UNIVERSITÄT DES SAARLANDES

Fachrichtung 6.1 - Mathematik

Prof. Dr. Frank-Olaf Schreyer Christian Bopp

Exercises Algebraic Geometry

Winterterm 2016/17

The solutions are collected on Tuesday, before the exercise session.

All further informations concerning the lecture can be found here: https://www.math.uni-sb.de/ag/schreyer/index.php/teaching

Sheet 3 14.11.2016

Exercise 1 (2.2.11). Let > be a monomial order on $\mathbb{k}[x_1, \ldots, x_n]$, and let X be a finite set of monomials in $\mathbb{k}[x_1, \ldots, x_n]$. Prove that there exists a weight order $>_w$ on $\mathbb{k}[x_1, \ldots, x_n]$ which coincides on X with the given order >. If > is global, show that $>_w$ can be chosen to be global as well.

Hint. Consider the set of differences $\{\alpha - \beta \mid x^{\alpha}, x^{\beta} \in X, x^{\alpha} > x^{\beta}\}$, and show that its convex hull in \mathbb{R}^n does not contain the origin. For the second statement, add $1, x_1, \ldots, x_n$ to X if necessary.

Exercise 2 (2.2.15). Define a global monomial order on $\mathbb{k}[x, y, z]$ yielding the leading terms y of $y - x^2$ and z of $z - x^3$, and reconsider part 1 of Exercise 1.5.4.

Remark (2.2.20). One way of getting a monomial order on F is to pick a monomial order > on R, and extend it to F. For instance, setting

$$x^{\alpha}e_i > x^{\beta}e_j \iff x^{\alpha} > x^{\beta} \text{ or } (x^{\alpha} = x^{\beta} \text{ and } i > j)$$

gives priority to the monomials in R, whereas the order defined below gives priority to the components of F:

$$x^{\alpha}e_i > x^{\beta}e_j \iff i > j \text{ or } (i = j \text{ and } x^{\alpha} > x^{\beta}).$$

Exercise 3 (2.2.22). Consider $F = \mathbb{k}[x,y]^3$ with its canonical basis and the vectors

$$g = \begin{pmatrix} x^2y + x^2 + xy^2 + xy \\ xy^2 - 1 \\ xy + y^2 \end{pmatrix}, \ f_1 = \begin{pmatrix} xy + x \\ 0 \\ y \end{pmatrix}, \ f_2 = \begin{pmatrix} 0 \\ y^2 \\ x + 1 \end{pmatrix} \in F.$$

Extend $>_{\text{lex}}$ on $\mathbb{k}[x, y]$ to F in the two ways described in Remark 2.2.20. With respect to both orders, find $\mathbf{L}(g)$, $\mathbf{L}(f_1)$, and $\mathbf{L}(f_2)$, and divide g by f_1 and f_2 (use the determinate division algorithm).

Remark-Definition (2.3.6). In the situation of Macaulay's theorem, given $g \in F$, the remainder h in a standard expression $g = \sum_{i=1}^r g_i f_i + h$ satisfying (DD2) is uniquely determined by g, I, and > (and does not depend on the choice of Gröbner basis). It represents the residue class $g + I \in F/I$ in terms of the standard monomials (the monomials not contained in $\mathbf{L}_>(I)$). We write $\mathrm{NF}(g,I) = h$ and call $\mathrm{NF}(g,I)$ the **canonical representative** of $g + I \in F/I$ (or the **normal form** of $g \mod I$), with respect to >.

Exercise 4 (2.3.7). Let $I \subset \mathbb{k}[x_1,\ldots,x_n]$ be an ideal. If $f,g \in \mathbb{k}[x_1,\ldots,x_n]$, show that

$$NF(f+g,I) = NF(f,I) + NF(g,I)$$
, and

$$NF(f \cdot g, I) = NF(NF(f, I) \cdot NF(g, I), I).$$