abbildungen

Satz. Sei $f: K^n \to K^m$ die durch die Matrix $A \in K^{m \times n}$ definierte lineare Abbildung. Dann existieren $S \in GL(n, K), T \in GL(m, K)$, so dass:

$$TAS^{-1} = \begin{pmatrix} 1 & & & & \\ & \ddots & & & 0 \\ & & 1 & & \\ & & 0 & & 0 \end{pmatrix} \qquad \begin{cases} r & & \\ & m-r & \\ & & \end{cases}$$

für ein $r \leq \min(n, m)$ gilt.

Ende Teil 1

Beweis. Wir wählen Basen von K^n und K^m geschickt: Wir betrachten dazu den Kern

$$\ker A = \{x \in \mathbb{R}^n \mid Ax = 0\}.$$

Ist $d=\dim(\ker A)$, so setzen wir r=n-d (also $r\leq n$). Als erstes wählen wir eine Basis von $\ker A\subset K^n$, die wir mit v_{r+1},\ldots,v_n durchnummerieren. Anschließend ergänzen wir diese durch Vektoren $v_1,\ldots,v_r\in K^n$ zu einer Basis $\mathcal{A}=\{v_1,\ldots,v_n\}$ von K^n . Seien $w_i=f(v_i), i=1,\ldots,r$, die Bilder der ersten r Vektoren. Dann sind $w_1,\ldots,w_r\in K^m$ linear unabhängig: Wären sie nämlich abhängig, etwa

$$\lambda_1 w_1 + \cdots + \lambda_r w_r = 0,$$

so wäre

$$\lambda_1 v_1 + \cdots + \lambda_r v_r \in \ker A = \langle v_{r+1}, \ldots, v_n \rangle,$$

das heißt, $\{v_1, \ldots, v_n\}$ wäre keine Basis, außer $\lambda_1 = \cdots = \lambda_r = 0$. Dies zeigt:

$$r \leq m \ (= \dim K^m).$$

Wir ergänzen nun w_1, \ldots, w_r zu einer Basis $\mathcal{B} = \{w_1, \ldots, w_r, w_{r+1}, \ldots, w_m\}$ des K^m . Bezüglich der Basen \mathcal{A} und \mathcal{B} hat f die Gestalt:

$$M_{\mathcal{B}}^{\mathcal{A}}(f) = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 0 & \\ & & & & 0 \end{pmatrix} \qquad \begin{cases} r & & \\ & m-r & \\ & & \\ \end{pmatrix} m - r$$

Dies folgt sofort aus $f(v_i) = w_i, i = 1, ..., r$ und $f(v_i) = 0, i = r + 1, ..., n$.

Wenn also $S=M_{\mathcal{A}}^{\mathcal{E}}(\mathrm{id}_{K^n})$ und $T=M_{\mathcal{B}}^{\mathcal{E}}(\mathrm{id}_{K^m})$ die Basiswechselmatrizen sind, so folgt, dass das Diagramm

$$\begin{array}{ccc}
K^n & \xrightarrow{M_{\mathcal{B}}^{\mathcal{A}}(f)} K^m \\
\downarrow S & & \uparrow T \\
K^n & \xrightarrow{A} K^m
\end{array}$$

kommutiert.

Bezüglich geeigneter Basen kann jede lineare Abbildung zwischen endlich-dimensionalen Vektorräumen, also durch eine sehr einfache Matrix beschrieben werden. Der Wechsel zur passenden Basis im Definitions- bzw. Zielvektorraum wird jeweils von einer invertierbaren Matrix realisiert.

Die Dimensionsformel für lineare Abbildungen

Korollar (aus dem Beweis). Sei $f:V\to W$ eine lineare Abbildung zwischen zwei K-Vektorräumen und dim $V<\infty$. Dann gilt:

$$\dim \mathsf{Bild}(f) + \dim \ker(f) = \dim V.$$

Beweis. Ist $d = \dim \ker f$ und $n = \dim V$, dann ist mit der Notation aus dem Beweis $\operatorname{Bild}(f) = \langle w_1, \dots, w_r \rangle$, also $\dim \operatorname{Bild}(f) = r$, wobei r = n - d.

In geeigneten Basen ist jede lineare Abbildung $f: V \to W$ zwischen endlich-dimensionalen K-Vektorräumen eine Parallelprojektion:

$$\begin{pmatrix} v_1 \\ \vdots \\ v_r \\ v_{r+1} \\ \vdots \\ v_n \end{pmatrix} \mapsto \begin{pmatrix} v_1 \\ \vdots \\ v_r \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Rang einer linearen Abbildung

Definition. Sei $f:V\to W$ eine lineare Abbildung zwischen endlich-dimensionalen Vektorräumen. Dann ist der Rang von f durch

$$rang(f) := dim Bild f$$

definiert. Der Rang einer $m \times n$ -Matrix $A \in K^{m \times n}$ ist der Rang der zugehörigen lineare Abbildung $K^n \to K^m$, $x \mapsto Ax$:

$$\operatorname{rang} A := \operatorname{rang} (K^n \xrightarrow{A} K^m).$$

Satz. Sei $A \in K^{m \times n}$ eine Matrix und \tilde{A} die Matrix in Zeilenstufenform die der Gaußalgorithmus zurückgibt. Hat \tilde{A} genau r Stufen, dann gilt

$$r = \operatorname{rang} A$$
.

Beweis. Die Transformation in Zeilenstufenform entspricht einem Basiswechsel im K^m . An der Dimension des Bildes ändert das nichts. Also rang $A = \operatorname{rang} \tilde{A} = r$.

Die transponierte Matrix

Sei $A = (a_{ij}) \in K^{m \times n}$ eine $m \times n$ -Matrix. Dann ist die transponierte Matrix $A^t = (b_{ij}) \in K^{n \times m}$ durch

$$b_{ij} := a_{ji}$$

definiert.

Beispiel.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \Rightarrow A^t = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}.$$

Bemerkung. $(A \cdot B)^t = B^t \cdot A^t$.

Satz. Eine Matrix und ihre Transponierte haben den gleichen Rang:

$$\operatorname{rang} A = \operatorname{rang} A^t$$
.

Beweis. Es gilt rang A=r genau dann, wenn es invertierbare Matrizen $S\in \mathrm{GL}(n,K)$ und $T\in \mathrm{GL}(n,K)$ gibt, so dass TAS^{-1} in der Normalform mit r Einträgen 1 auf der Diagonalen und sonst Nullen ist. Die Matrix $(TAS^{-1})^t=(S^{-1})^tA^tT^t$ ist auch in Normalform, und $(S^{-1})^t$ und $(T^t)^{-1}$ sind ebenfalls invertierbar.

Anwendung auf lineare Gleichungssyteme

Sei Ax = b mit $A \in K^{m \times n}$, $b \in K^m$, ein Gleichungssystem und Ax = 0

das **zugehörige homogene Gleichungssystem**. Dann ist die Lösungsmenge des homogenen Gleichungssystems der Untervektorraum

$$\ker A = \{x \in K^n \mid Ax = 0\}.$$

Für inhomogene Gleichungssysteme betrachtet man zu $y \in K^n$ die Parallelräume

$$y + \ker A := \{ y + x \in K^n \mid x \in \ker A \}.$$

Satz. Ist $\tilde{x} \in K^n$ eine Lösung des inhomogenen Gleichungssystems

$$Ax = b$$
,

dann ist dessen ganze Lösungsmenge $L_b = \{x \in K^n \mid Ax = b\}$ der Parallelraum

$$L_b = \tilde{x} + \ker A$$
.

Beweis. Für $x \in \ker A$ und \tilde{x} mit $A\tilde{x} = b$ gilt

$$A(\tilde{x}+x)=A\tilde{x}+Ax=A\tilde{x}=b,$$

also $\tilde{x} + \ker A \subset L_b$. Umgekehrt gilt $L_b \subset \tilde{x} + \ker A$:

$$x' \in L_b \implies A(x' - \tilde{x}) = Ax' - A\tilde{x} = b - b = 0$$

 $\Rightarrow x' - \tilde{x} \in \ker A$
 $\Rightarrow x' \in \tilde{x} + \ker A.$

Ist $b \notin Bild(A)$, dann existiert kein $\tilde{x} \in K^n$ mit $A\tilde{x} = b$ und $L_b = \emptyset$.

Quadratische Gleichungssyteme

Wir betrachten nun den wichtigen Spezialfall von Gleichungssystemen mit genauso vielen Gleichungen wie Unbestimmten, d.h., $A \in K^{n \times n}$.

Satz. Sei $A \in K^{n \times n}$ und $b \in K^n$; mit f bezeichnen wir die zugehörige lineare Abbildung. Dann sind äquivalent:

- 1. A ist invertierbar, d.h., $A \in GL(n, K)$,
- 2. $\ker A = 0$, d.h., f ist ein Monomorphismus,
- 3. Bild $A = K^n$, d.h., f ist ein Epimorphismus,
- 4. Ax = b hat genau eine Lösung.

Beweis.

1. \Rightarrow 2.: A ist invertierbar, d.h. $\exists A^{-1} \in K^{n \times n}$, so dass $A^{-1} \cdot A = E$

$$\Rightarrow \ker A \subset \ker A^{-1}A = \ker E = 0.$$

2. ⇔ 3.: Die Dimensionsformel sagt:

$$\dim \ker A + \dim \operatorname{Bild} A = \dim K^n = n.$$

Also:

$$\ker A = 0 \Leftrightarrow \dim \operatorname{Bild} A = n \Leftrightarrow \operatorname{Bild} A = K^n.$$

- 2. \wedge 3. \Rightarrow 4.: Bild $A = K^n$ besagt: Für jedes b hat die Gleichung Ax = b eine Lösung. Und ker A = 0 besagt: Wenn es eine Lösung gibt, ist diese eindeutig bestimmt.
- 4. \Rightarrow 1.: Wir betrachten die Lösungen $v_i \in K^n$ der Gleichungen

$$Av_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, Av_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

und bilden die Matrix

$$B = (v_1, \ldots, v_h) \in K^{n \times n}$$
.

Dann gilt: $A \cdot B = E \ (\Rightarrow B \cdot A = E) \Rightarrow B = A^{-1}$, also: A ist invertierbar.

Bemerkungen.

1. Häufig will man das Gleichungssystem

$$Ax = b$$

für eine Matrix $A \in K^{n \times n}$ und viele verschiedene b berechnen. Dann lohnt es sich, die Inverse A^{-1} , etwa mit Gauß zu berechnen.

- 2. Für $A \in GL(n, K)$ ist der Aufwand, A^{-1} mit Hilfe des Gaußalgorithmus zu berechnen, von der Größenordnung $O(n^3)$ Körperoperationen.
- 3. Eine Matrixmultiplikation

$$A \cdot B$$

auszurechnen für $A, B \in K^{n \times n}$ hat mit der Formel aus der Definition ebenfalls den Aufwand $O(n^3)$, denn es gibt n^2 Einträge von $A \cdot B$, und

$$c_{ik} = \sum_{i=1}^{n} a_{ik} b_{kj}$$

besteht aus *n* Termen. Es geht auch mit weniger Aufwand:

- 4. Für n=2 braucht man mit der klassischen Formel 8 Multiplikationen. Eine Entdeckung von Strassen (1969) besagt, dass man mit 7 Multiplikationen auskommt. Dies liefert für allgemeines n einen niedrigeren Aufwand $O(n^{log_27}) \approx O(n^{2.7})$.
- 5. Es ist offen, ob eine asymptotische Laufzeit von $O(n^2)$ für die Matrixmultiplikation möglich ist, was optimal wäre, da die Ausgabe aus n^2 Einträgen besteht. Ist dies der Fall, dann lässt sich auch A^{-1} in $O(n^2)$ berechnen! Dazu eventuell später mehr.

Summen von Vektorräumen

Definition. Seien V ein K-Vektorraum und $U, W \subset V$ zwei Untervektorräume. Dann bezeichnet

$$U + W = \{ v \in V \mid \exists u \in U, \exists w \in W : v = u + w \}$$

die Summe der Untervektorräume.

Die **äußere** bzw. **direkte Summe** von U und W ist

$$U \oplus W := U \times W = \{(u, w) \mid u \in U, w \in W\}.$$

Wir haben eine kanonische lineare Abbildung

$$f: U \oplus W \to V, \quad (u, w) \mapsto u + w.$$

Häufig wird $U \oplus W$ auch nur als Notation von U + W verwendet, wenn $U \cap W = 0$.

Dimensionsformel für die Summe von Untervektorräumen

Satz. Seien V ein K-Vektorraum, $U, W \subset V$ zwei Untervektorräume und

$$f: U \oplus W \to V, (u, w) \mapsto u + w$$

die kanonische Abbildung. Dann gilt

$$Bild(f) = U + W$$

und

$$Ker f \cong U \cap W$$

vermöge

$$g: U \cap W \to U \oplus W, \quad x \mapsto (x, -x).$$

Korollar. $U, W \subset V$ seien Untervektorräume. Dann gilt:

$$\dim U + \dim W = \dim(U \cap W) + \dim(U + W)$$

Beweis des Korollars. Es gilt $\dim(U \oplus W) = \dim U + \dim W$. Die Formel folgt aus der Dimensionsformel für lineare Abbildungen.

Beweis des Satzes. Bild f = U + W ist klar.

Bild $g \subset \ker f$ ebenso, da f(x, -x) = x - x = 0.

Umgekehrt: Sind $(u, w) \in \ker f \subset U \oplus W$, dann gilt: $u + w = 0 \Rightarrow w = -u \in U \cap W$, also: (u, w) = g(u) und deshalb $\ker f \subset \operatorname{Bild} g$, also:

$$\mathsf{Bild}\, g = \ker f.$$

Die Abbildung g ist also eine Epimorphismus

$$U \cap W \rightarrow \ker f$$
.

Dieser ist ein Isomorphismus, da g auch injektiv ist.

Beispiel. $V = \mathbb{R}^3$. Wir betrachten die beiden Untervektorräume:

$$U_t = \langle \left(egin{array}{c} \cos t \ \sin t \ 0 \end{array}
ight)
angle, \ \ \mathcal{W} = \langle \left(egin{array}{c} 1 \ 1 \ 1 \end{array}
ight), \left(egin{array}{c} 1 \ -1 \ 1 \end{array}
ight)
angle.$$

Welche Dimensionen können für $U_t \cap W$ und $U_t + W$ auftreten?

Es gilt: dim $U_t = 1$, dim $W = 2 \ \forall t$. Außerdem ist dim $(U_t \cap W) = 0$, dim $(U_t + W) = 3$,

falls

$$\left\{ \left(\begin{array}{c} \cos t \\ \sin t \\ 0 \end{array}\right), \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right), \left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right) \right\}$$

eine Basis des \mathbb{R}^3 ist, und dies passt zu den Formeln aus dem Korollar. Ist dies nicht der Fall, dann gilt:

$$\left(egin{array}{c} \cos t \ \sin t \ 0 \end{array}
ight) \in \left\langle \left(egin{array}{c} 1 \ 1 \ 1 \end{array}
ight), \left(egin{array}{c} 1 \ -1 \ 1 \end{array}
ight)
ight
angle = W \quad (U_t \subset W),$$

also: dim $U_t = 1$, dim W = 2, dim $(U_t \cap W) = 1$ und dim $(U_t + W) = 2$. Dies liegt vor, falls:

$$\left(\begin{array}{c} \cos t \\ \sin t \\ 0 \end{array}\right) \in \left\langle \left(\begin{array}{c} 0 \\ 2 \\ 0 \end{array}\right) \right\rangle \implies t = \frac{\pi}{2} \text{ bzw. } t = \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}.$$