UNIVERSITÄT DES SAARLANDES

Fachrichtung 6.1-Mathematik

Prof. Dr. Frank-Olaf Schreyer
Christian Bopp

Exercises Algebraic Geometry

Winterterm 2016/17
The solutions are collected on Tuesday, before the exercise session.
All further informations concerning the lecture can be found here: https://www.math.unisb.de/ag/schreyer/index.php/teaching

Sheet 3

14.11.2016

Exercise 1 (2.2.11). Let $>$ be a monomial order on $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, and let X be a finite set of monomials in $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$. Prove that there exists a weight order $>_{w}$ on $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ which coincides on X with the given order $>$. If $>$ is global, show that $>_{w}$ can be chosen to be global as well.
Hint. Consider the set of differences $\left\{\alpha-\beta \mid x^{\alpha}, x^{\beta} \in X, x^{\alpha}>x^{\beta}\right\}$, and show that its convex hull in \mathbb{R}^{n} does not contain the origin. For the second statement, add $1, x_{1}, \ldots, x_{n}$ to X if necessary.
Exercise 2 (2.2.15). Define a global monomial order on $\mathbb{k}[x, y, z]$ yielding the leading terms y of $y-x^{2}$ and z of $z-x^{3}$, and reconsider part 1 of Exercise 1.5.4.
Remark (2.2.20). One way of getting a monomial order on F is to pick a monomial order $>$ on R, and extend it to F. For instance, setting

$$
x^{\alpha} e_{i}>x^{\beta} e_{j} \Longleftrightarrow x^{\alpha}>x^{\beta} \text { or }\left(x^{\alpha}=x^{\beta} \text { and } i>j\right)
$$

gives priority to the monomials in R, whereas the order defined below gives priority to the components of F :

$$
x^{\alpha} e_{i}>x^{\beta} e_{j} \Longleftrightarrow i>j \text { or }\left(i=j \text { and } x^{\alpha}>x^{\beta}\right)
$$

Exercise 3 (2.2.22). Consider $F=\mathbb{k}[x, y]^{3}$ with its canonical basis and the vectors

$$
g=\left(\begin{array}{c}
x^{2} y+x^{2}+x y^{2}+x y \\
x y^{2}-1 \\
x y+y^{2}
\end{array}\right), f_{1}=\left(\begin{array}{c}
x y+x \\
0 \\
y
\end{array}\right), f_{2}=\left(\begin{array}{c}
0 \\
y^{2} \\
x+1
\end{array}\right) \in F .
$$

Extend $>_{\text {lex }}$ on $\mathbb{k}[x, y]$ to F in the two ways described in Remark 2.2.20. With respect to both orders, find $\mathbf{L}(g), \mathbf{L}\left(f_{1}\right)$, and $\mathbf{L}\left(f_{2}\right)$, and divide g by f_{1} and f_{2} (use the determinate division algorithm).
Remark-Definition (2.3.6). In the situation of Macaulay's theorem, given $g \in F$, the remainder h in a standard expression $g=\sum_{i=1}^{r} g_{i} f_{i}+h$ satisfying (DD2) is uniquely determined by g, I, and $>$ (and does not depend on the choice of Gröbner basis). It represents the residue class $g+I \in F / I$ in terms of the standard monomials (the monomials not contained in $\left.\mathbf{L}_{>}(I)\right)$. We write $\mathrm{NF}(g, I)=h$ and call $\mathrm{NF}(g, I)$ the canonical representative of $g+I \in F / I$ (or the normal form of $g \bmod I$), with respect to $>$.
Exercise 4 (2.3.7). Let $I \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. If $f, g \in \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, show that

$$
\begin{aligned}
& \mathrm{NF}(f+g, I)=\mathrm{NF}(f, I)+\mathrm{NF}(g, I), \text { and } \\
& \mathrm{NF}(f \cdot g, I)=\mathrm{NF}(\mathrm{NF}(f, I) \cdot \mathrm{NF}(g, I), I) .
\end{aligned}
$$

