UNIVERSITÄT DES SAARLANDES

Fachrichtung 6.1-Mathematik

Prof. Dr. Frank-Olaf Schreyer
Christian Bopp

Exercises Algebraic Geometry

Winterterm 2016/17
The solutions are collected on Tuesday, before the exercise session.
All further informations concerning the lecture can be found here: https://www.math.unisb.de/ag/schreyer/index.php/teaching

Sheet 2

07.11.2016

Exercise 1 (1.5.12). Let I, J be ideals of a ring R. Show:

$$
\begin{equation*}
\operatorname{rad}(I J)=\operatorname{rad}(I \cap J)=\operatorname{rad} I \cap \operatorname{rad} J \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{rad}(I+J)=\operatorname{rad}(\operatorname{rad} I+\operatorname{rad} J) \tag{2}
\end{equation*}
$$

(4) If $\operatorname{rad} I, \operatorname{rad} J$ are coprime, then I, J are coprime as well. Two ideals $I, J \subset R$ are called coprime if $I+J=\langle 1\rangle$.

Exercise 2 (1.6.5). Let $I \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and let $\overline{\mathbb{k}}$ be the algebraic closure of \mathbb{k}. Show that the following are equivalent:
(1) The locus of zeros of I in $\mathbb{A}^{n}(\overline{\mathbb{k}})$ is a finite set of points (or empty).
(2) For each $i, 1 \leq i \leq n$, there is a nonzero polynomial in $I \cap \mathbb{k}\left[x_{i}\right]$.
(3) The \mathbb{k}-vector space $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] / I$ has finite dimension.

Exercise 3 (1.9.3). Let R be a Noetherian ring, let \mathfrak{m} be a maximal ideal of R, and let I be any ideal of R. Show that the following are equivalent:
(1) I is \mathfrak{m}-primary.
(2) $\operatorname{rad} I=\mathfrak{m}$.
(3) $\mathfrak{m} \supset I \supset \mathfrak{m}^{k}$ for some $k \geq 1$.

Exercise 4 (2.1.2 Gordan's Lemma). By induction on the number of variables, show that any nonempty set X of monomials in $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ has only finitely many minimal elements in the partial order given by divisibility $\left(x^{\alpha} \geq x^{\beta}\right.$ iff $\left.\alpha-\beta \in \mathbb{N}^{n}\right)$. Conclude that any monomial ideal of $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ has finitely many monomial generators.

