UNIVERSITÄT DES SAARLANDES Fachrichtung 6.1 - Mathematik Prof. Dr. Frank-Olaf Schreyer Christian Bopp

Exercises Algebraic Geometry

Winterterm 2016/17

The solutions are collected on Tuesday, before the exercise session. All further informations concerning the lecture can be found here: https://www.math.uni-sb.de/ag/schreyer/index.php/teaching

Sheet 10

18.01.2017

Exercise 1 (5.3.12). For each set of integers $r_1, \ldots, r_s \ge 1$, show by example that the conclusion of the proposition may be wrong if $d = (\sum r_i) - 2$.

Exercise 2 (5.4.6). Consider the polynomials

$$f = xy^2 - xy - y^3 + 1, \ g = x^2y^2 - x^2y + xy - 1 \in \mathbb{Q}[x, y].$$

(1) Compute that

$$\operatorname{Res}(f,g,x) = \det \begin{pmatrix} y^2 - y & 0 & y^2 - y \\ -y^3 + 1 & y^2 - y & y \\ 0 & -y^3 + 1 & -1 \end{pmatrix}$$
$$= y^8 - y^7 + y^6 - 3y^5 + y^4 + y^3 + y^2 - y$$
$$= y(y-1)^2(y^5 + y^4 + 2y^3 - y - 1).$$

Since the resultant is contained in the elimination ideal $\langle f, g \rangle \cap \mathbb{Q}[y]$, the *y*-values of the complex solutions of f = g = 0 must be among its roots. This gives eight candidates for the *y*-values.

(2) If $\pi: \mathbb{A}^2 \to \mathbb{A}^1$ is projection onto the *y*-component, show that

$$\pi(\mathcal{V}(f,g)) \subsetneq \mathcal{V}(\operatorname{Res}(f,g)).$$

Exactly, what *y*-value does not have a preimage point?

(3) Use Gröbner bases to compute that the elimination ideal $\langle f, g \rangle \cap \mathbb{Q}[y]$ is generated by the polynomial $(y-1)^2(y^5 + y^4 + 2y^3 - y - 1)$. Compare this with the result of the previous part.

Exercise 3 (5.4.7). Let $f, g \in k[x_1, \ldots, x_n]$ be forms of degrees $d, e \ge 1$. Suppose that both $f(1, 0, \ldots, 0)$ and $g(1, 0, \ldots, 0)$ are nonzero. That is, the leading coefficients of f and g – regarded as polynomials in x_1 – are nonzero constants. Then show that $\operatorname{Res}(f, g, x_1)$ is homogeneous of degree $d \cdot e$.

Exercise 4. Let $p_1, \ldots, p_4 \in \mathbb{A}^2$ be the four edge points of a convex quadrilateral. Show that there is no parabola through p_1, \ldots, p_4 if the points form a parallelogram. *Hint:* A parabola in \mathbb{A}^2 is the affine part of an irreducible conic in \mathbb{P}^2 which intersects the line at infinity in a single point with multiplicity 2.