UNIVERSITÄT DES SAARLANDES Fachrichtung 6.1 - Mathematik

Prof. Dr. Frank-Olaf Schreyer Christian Bopp

Exercises Algebraic Geometry

Winterterm 2016/17

The solutions are collected on Tuesday, before the exercise session. All further informations concerning the lecture can be found here: https://www.math.unisb.de/ag/schreyer/index.php/teaching

Sheet 4

21.11.2016

Definition 1. A monomial order > on the polynomial ring $\mathbb{k}[\mathbf{x}, \mathbf{y}] = \mathbb{k}[x_1, \dots, x_n, y_1, \dots, y_m]$ is an **elimination order** with respect to x_1, \dots, x_n if the following holds for all $f \in \mathbb{k}[\mathbf{x}, \mathbf{y}]$: $\mathbf{L}(f) \in \mathbb{k}[\mathbf{y}] \implies f \in \mathbb{k}[\mathbf{y}].$

Exercise 1 (2.5.13). [Subalgebra Membership] With notation as above, let $\overline{g}, \overline{f}_1, \ldots, \overline{f}_m$ be elements $\mathbb{k}[x_1, \ldots, x_n]/I$, and let > be a global elimination order on $\mathbb{k}[\mathbf{x}, \mathbf{y}]$ with respect to x_1, \ldots, x_n . Show:

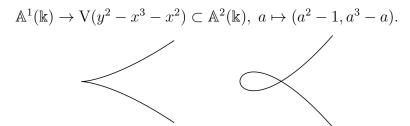
- (1) We have $\overline{g} \in \mathbb{k}[\overline{f}_1, \dots, \overline{f}_m]$ iff the normal form $h = \operatorname{NF}(g, J) \in \mathbb{k}[\mathbf{x}, \mathbf{y}]$ is contained in $\mathbb{k}[\mathbf{y}]$. In this case, $\overline{g} = h(\overline{f}_1, \dots, \overline{f}_m)$ is a polynomial expression for \overline{g} in terms of the \overline{f}_k .
- (2) The homomorphism $\phi : \mathbb{k}[y_1, \dots, y_m] \to \mathbb{k}[x_1, \dots, x_n]/I$ is surjective iff $NF(x_i, J) \in \mathbb{k}[\mathbf{y}]$ for $i = 1, \dots, n$.

Exercise 2 (2.6.19). Let $I \subset \mathbb{k}[x_1, \ldots, x_n]$ be a prime ideal, let $V = V(I) \subset \mathbb{A}^n(\mathbb{k})$ be the corresponding variety, and let $\varphi : V \dashrightarrow \mathbb{A}^m(\mathbb{k})$ be a rational map given by rational functions $f_i = (g_i + I)/(h_i + I) \in \mathbb{k}(V)$, where the $g_i, h_i \in \mathbb{k}[x_1, \ldots, x_n]$. Supposing that V is Zariski dense in the locus of zeros of I in $\mathbb{A}^n(\overline{\mathbb{k}})$, design an algorithm which computes the Zariski closure of $\varphi(\operatorname{domain}(\varphi)) \subset \mathbb{A}^m(\mathbb{k})$.

Exercise 3 (2.2.22). Consider the polynomial parametrizations

$$\mathbb{A}^1(\mathbb{k}) \to \mathcal{V}(y^2 - x^3) \subset \mathbb{A}^2(\mathbb{k}), \ a \mapsto (a^2, a^3),$$

and



Show that each of the parametrizations admits a rational inverse. Use these examples to show that the domain of definition of the composite $\psi \circ \varphi$ of two rational maps may be strictly larger than $\varphi^{-1}(\operatorname{domain}(\psi))$.

Exercise 4 (2.3.7). If chark $\neq 2, 3$, find a rational parametrization of the affine plane curve with equation $y^3 - 3x^2y = (x^2 + y^2)^2$:

