UNIVERSITÄT DES SAARLANDES

Fachrichtung 6.1-Mathematik

Prof. Dr. Frank-Olaf Schreyer
Christian Bopp

Exercises Algebraic Geometry

Winterterm 2016/17
The solutions are collected on Tuesday, before the exercise session.
All further informations concerning the lecture can be found here: https://www.math.unisb.de/ag/schreyer/index.php/teaching

Sheet 10

Exercise 1 (5.3.12). For each set of integers $r_{1}, \ldots, r_{s} \geq 1$, show by example that the conclusion of the proposition may be wrong if $d=\left(\sum r_{i}\right)-2$.
Exercise 2 (5.4.6). Consider the polynomials

$$
f=x y^{2}-x y-y^{3}+1, \quad g=x^{2} y^{2}-x^{2} y+x y-1 \in \mathbb{Q}[x, y] .
$$

(1) Compute that

$$
\begin{aligned}
\operatorname{Res}(f, g, x) & =\operatorname{det}\left(\begin{array}{ccc}
y^{2}-y & 0 & y 2-y \\
-y^{3}+1 & y^{2}-y & y \\
0 & -y^{3}+1 & -1
\end{array}\right) \\
& =y^{8}-y^{7}+y^{6}-3 y^{5}+y^{4}+y^{3}+y^{2}-y \\
& =y(y-1)^{2}\left(y^{5}+y^{4}+2 y^{3}-y-1\right) .
\end{aligned}
$$

Since the resultant is contained in the elimination ideal $\langle f, g\rangle \cap \mathbb{Q}[y]$, the y-values of the complex solutions of $f=g=0$ must be among its roots. This gives eight candidates for the y-values.
(2) If $\pi: \mathbb{A}^{2} \rightarrow \mathbb{A}^{1}$ is projection onto the y-component, show that

$$
\pi(\mathrm{V}(f, g)) \subsetneq \mathrm{V}(\operatorname{Res}(f, g)) .
$$

Exactly, what y-value does not have a preimage point?
(3) Use Gröbner bases to compute that the elimination ideal $\langle f, g\rangle \cap \mathbb{Q}[y]$ is generated by the polynomial $(y-1)^{2}\left(y^{5}+y^{4}+2 y^{3}-y-1\right)$. Compare this with the result of the previous part.

Exercise 3 (5.4.7). Let $f, g \in \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be forms of degrees $d, e \geq 1$. Suppose that both $f(1,0, \ldots, 0)$ and $g(1,0, \ldots, 0)$ are nonzero. That is, the leading coefficients of f and g - regarded as polynomials in x_{1} - are nonzero constants. Then show that $\operatorname{Res}\left(f, g, x_{1}\right)$ is homogeneous of degree $d \cdot e$.

Exercise 4. Let $p_{1}, \ldots, p_{4} \in \mathbb{A}^{2}$ be the four edge points of a convex quadrilateral. Show that there is no parabola through p_{1}, \ldots, p_{4} if the points form a parallelogram. Hint: A parabola in \mathbb{A}^{2} is the affine part of an irreducible conic in \mathbb{P}^{2} which intersects the line at infinity in a single point with multiplicity 2 .

