UNIVERSITÄT DES SAARLANDES

Fachrichtung 6.1-Mathematik

Prof. Dr. Frank-Olaf Schreyer
Christian Bopp

Exercises Algebraic Geometry

Winterterm 2016/17
The solutions are collected on Tuesday, before the exercise session.
All further informations concerning the lecture can be found here: https://www.math.unisb.de/ag/schreyer/index.php/teaching

Sheet 6

05.12.2016

Exercise 1 (3.2.26). Show that the following rings are integral domains, and find their normalizations:
(1) The coordinate ring of the plane curve $\mathrm{V}\left(y^{2}-x^{2 k+1}\right) \subset \mathbb{A}^{2}$, where $k \geq 1$.
(2) The coordinate ring of the Whitney umbrella $\mathrm{V}\left(x^{2}-y^{2} z\right) \subset \mathbb{A}^{3}$.

Exercise 2 (3.3.10). Let $A \subset \mathbb{A}^{n}$ be an algebraic set. Show that A is a hypersurface iff it is equidimensional of dimension $n-1$.
Exercise 3 (3.4.4). Let $I \subset S=\mathbb{k}\left[x_{1}, \ldots, x_{4}\right]$ be the ideal which is generated by the 2×2 minors of the matrix

$$
\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
x_{2} & x_{3} & x_{4}
\end{array}\right) .
$$

Find a Noether normalization as in Theorem 3.4.3.
Exercise 4 (4.1.5). (1) Find all singular points of the curve

$$
\mathrm{V}\left(x^{2}-2 x^{3}+x^{4}+y^{2}-2 y^{3}+y^{4}-\frac{3}{2} x^{2} y^{2}\right) \subset \mathbb{A}^{2}(\mathbb{C})
$$

Draw a picture of the real points of this curve.
(2) Find all singular points of the curve $\mathrm{V}(f) \subset \mathbb{A}^{2}(\mathbb{C})$, where

$$
\begin{aligned}
f= & 11 y^{7}+7 y^{6} x+8 y^{5} x^{2}-3 y^{4} x^{3}-10 y^{3} x^{4}-10 y^{2} x^{5}-x^{7}-33 y^{6} \\
& -29 y^{5} x-13 y^{4} x^{2}+26 y^{3} x^{3}+30 y^{2} x^{4}+10 y x^{5}+3 x^{6}+33 y^{5} \\
& +37 y^{4} x-8 y^{3} x^{2}-33 y^{2} x^{3}-20 y x^{4}-3 x^{5}-11 y^{4}-15 y^{3} x \\
& +13 y^{2} x^{2}+10 y x^{3}+x^{4},
\end{aligned}
$$

is the degree-7 polynomial considered in Example 1.2.4, part 3.

