UNIVERSITÄT DES SAARLANDES Fachrichtung 6.1 - Mathematik Prof. Dr. Frank-Olaf Schreyer

Christian Bopp

07.11.2016

Exercises Algebraic Geometry

Winterterm 2016/17

The solutions are collected on Tuesday, before the exercise session. All further informations concerning the lecture can be found here: https://www.math.uni-sb.de/ag/schreyer/index.php/teaching

Sheet 2

Exercise 1 (1.5.12). Let I, J be ideals of a ring R. Show:

- (1) $\operatorname{rad}(IJ) = \operatorname{rad}(I \cap J) = \operatorname{rad}I \cap \operatorname{rad}J.$
- (2) $\operatorname{rad}(I+J) = \operatorname{rad}(\operatorname{rad} I + \operatorname{rad} J).$

(3) $\operatorname{rad} I = \langle 1 \rangle \iff I = \langle 1 \rangle.$

(4) If rad*I*, rad*J* are coprime, then *I*, *J* are coprime as well. Two ideals $I, J \subset R$ are called **coprime** if $I + J = \langle 1 \rangle$.

Exercise 2 (1.6.5). Let $I \subset \mathbb{k}[x_1, \ldots, x_n]$ be an ideal, and let $\overline{\mathbb{k}}$ be the algebraic closure of \mathbb{k} . Show that the following are equivalent:

- (1) The locus of zeros of I in $\mathbb{A}^n(\overline{k})$ is a finite set of points (or empty).
- (2) For each $i, 1 \le i \le n$, there is a nonzero polynomial in $I \cap \Bbbk[x_i]$.
- (3) The k-vector space $k[x_1, \ldots, x_n]/I$ has finite dimension.

Exercise 3 (1.9.3). Let R be a Noetherian ring, let \mathfrak{m} be a maximal ideal of R, and let I be any ideal of R. Show that the following are equivalent:

- (1) I is **m**-primary.
- (2) $\operatorname{rad} I = \mathfrak{m}.$
- (3) $\mathfrak{m} \supset I \supset \mathfrak{m}^k$ for some $k \ge 1$.

Exercise 4 (2.1.2 Gordan's Lemma). By induction on the number of variables, show that any nonempty set X of monomials in $\mathbb{k}[x_1, \ldots, x_n]$ has only finitely many minimal elements in the partial order given by divisibility $(x^{\alpha} \geq x^{\beta} \text{ iff } \alpha - \beta \in \mathbb{N}^n)$. Conclude that any monomial ideal of $\mathbb{k}[x_1, \ldots, x_n]$ has finitely many monomial generators.