UNIVERSITÄT DES SAARLANDES Fachrichtung 6.1 - Mathematik Prof. Dr. Frank-Olaf Schreyer Christian Bopp

Exercises Algebraic Geometry

Winterterm 2016/17

The solutions are collected on Tuesday, before the exercise session. All further informations concerning the lecture can be found here: https://www.math.uni-sb.de/ag/schreyer/index.php/teaching

Sheet 11

23.01.2017

Exercise 1 (6.2.5). Let $d \ge 2$, and consider the image C of the parametrization

$$\mathbb{A}^1 \to \mathbb{A}^d, \ t \mapsto (t, t^2, \dots, t^d).$$

The projectice closure $\overline{C} \subset \mathbb{P}^d$ is known as the **rational normal curve** in \mathbb{P}^d . Note that for d = 2, 3, we get an irreducible conic respectively the twisted cubic curve. In general, show that $I(\overline{C})$ is generated by $\binom{d}{2}$ quadrics, and that there is no set of generators with fewer elements. Note that for $d \geq 3$, the number of generators is strictly larger than the codimension d - 1.

Exercise 2 (6.3.13). Let A and B be quasi-affine or quasi-projective algebraic sets, and let $\varphi : A \to B$ be a map. Show that φ is a morphism iff the following two conditions hold:

- (1) φ is continuous.
- (2) For any open subset $U \subset B$ and any regular function f on U, the composition $f \circ \varphi$ is a regular function on the open subset $\varphi^{-1}(U) \subset A$.

Exercise 3 (6.3.16). Show that $A = \mathbb{A}^2 \setminus \{(0,0)\}$ is a quasi-projective algebraic set which is neither projective nor affine.

Hint. To exclude that A is affine, compute the ring $\mathcal{O}(A)$.

Exercise 4 (6.3.21). Show that $\rho_{n,d}$ is a closed embedding for every n and d. Moreover, show that the vanishing ideal of the image is generated by quadrics which are binomials. How many quadrics do you get?