UNIVERSITÄT DES SAARLANDES Fachrichtung 6.1 - Mathematik Prof. Dr. Frank-Olaf Schreyer

Christian Bopp

Exercises Algebraic Geometry

Winterterm 2016/17

The solutions are collected on Monday, before the lecture. All further informations concerning the lecture can be found here: https://www.math.uni-sb.de/ag/schreyer/index.php/teaching

Sheet 1

31.10.2016

Exercise 1 (1.2.2). Let \Bbbk be an infinite field, and let $f \in \Bbbk[x_1, \ldots, x_n]$ be a polynomial. If f is nonzero, show that the complement $\mathbb{A}^n(\Bbbk) \setminus \mathcal{V}(f)$ is an infinite set. Conclude that f is the zero polynomial iff the polynomial function $f : \mathbb{A}^n(\Bbbk) \to \Bbbk$ is zero.

Hint. Proceed by induction on the number n of variables. To begin with, recall that a nonzero polynomial in one variable has at most finitely many roots.

Exercise 2 (1.3.3). Let I, I_k, J, J_k, K be ideals of R, for $1 \le k \le s$, and let $g \in R$. Show: (1) $I: J = R \iff J \subset I$.

(2)
$$\left(\bigcap_{k=1}^{s} I_k\right) : J = \bigcap_{k=1}^{s} (I_k : J).$$

(3)
$$I:\left(\sum_{k=1}^{s}J_{k}\right)=\bigcap_{k=1}^{s}(I:J_{k}).$$

$$(4) (I:J): K = I: JK.$$

(5)
$$I: g^m = I: g^{m+1} \Longrightarrow I = (I:g^m) \cap \langle I, g^m \rangle.$$

Exercise 3 (1.5.4).

(1) Show that every polynomial $f \in \mathbb{k}[x, y, z]$ has a representation of type

$$f = g_1(y - x^2) + g_2(z - x^3) + h,$$

where $g_1, g_2 \in \mathbb{k}[x, y, z]$ and $h \in \mathbb{k}[x]$.

(2) Let k be infinite, and let $C = V(y - x^2, z - x^3) \subset \mathbb{A}^3(\mathbb{k})$ be the **twisted cubic curve** in $\mathbb{A}^3(\mathbb{k})$. Show that

$$I(C) = \langle y - x^2, z - x^3 \rangle.$$

Hint. To obtain the representation in part 1, first suppose that f is a monomial. For part 2, use that C can be parametrized:

$$C = \{(a, a^2, a^3) \mid a \in \mathbb{k}\}$$

Exercise 4 (1.5.5). Let $\mathbb{k} = \mathbb{R}$, and let

$$C = \{ (a^2 + 1, a^3 + a) \mid a \in \mathbb{R} \} \subset \mathbb{A}^2(\mathbb{R}).$$

Show that $I(C) = \langle y^2 - x^3 + x^2 \rangle$, and conclude that $\overline{C} = C \cup \{(0,0)\}$.

