UNIVERSITÄT DES SAARLANDES

Fachrichtung 6.1-Mathematik

Prof. Dr. Frank-Olaf Schreyer
Christian Bopp

Exercises Algebraic Geometry

Winterterm 2016/17
The solutions are collected on Tuesday, before the exercise session.
All further informations concerning the lecture can be found here: https://www.math.unisb.de/ag/schreyer/index.php/teaching

Sheet 9

Exercise 1. Draw the projective curves defined below in the 3 standard affine charts. Also draw the tangents in intersection points with the coordinate axes.
(a) $x^{2}-\frac{1}{4} y^{2}-z^{2}=0$
(b) $y z^{2}-x^{3}=0$

Exercise 2. (a) Let $C_{1}, C_{2} \subset \mathbb{P}^{2}(\mathbb{C})$ be two smooth conics, that is, smooth plane curves of degree 2. Prove that they are projectively equivalent, which means that there is an automorphism $A \in \operatorname{PGL}(3, \mathbb{C})$ such that $A\left(C_{1}\right)=C_{2}$.
(b) How many classes of smooth projective conics exist in $\mathbb{A}^{2}(\mathbb{R})$ respectively $\mathbb{P}^{2}(\mathbb{R})$ up to linear automorphism?

Exercise 3. Let $p_{0}, \ldots, p_{n}, p_{n+1} \in \mathbb{P}^{n}$ be a collection of $n+2$ points such that no subset of n points lies on a hyperplane. Prove that there exists a unique automorphism $A \in$ $\operatorname{PGL}(n+1, \mathbb{k})$ such that

$$
A p_{0}=[1: 0: \cdots: 0], \ldots, A p_{n}=[0: \cdots: 0: 1] \text { and } A p_{n+1}=[1: \cdots: 1] .
$$

We frequently refer to the points $[1: 0: \cdots: 0], \ldots,[0: \cdots: 0: 1]$ as the coordinate points and to $[1: \cdots: 1]$ as the scaling point.
Exercise 4. Let $p_{1}, p_{2}, p_{3} \in \mathbb{R}^{2}$ be three non colinear points. Prove that there exists a unique circle passing through them.
Hint: Establish that the set of circles in an affine chart is a 3-dimensional linear system $L \subset \mathbb{P}\left(\mathbb{R}[x, y]_{\leq 2}\right)$. The base points of this system are called the circle points. Where are they?

