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Part I

Affine Algebraic Geometry





Chapter 1

The Geometry-Algebra Dictionary

This chapter is an introduction to affine algebraic geometry. We will work over
a field k, writing An(k) for the affine n-space over k and k[x1, . . . , xn] for the
ring of polynomials in n variables over k. Our geometric objects of study will
be (affine) algebraic sets, which are sets of solutions of polynomial equations
in An(k). Although we will not require this in our definition, every algebraic
set A ⊂ An(k) can be described using finitely many polynomials. The proof
of this fact is a first example of how algebra enters the study of algebraic sets.
Namely, writing A as the (common) vanishing locus V(I) of the elements in
an ideal I ⊂ k[x1, . . . , xn], we will be able to apply Hilbert’s basis theorem, a
finiteness result for polynomial rings.

Relating to each algebraic set A the ideal I(A) of all polynomials vanishing
on A, we will have defined maps

{algebraic subsets of An(k)}
I !!

V
"" {ideals of k[x1, . . . , xn]}.

This correspondence is best understood over an algebraically closed field k
where Hilbert’s celebrated Nullstellensatz characterizes the ideals of type I(A).
Based on the Nullstellensatz, we will develop a dictionary between geometric
and algebraic statements. As part of the dictionary, we will study a number
of natural geometric operations on algebraic sets together with their algebraic
counterparts. Furthermore, we will give examples of how properties of alge-
braic sets can be expressed in terms of ideals I ⊂ k[x1, . . . , xn] or, in turn, of
quotient rings k[x1, . . . , xn]/I. The notion of modules will allow us to treat
ideals and quotient rings on equal footing (modules other than ideals and
quotient rings will arise naturally in subsequent chapters).

In the final section of this chapter, we will see that each algebraic set A ⊂
An(k) comes equipped with a ring of functions, the ring of polynomial func-
tions, which is naturally isomorphic to the quotient ring k[x1, . . . , xn]/I(A).
We will use the polynomial functions to define the natural maps, or mor-
phisms, between affine algebraic sets, and to relate these maps to ring homo-
morphisms on the algebraic side.
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Throughout the chapter, in presenting explicit examples, we will occasion-
ally use a piece of terminology whose meaning should be intuitively clear, but
whose formal definition will be given later in the book.

1.1 Polynomials

In this section, we will fix our terminology for dealing with polynomials. If
R is a ring, and x1, . . . , xn is a collection of variables, R[x1, . . . , xn] denotes
the set of polynomials in x1, . . . , xn with coefficients in R. To write the ele-
ments of R[x1, . . . , xn], we use multiindices. First, a monomial in x1, . . . , xn

is a product xα = xα1
1 · · ·xαn

n , where α = (α1, . . . ,αn) ∈ Nn. A term in
R[x1, . . . , xn] is an element of R times a monomial. Finally, each polynomial
0 ̸= f ∈ R[x1, . . . , xn] can be uniquely expressed as the sum of finitely many
nonzero terms involving distinct monomials. These terms (monomials) are
called the terms (monomials) of f .

The degree of xα = xα1
1 · · ·xαn

n is |α| = α1 + · · · + αn. The degree of
f , written deg f , is the maximum degree of its monomials. The degree of the
zero polynomial is deg 0 = −∞.

With the usual algebraic operations, the set R[x1, . . . , xn] becomes a ring
which contains R as the subring of constant polynomials, and which is char-
acterized by the following universal property: Given any homomorphism φ
from R to a ring S, and s1, . . . , sn ∈ S, there exists a unique homomorphism
Φ : R[x1, . . . , xn] → S extending φ, and such that Φ(xi) = si for all i. In fact,
Φ is the map f '→ f(s1, . . . , sn), where the value f(s1, . . . , sn) is obtained
by substituting the si for the xi in f and evaluating the corresponding ex-
pression in S. We refer to Φ as a substitution homomorphism, and write
R[s1, . . . , sn] for its image in S.

A polynomial in R[x1, . . . , xn] is homogeneous (of degree d), if all its
monomials have degree d or if the polynomial is zero. We usually write

R[x1, . . . , xn]d = {f ∈ R[x1, . . . , xn] | f is homogenous of degree d}.

Subsets of polynomials such as R[x1, . . . , xn]≤d and R[x1, . . . , xn]<d are de-
fined similarly. Note that if R = k is a field, then k[x0, . . . , xn]d is a k-vector
space of dimension

(d+n
n

)
. Indeed, the monomials of degree d form a k-basis.

Every nonzero polynomial f ∈ R[x1, . . . , xn] can be uniquely written as a
sum f = f0 + f1 + f2 + . . . , where the fi are homogenenous of degree i. The
fi are called the homogeneous components of f .

Given an extra variable x0, the polynomial

fh := xdeg(f)
0 f(x1/x0, . . . , xn/x0) ∈ R[x0, x1, . . . , xn]

is homogeneous of degree deg(f), and is called the homogenization of f with
respect to x0. Conversely, the dehomogenization of a homogeneous polyno-
mial F ∈ R[x0, x1, . . . , xn] with respect to x0 is defined to be the polynomial
F (1, x1, . . . , xn) ∈ R[x1, . . . , xn]. We have
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fh(1, x1, . . . , xn) = f and F = xs
0 · F (1, x1, . . . , xn)h.

where s is the highest power of x0 dividing F .
If u ⊂ x = {x1, . . . , xn} is a subset of variables, then R[x1, . . . , xn] is

canonically isomorphic to R[u][x \ u]. In particular,

R[x1, . . . , xn] ∼= R[x1, . . . , xn−1][xn]. (1.1)

Explicitly, every polynomial in R[x1, . . . , xn] can be uniquely expressed as a
polynomial in xn with coefficients in R[x1, . . . , xn−1].

The isomorphism (1.1) is often used to prove a result on polynomials in
several variables by induction on the number of variables. We briefly recall
a typical example of how this works (for details, see, for instance, Dummit
and Foote (2003), Sections 8.3 and 9.3): The polynomial ring k[x] in one
variable x over a field k is an Euclidean domain and, hence, a principal ideal
domain (PID for short). It is, then, also a unique factorization domain (UFD
for short). In particular, if R is an integral domain, and Q(R) is its quotient
field, then Q(R)[x] is a UFD. Using this and Gauss’ lemma, one shows that if
R is a UFD, then R[x] is a UFD as well. Inductively, R[x1, . . . , xn] is a UFD.

We will return to some of this later in the book: Euclidean division with
remainder will be a topic of Section 2.2, the definition of a PID will be recalled
in Section 1.4 below, and quotient fields will be discussed in Section 2.6. As
ususal, k(x1, . . . , xn) = Q(k[x1, . . . , xn]) will denote the field of rational
functions in x1, . . . , xn with coefficients in k..

Partial derivatives of polynomials are defined for polynomials with coeffi-
cients in any ring R by formally writing the formula familiar from calculus:

Definition 1.1.1. If f =
∑
α cαxα ∈ R[x1, . . . , xn] is a polynomial, its ith

formal partial derivative is defined by the formula

∂f

∂xi
=
∑

α

cααix
α1
1 · · ·xαi−1

i · · ·xαn
n .

⊓*

The usual rules of differentiation apply:

Exercise∗ 1.1.2. 1. Show that ∂
∂xi

is R-linear.
2. (Product Rule) Given f, g ∈ R[x1, . . . , xn], show that

∂

∂xi
(fg) =

∂f

∂xi
g + f

∂g

∂xi
.

3. (Chain Rule) Given g ∈ R[y1, . . . , ym] and fj ∈ R[x1, . . . , xn], j =
1, . . . , m, show that

∂

∂xi
(g(f1, . . . , fm)) =

m∑

j=1

∂g

∂yj
(f1, . . . , fm)

∂fj

∂xi
.
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4. (Euler’s rule) If f ∈ R[x1, . . . , xn] is homogeneous of degree d, show
that

d · f =
n∑

i=1

xi
∂f

∂xi
.

⊓*

A polynomial with coefficients in a field of characteristic zero is constant iff
all its formal partial derivatives are zero. In characteristic p > 0, however, this
is not true (for instance, ∂xp

i
∂xi

= pxp−1
i = 0). Instead, we have:

Exercise∗ 1.1.3. Show that if k is a field of characteristic p > 0, and f ∈
k[x1, . . . , xn], then ∂f

∂xi
= 0 iff f ∈ k[x1, . . . , x

p
i , . . . , xn]. Conclude that all the

∂f
∂xi

are zero iff f ∈ k[xp
1, . . . , x

p
n]. ⊓*

By allowing infinitely many terms instead of just finitely many, we pass from
polynomials to formal power series:

Remark-Definition 1.1.4. Let k be a field. A formal power series in the
variables x1, . . . , xn with coefficients in k is an expression of type

∑

α∈Nn

aαx
α, with all aα ∈ k.

These expressions form a ring, with algebraic operations
∑

α∈Nn

aαx
α +
∑

α∈Nn

bαx
α =

∑

α∈Nn

(aα + bα)xα and

∑

α∈Nn

aαx
α ·
∑

α∈Nn

bαx
α =

∑

γ∈Nn

( ∑

α+β=γ

aαbβ
)
xα.

This ring, denoted k[[x1, . . . , xn]], is called the ring of formal power series
in n variables x1, . . . , xn with coefficients k. Note that k[x1, . . . , xn] is naturally
contained in k[[x1, . . . , xn]] as a subring. ⊓*

1.2 Algebraic Sets

Let k be any field. The affine n-space over k is defined to be the set

An(k) :=
{
(a1, . . . , an) | a1, . . . , an ∈ k

}
.

An element p = (a1, . . . , an) ∈ An(k) is called a point, and the ai are called
the coordinates of p. We say that A1(k) and A2(k) are the affine line and
the affine plane over k, respectively.

If k[x1, . . . , xn] is the ring of polynomials in n variables with coefficients
in k, then each element f ∈ k[x1, . . . , xn] defines a function

f : An(k) → k, (a1, . . . , an) '→ f(a1, . . . , an).
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We will refer to such a function as a polynomial function on An(k), with
values in k. Particular examples are the coordinate functions xi : An(k) →
k, (a1, . . . , an) '→ ai.

Considering a polynomial f ∈ k[x1, . . . , xn] as a function on An(k) allows
us to talk about its locus of zeros (or vanishing locus) in An(k), namely

V(f) := {p ∈ An(k) | f(p) = 0}.

Exercise∗ 1.2.1. Let k be an infinite field, and let f ∈ k[x1, . . . , xn] be a
polynomial. If f is nonzero, show that the complement An(k) \ V(f) is an
infinite set. Conclude that f is the zero polynomial iff the polynomial function
f : An(k) → k is zero.
Hint. Proceed by induction on the number n of variables. To begin with, recall
that a nonzero polynomial in one variable has at most finitely many roots. ⊓*

Exercise 1.2.2. Let F2 be the field with two elements. Find a polynomial in
F2[x1, . . . , xn] involving all the xi and vanishing at each point of An(F2). ⊓*

Definition 1.2.3. A subset A ⊂ An(k) is called a hypersurface in An(k) if
A = V(f) for some nonconstant polynomial f ∈ k[x1, . . . , xn]. ⊓*

A hypersurface defined by a degree-1 polynomial

f = a1x1 + · · · + anxn − b ∈ k[x1, . . . , xn]

is called a hyperplane. A hypersurface in A2(k) is called an affine plane
curve. In showing first examples of such curves, we choose k = R as our
ground field so that we can draw pictures:

Example 1.2.4. 1. A conic in A2(R) is defined by a degree-2 equation

ax2 + bxy + cy2 + dx + ey + f = 0,

where a, . . . , f ∈ R are scalars. The nondegenerate conics, whose study
goes back to the ancient Greek mathematicians, are ellipses, parabolas, and
hyperbolas. For instance:

x2 + 1
4y2 = 1 y = x2 4x2 − 4y2 = 1

ellipse parabola hyperbola
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In addition, there are peculiar cases of conics such as the pair of lines with
equation xy = 0. Can you find other peculiar cases?
2. A cubic curve in A2(R) is defined by a degree-3 equation. Such curves

were systematically investigated by Newton (1666). Here are some particular
examples:

y2 = x3 + x + 1 y2 = x3 + x2 y2 = x3 y2 = x3 − x

The cubic curve with equation y2 = xy + x2y − x3 is the union of a parabola
and a line:

3. If f ∈ R[x, y] is the degree-seven polynomial

f = 11 y7 + 7 y6x + 8 y5x2 − 3 y4x3 − 10 y3x4 − 10 y2x5 − x7 − 33 y6

− 29 y5x − 13 y4x2 + 26 y3x3 + 30 y2x4 + 10 yx5 + 3 x6 + 33 y5

+ 37 y4x − 8 y3x2 − 33 y2x3 − 20 yx4 − 3 x5 − 11 y4 − 15 y3x

+ 13 y2x2 + 10 yx3 + x4,

the curve C = V(f) ⊂ A2(R) has three triple points and one quadruple point:

0

0

1

!1

1!1 2

2

x

y
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⊓*

Exercise 1.2.5. Let f ∈ R[x, y] and C = V(f) ⊂ A2(R) be as in the preceed-
ing example, and let R(t) = Q(R[t]) be the field of rational functions in one
variable t with coefficients in R. If x(t), y(t) ∈ R(t) are the rational functions

x (t) =
121 t7 − 253 t6 − 133 t5 + 364 t4 + 39 t3 − 92 t2 + 10 t

121 t7 − 127 t6 − 114 t5 + 29 t4 + 54 t3 + 106 t2 − 20 t + 1
,

y (t) =
−77 t7 + 72 t6 + 246 t5 − 192 t4 − 138 t3 + 116 t2 − 20 t + 1
121 t7 − 127 t6 − 114 t5 + 29 t4 + 54 t3 + 106 t2 − 20 t + 1

,

compute that f(x(t), y(t)) = 0 ∈ R(t). Hence, there is a well-defined map

ϕ : U → C, a '→ (x(a), y(a)),

where U consists of all points of A1(R) except the real roots of the denomi-
nator of x(t) and y(t).
Hint. The coefficients of f , x(t), and y(t) are rational numbers (in fact, inte-
gers). Thus, the actual computation takes place in Q(t). Rather than doing
the computation bare-handed, use your favorite computer algebra system. ⊓*

Remark 1.2.6. Rational parametrizations such as the map ϕ in the exer-
cise above will be treated systematically in Section 2.6. In the second half
of the book, we will discuss how to decide whether a given curve admits
such a parametrization (actually, “most” curves don’t). And, we will present
a method for computing rational parametrizations of plane curves in cases
where such parametrizations exist. ⊓*

Hypersurfaces in affine 3-space provide examples of surfaces:

Example 1.2.7. Let k = R.

1. The surface
V(x2 + y2 − z2) ⊂ A3(R)

is a cone with vertex at the origin:
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Note that the ancient Greeks (most notably, Apollonius) realized the non-
degenerate conics as sections of cones by planes (see Kline (1972) for some
historical remarks).

2. Clebsch’s diagonal cubic in A3(R) is a surface containing precisely 27
real lines (see Clebsch (1871), §16):

It is defined by the equation

(p3 + q3 + r3 − s3)− (p + q + r − s)3 = 0,

where
p = 1 − z − cx, q = 1 − z + cx, r = 1 + z + cy,

s = 1 + z − cy, with c =
√

2 .

3. Barth’s sextic in A3(R) is a surface with 50 nodes (see Barth (1996)):
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It is defined by the equation

(8c + 4)x2y2z2 − c4(x4y2 + y4z2 + x2z4) + c2(x2y4 + y2z4 + x4z2)
− 2c+1

4 (x2 + y2 + z2 − 1)2 = 0, where c = 1+
√

5
2 is the golden section. ⊓*

In general, we are not only concerned with hypersurfaces, but also with sets
defined by more than one polynomial equation: If T ⊂ k[x1, . . . , xn] is any
subset, its locus of zeros (or vanishing locus) is the set

V(T ) = {p ∈ An(k) | f(p) = 0 for all f ∈ T }.

If T = {f1, . . . , fr} is finite, we write V(f1, . . . , fr) = V(T ).

Definition 1.2.8. A subset A ⊂ An(k) is called an algebraic subset, or
simply an algebraic set, if A = V(T ) for some subset T ⊂ k[x1, . . . , xn]. An
affine algebraic set is an algebraic subset of some An(k). ⊓*
Since V(T ) =

⋂
f∈T V(f), a subset of An(k) is algebraic iff it can be written

as the intersection of hypersurfaces.

Example 1.2.9. The intersection of hyperplanes is the set of solutions of a
system of linear equations as studied in linear algebra. We will refer to such
a set as a linear subvariety of An(k). ⊓*

Example 1.2.10. Let k = R.

1. The intersection of the two hypersurfaces V(y − x2) and V(z − x3) in
A3(R) is called the twisted cubic curve in A3(R):

2. Intersecting the hypersurfaces V(xz) and V(yz) in A3(R) gives the union
of the xy-plane and the z-axis:

⊓*



12 1 The Geometry-Algebra Dictionary

Exercise 1.2.11. Use your favorite system(s) for visualization to draw your
own pictures of the algebraic sets in Examples 1.2.4, 1.2.7 and 1.2.10. ⊓*
Remark-Definition 1.2.12. Given a polynomial f ∈ k[x1, . . . , xn], we write

D(f) := An(k) \ V(f).

We have D(1) = An(k), and if f, g ∈ k[x1, . . . , xn], then D(f)∩D(g) = D(fg).
Hence, the D(f) form the basis for a topology on An(k) whose closed sets are
the algebraic subsets of An(k). This topology is called the Zariski topology
on An(k), and the D(f) are called the distinguished open sets. ⊓*
In this book, if not otherwise mentioned, the affine n-space An(k) will be
endowed with the Zariski topology. Subsets of An(k) will carry the induced
topology which is called the Zariski topology on the subset. Topological
notions such as open, closed, dense, or neighborhood will refer to this topology.
If A ⊂ An(k) is a subset, then A will denote its closure in the Zariski topology.
Remark 1.2.13. If k = R or k = C, every subset of An(k) which is open
in the Zariski topology is also open in the usual Euclidean topology. Indeed,
polynomial functions on An(k) are continuous in the Euclidean topology. ⊓*
As we know from the linear case, the equations describing an algebraic set are
by no means unique. In fact, we usually solve a system of linear equations by
transforming it to an equivalent system from which the solutions can be read
off. Each new equation is obtained as a linear combination of the original ones,
using scalars as coefficients. In the more general situation here, we consider
linear combinations of polynomial equations with polynomials instead of just
scalars as coefficients. For instance, considering 1·(z−x3)−x·(y−x2) = z−xy,
we see that the twisted cubic curve V(y − x2, z − x3) may also be described
as the intersection of the hypersurfaces V(y − x2) and V(z − xy):

In general, if T ⊂ k[x1, . . . , xn] is any set of polynomials, and ⟨T ⟩ is the set of
all k[x1, . . . , xn]-linear combinations g1f1 + · · · + grfr, where f1, . . . , fr ∈ T ,
then V(T ) = V(⟨T ⟩). In the language of ideals, which we quickly recall in
the following section, this means that in definining the algebraic set V(T ), we
may replace T by the ideal generated by T .
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1.3 Ideals

Let R be a ring.

Definition 1.3.1. An ideal of R is an additive subgroup I of R such that if
f ∈ R and g ∈ I, then fg ∈ I. ⊓*

If T is any nonempty subset of R, the set of all R-linear combinations of
elements of T , written ⟨T ⟩, is an ideal of R. In fact, it is the smallest ideal of R
containing T . We refer to it as the ideal generated by T . If T = {f1, . . . , fr}
is finite, we write ⟨f1, . . . , fr⟩ for ⟨T ⟩. By convention, the ideal generated by
the empty subset of R is ⟨0⟩.

If I ⊂ R is an ideal, any subset T of I satisfying I = ⟨T ⟩ is called a set of
generators for I. We say that I is finitely generated if it admits a finite
set of generators. It is principal if it can be generated by a single element.

Exercise∗ 1.3.2. 1. If {Iλ} is a family of ideals of R, show that the inter-
section

⋂
λ Iλ is also an ideal of R.

2. If I1, . . . , Is are ideals of R, their product I1 · · · Is is the ideal generated
by the elements f1 · · · fs, where fk ∈ Ik for all k. Prove that I1 · · · Is ⊂⋂s

k=1 Ik, and give an example showing that the inclusion may be strict. ⊓*

The union of a family {Iλ} of ideals of R is not necessarily an ideal. The sum
of the Iλ, written

∑
λ Iλ, is the ideal generated by the union

⋃
λ Iλ.

If I, J are two ideals of R, the set

I : J = {f ∈ R | fg ∈ I for all g ∈ J}

is an ideal of R containing I. It is called the ideal quotient of I by J . If g is
a single element of R, we usually write I : g instead of I : ⟨g⟩.

Exercise∗ 1.3.3. Let I, Ik, J, Jk, K be ideals of R, 1 ≤ k ≤ s, and let g ∈ R.
Show:

1. I : J = R ⇐⇒ J ⊂ I.

2.

(
s⋂

k=1

Ik

)
: J =

s⋂

k=1

(Ik : J).

3. I :

(
s∑

k=1

Jk

)
=

s⋂

k=1

(I : Jk).

4. (I : J) : K = I : JK.

5. I : gm = I : gm+1 =⇒ I = (I : gm) ∩ ⟨I, gm⟩. ⊓*

We say that an ideal I of R is a proper ideal if I ̸= R. A proper ideal p of R
is a prime ideal if f, g ∈ R and fg ∈ p implies f ∈ p or g ∈ p. A proper ideal
m of R is a maximal ideal if there is no ideal I of R such that m ! I ! R.
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Exercise∗ 1.3.4. Show:

1. Every maximal ideal of R is a prime ideal of R.
2. If I1, . . . , Is ⊂ R are ideals, and p ⊂ R is a prime ideal containing the

product I1 · · · Is, then p contains one of the Ik.
3. (Prime Avoidance) If p1, . . . , ps ⊂ R are ideals, and I ⊂ R is an ideal

contained in the union
⋃s

k=1 pk, then I is contained in one of the pk. ⊓*

Conditions on an ideal I of R may also be expressed as conditions on the
quotient ring R/I. We briefly recall the definition of the quotient ring:

Remark-Definition 1.3.5. Let I ⊂ R be an ideal. Two elements f, g of R
are said to be congruent modulo I, written

f ≡ g mod I,

if f − g ∈ I. The relation on R defined by congruence modulo I is an equiva-
lence relation. We usually write f = f + I for the equivalence class of f ∈ R,
and call it the residue class of f modulo I. The set of all residue classes
becomes a ring, with algebraic operations

f + g = f + g and f · g = f · g.

We refer to this ring as the quotient ring R/I, and to the map

R → R/I, f '→ f,

as the canonical projection onto R/I. ⊓*

Any homomorpism of rings φ : R → S gives rise to a monomorphism

R/ kerφ→ S, f '→ φ(f),

which is an isomorphism iff φ is an epimorphism. The proof of this fact,
which is known as the homomorphy theorem, will be postponed to Exercise
1.10.5, where we will treat the theorem in a more general setting.

Exercise∗ 1.3.6. Let I be an ideal of R. Show:

1. I is prime ⇐⇒ R/I is an integral domain.
2. I is maximal ⇐⇒ R/I is a field. ⊓*

The relationship between ideals of R/I and ideals of R will be discussed in
Exercise 1.5.11.

Definition 1.3.7. A ring R is called a local ring if it has exactly one maximal
ideal. If m is this ideal, we also say that (R, m) is a local ring, and refer to
R/m as the residue field of R. ⊓*

Remark 1.3.8. The name local comes from geometry (see Section 4.2). Note
that a ring R is local iff its nonunits form a (maximal) ideal. ⊓*
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Two ideals I, J ⊂ R are called coprime if I + J = ⟨1⟩.

Exercise∗ 1.3.9 (Chinese Remainder Theorem). Let I1, . . . , Is be ideals
of R. Consider the natural ring homomorphism

φ : R →
s∏

k=1

R/Ik, f '→ (f + I1, . . . , f + Is).

Show:

1. The kernel of φ is kerφ =
⋂s

k=1 Ik.
2. If the Ik are pairwise coprime, then I1 · · · Is =

⋂s
k=1 Ik.

3. The Ik are pairwise coprime iff φ is surjective.

If the Ik are pairwise coprime, conclude from the homomorphy theorem that

R/(
s⋂

k=1

Ik) ∼=
s∏

k=1

R/Ik.
⊓*

Remark 1.3.10. Let φ : R → S be a homomorphism of rings. If J is an ideal
of S, then φ−1(J) is an ideal of R. In contrast, if I is an ideal of R, then φ(I)
is not necessarily an ideal of S (consider, for instance, the inclusion Z ⊂ Q
and any nonzero ideal I of Z). We usually write IS = φ(I)S for the ideal
generated by φ(I) in S. ⊓*

1.4 Hilbert’s Basis Theorem

Representing algebraic sets by ideals will allow us to bring algebra into the
study of algebraic sets. Corollary 1.4.2 below is an example of how this works.

Theorem 1.4.1 (Hilbert’s Basis Theorem). Every ideal of k[x1, . . . , xn]
has a finite set of generators. ⊓*

Corollary 1.4.2. Every algebraic subset of An(k) can be expressed as the
vanishing locus of finitely many polynomials.

Proof (of the corollary). Given V(T ), apply the basis theorem to the ideal
⟨T ⟩ ⊂ k[x1, . . . , xn]. ⊓*

Remark 1.4.3. In terms of the Zariski topology, this means that every open
subset of An(k) is the finite union of distinguished open sets. ⊓*

All known proofs of the basis theorem proceed by induction on the number
of variables, starting with the univariate case which is particularly easy:

Remark 1.4.4. The polynomial ring k[x] in one variable x is a principal
ideal domain (PID for short). That is, every ideal I of k[x] is principal.
Indeed, if f ∈ I is a nonzero polynomial of minimal degree, use Euclidean
division with remainder to show that I = ⟨f⟩. ⊓*
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Hilbert’s original proof of the basis theorem can be found in the first of his
two famous papers on invariant theory (1890, 1893). These papers contain
further fundamental results which will play a prominent role in this book:
the Nullstellensatz 1.6.2, the Syzygy Theorem 2.8.11, and Theorem ?? on the
polynomial nature of what is nowadays called the Hilbert function.

Note that Hilbert and his contemporaries used the word “basis” as another
name for a “(finite) set of generators”. In Chapter 2, we will encounter special
bases, nowadays called Gröbner bases, which are well-suited for computational
purposes. Historically, these bases were already considered by Gordan (1899)
who used them to give his own proof of the basis theorem. We refer to Exercise
2.1.2 and Corollary 2.3.3 for this proof.

The general theory of rings in which every ideal is finitely generated was de-
veloped by Emmy Noether (1921), a student of Gordan. In particular, Noether
realized the importance of the ascending chain condition (see Exercise 1.4.5
below). From this condition, she derived the existence of primary decomposi-
tions (we will treat this in Section 1.8).

Exercise∗ 1.4.5. Show that the following conditions on a ring R are equiva-
lent:

1. (Finiteness condition) Every ideal of R is finitely generated.
2. (Ascending chain condition) Every chain

I1 ⊂ I2 ⊂ I3 ⊂ . . .

of ideals of R is eventually stationary. That is,

Im = Im+1 = Im+2 = . . . for some m ≥ 1.

3. (Maximal condition) Every nonempty set of ideals of R has a maximal
element with respect to inclusion. ⊓*

Definition 1.4.6. A ring satisfying the equivalent conditions above is called
a Noetherian ring. ⊓*

The following exercise shows how the ascending chain condition can be used
to prove the basis theorem:

Exercise∗ 1.4.7 (Hilbert’s Basis Theorem, General Version). If R is a
Noetherian ring, show that R[x] is Noetherian. Conclude that the polynomial
rings Z[x1, . . . , xn] and k[x1, . . . , xn] are Noetherian.
Hint. Suppose that there is an ideal I ⊂ R[x] which is not finitely generated.
Let f1 ∈ I be a nonzero polynomial of minimal degree, and let a1 ∈ R be
its leading coefficient (that is, the coefficient of the term of highest degree).
Construct an ascending chain of ideals

⟨a1⟩ ! ⟨a1, a2⟩ ! · · · ! R. ⊓*
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1.5 The Correspondences V and I

By taking vanishing loci, we get a map V which sends subsets of k[x1, . . . , xn]
to algebraic subsets of An(k). We summarize some properties of this map:

Proposition 1.5.1. Let R = k[x1, . . . , xn]. Then:

1. V(0) = An(k). V(1) = ∅.
2. If I ⊂ J are subsets of R, then V(I) ⊃ V(J).
3. If I, J are ideals of R, then

V(I) ∪ V (J) = V(I · J) = V(I ∩ J).

4. If {Iλ} is a family of ideals of R, then

⋂

λ

V(Iλ) = V

(
∑

λ

Iλ

)
.

5. If a1, . . . , an ∈ k, then

V(x1 − a1, . . . , xn − an) = {(a1, . . . , an)}. ⊓*

Exercise∗ 1.5.2. Prove Proposition 1.5.1. ⊓*

Now, proceeding in the other direction, we define a map I which sends subsets
of An(k) to ideals in k[x1, . . . , xn]:

Remark-Definition 1.5.3. If A ⊂ An(k) is any subset, the set

I(A) := {f ∈ k[x1, . . . , xn] | f(p) = 0 for all p ∈ A}

is an ideal of k[x1, . . . , xn]. It is called the vanishing ideal of A. ⊓*

Exercise 1.5.4. 1. Show that every polynomial f ∈ k[x, y, z] has a repre-
sentation of type

f = g1(y − x2) + g2(z − x3) + h,

where g1, g2 ∈ k[x, y, z] and h ∈ k[x].
2. Let k be infinite, and let C = V(y − x2, z − x3) ⊂ A3(k) be the twisted

cubic curve in A3(k). Show that

I(C) = ⟨y − x2, z − x3⟩.

Hint. To obtain the representation in part 1, first suppose that f is a mono-
mial. For part 2, use that C can be parametrized:

C = {(a, a2, a3) | a ∈ k}. ⊓*
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The expression for f in terms of y − x2 and z − x3 in the exercise above can
be computed in a more systematic way, using a general algorithm for division
with remainder. We will come back to this in Exercise 2.2.15.

Exercise 1.5.5. Let k = R, and let

C = {(a2 + 1, a3 + a) | a ∈ R} ⊂ A2(R).

Show that I(C) = ⟨y2 − x3 + x2⟩, and conclude that C = C ∪ {(0, 0)}.

Hint. For the second statement, consider lines through o = (0, 0). ⊓*

Remark 1.5.6. The computations in both exercises above make use of a para-
metrization of the given curve. In general, no such parametrization exists, and
it can be a difficult task to compute I(A) (see Remark 2.4.13 for hints on
algorithms). A method which often allows one to decide whether a given set
of polynomials defining A actually generates I(A) can be deduced from the
Jacobian Criterion 4.1.12 (see Corollaries 4.1.13 and 4.1.14). ⊓*

In the following proposition, we summarize some properties of I, and start
examining how V and I are related:

Proposition 1.5.7. Let R = k[x1, . . . , xn]. Then:

1. I(∅) = R. If k is infinite, then I(An(k)) = ⟨0⟩.
2. If A ⊂ B are subsets of An(k), then I(A) ⊃ I(B).
3. If A, B are subsets of An(k), then

I(A ∪ B) = I(A) ∩ I(B).

4. If (a1, . . . , an) ∈ An(k) is a point, then

I({(a1, . . . , an)}) = ⟨x1 − a1, . . . , xn − an⟩.

5. For any subset A ⊂ An(k), we have

V(I(A)) ⊃ A,

with equality occuring iff A is algebraic. In any case, V(I(A)) = A.
6. For any subset I ⊂ R, we have

I(V(I)) ⊃ I,

with equality occuring iff I is the vanishing ideal of a subset of An(k). ⊓*
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Exercise∗ 1.5.8. Prove Proposition 1.5.7. ⊓*

Not every ideal I ⊂ k[x1, . . . , xn] can occur as a vanishing ideal I(A). That is,
the inclusion I(V(I)) ⊃ I may well be strict. To put it yet in another way, the
map V is not injective. In fact, there are two different ways in which distinct
ideals can represent the same algebraic set. The following example indicates
one possibility:

{0} = V(x) = V(x2) = V(x3) = · · · ⊂ A1(k).

In general, if a power fm of a polynomial f vanishes on a subset A ⊂ An(k),
then f itself vanishes on A. Thus, vanishing ideals have a property not shared
by all ideals – they are radical ideals in the following sense:

Remark-Definition 1.5.9. Let R be a ring, and let I ⊂ R be an ideal. Then
the set

rad I := {f ∈ R | fm ∈ I for some m ≥ 1}

is an ideal of R: use the binomial theorem to show that if r, s ∈ R and
f, g ∈ rad I, then rf + sg ∈ rad I. We call rad I the radical of I. Clearly,
rad I ⊃ I. If rad I = I, then I is called a radical ideal. ⊓*

Example 1.5.10. If R is a UFD, the radical of every principal ideal of R is
again a principal ideal. In fact, if f ∈ R is a nonzero nonunit, decompose f
into its distinct irreducible factors:

f = u · fµ1
1 · · · fµs

s .

Here, u is a unit, the µi are integers ≥ 1, and the fi are irreducible and
pairwise coprime. Then

rad ⟨f⟩ = ⟨f1 · · · fs⟩.

The product f1 · · · fs, which is uniquely determined by f up to multiplication
by a unit, is called the square-free part of f . If all the µi are 1, we say that
f is square-free, or reduced, or without multiple factors. ⊓*

If R is any ring, the ideal

rad ⟨0⟩ = {f ∈ R | fm = 0 for some m ≥ 1}

is called the nilradical of R, and its elements the nilpotent elements of R.
We say that R is a reduced ring if rad ⟨0⟩ = ⟨0⟩. Clearly, a quotient ring
R/I is reduced iff I is a radical ideal.

Exercise∗ 1.5.11. Let I be an ideal of a ring R, and let π : R → R/I be the
canonical projection. Show:

1. There is a one-to-one correspondence between the ideals J of R/I and the
ideals of R containing I, obtained by sending J to π−1(J).
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2. Under this correspondence, radical ideals correspond to radical ideals.
Similarly for prime and maximal ideals.

Conclude that if R is Noetherian (local), then R/I is Noetherian (local) as
well. ⊓*

Exercise∗ 1.5.12. Let I, J be ideals of a ring R. Show:

1. rad (IJ) = rad (I ∩ J) = rad I ∩ rad J.

2. rad (I + J) = rad (rad I + rad J).

3. rad I = ⟨1⟩ ⇐⇒ I = ⟨1⟩.

4. If rad I, rad J are coprime, then I, J are coprime as well. ⊓*

1.6 Hilbert’s Nullstellensatz

Even for radical ideals, it may happen that distinct ideals give the same
algebraic set:

V(1 + x2) = V(1) = ∅ ⊂ A1(R).
Here, we face a problem which is caused by properties of the ground field.
Passing from R to the field C of complex numbers, the problem will disappear.
Indeed, by the fundamental theorem of algebra, C is the algebraic closure of
R. And, if k is any field, and k is its algebraic closure, then every nonconstant
polynomial in k[x] has a root in k (by the very definition of k). In terms of
ideals I ⊂ k[x], since k[x] is a PID, we conclude that the locus of zeros of I
in A1(k) is empty iff 1 ∈ I. This result extends to polynomials in more than
one variable:

Theorem 1.6.1 (Hilbert’s Nullstellensatz, Weak Version). Let I be
an ideal of k[x1, . . . , xn], and let k be the algebraic closure of k. Then the
following are equivalent:

1. The locus of zeros of I in An(k) is empty.
2. 1 ∈ I. ⊓*

We will prove this version of the Nullstellensatz in Section 3.1. Now, we dis-
cuss some consequences. To begin with, we deduce a strong version of the
Nullstellensatz which implies that the correspondence between algebraic sets
and ideals is well behaved if we restrict our attention to radical ideals, and if
we work over an algebraically closed field:

Theorem 1.6.2 (Hilbert’s Nullstellensatz, Strong Version). Let k = k
be algebraically closed, and let

I ⊂ k[x1, . . . , xn]

be an ideal. Then
I(V(I)) = rad I.



1.6 Hilbert’s Nullstellensatz 21

Proof. If f ∈ rad I, then fm ∈ I for some m ≥ 1. This implies that fm and,
hence, f vanish on V(I). We conclude that

rad I ⊂ I(V(I)).

For the opposite inclusion, let f ∈ I(V(I)), and let f1, . . . , fr be polynomials
generating I. Then f vanishes on V(I), and we have to show that fm =
g1f1 + . . . + grfr for some m ≥ 1 and some g1, . . . , gr ∈ k[x1, . . . , xn].

For this, we use the trick of Rabinowitch. Consider the ideal

J := ⟨f1, . . . , fr, yf − 1⟩ ⊂ k[x1, . . . , xn, y],

where y is an extra variable. Proceeding in two steps, we will show in Step 1
that V(J) ⊂ An+1(k) is empty. Then, in Step 2, we will apply the weak version
of the Nullstellensatz to conclude that 1 ∈ J . The result will follow from a
representation of 1 as a k[x1, . . . , xn, y]-linear combination of f1, . . . , fr, yf−1.

Step 1. Consider a point p = (a1, . . . , an+1) ∈ An+1(k). To show that p /∈
V(J), we distinguish two cases. If (a1, . . . , an) ∈ V(I), then f(a1, . . . , an) = 0
since f ∈ I(V(I)). Evaluating yf − 1 in (a1, . . . , an+1) gives

an+1f(a1, . . . , an) − 1 = −1 ̸= 0,

so that p = (a1, . . . , an+1) /∈ V(J). If (a1, . . . , an) /∈ V(I), then fk(a1, . . . , an)
is nonzero for some k. Since fk ∈ J , we, again, find that p /∈ V(J). We conclude
that V(J) = ∅.

Step 2. By Step 1 and the weak version of the Nullstellensatz, we have
1 ∈ J . Hence, there are polynomials h1, . . . , hr, h ∈ k[x1, . . . , xn, y] such that

1 =
r∑

i=1

hi(x1, . . . , xn, y)fi + h(x1, . . . , xn, y)(yf − 1).

Let ym be the highest power of y appearing in any of the hi. Multiplying by
fm and reducing modulo ⟨yf − 1⟩, we get polynomials gi ∈ k[x1, . . . , xn] such
that

fm ≡
r∑

i=1

gifi mod ⟨yf − 1⟩.

Since the natural homomorphism

k[x1, . . . , xn] → k[x1, . . . , xn, y]/⟨yf − 1⟩, xi '→ xi,

is injective, we actually have

fm =
r∑

i=1

gifi ∈ k[x1, . . . , xn]. ⊓*



22 1 The Geometry-Algebra Dictionary

Corollary 1.6.3. If k = k is algebraically closed, then I and V define a one-
to-one correspondence

{algebraic subsets of An(k)}
I !!

V
"" {radical ideals of k[x1, . . . , xn]}.

⊓*

The weak version of the Nullstellensatz adresses the basic problem of solv-
ability: Given f1, . . . , fr ∈ k[x1, . . . , xn], the system

f1(x1, . . . , xn) = 0, . . . , fr(x1, . . . , xn) = 0

fails to have a solution over the algebraic closure k iff 1 ∈ ⟨f1, . . . , fr⟩. The
trick of Rabinowitch allows us to discuss a related problem:

Corollary 1.6.4 (Radical Membership). Let k be an arbitrary field, let
I ⊂ k[x1, . . . , xn] be an ideal, and let f ∈ k[x1, . . . , xn] be a polynomial. Then:

f ∈ rad I ⇐⇒ 1 ∈ J = ⟨I, yf − 1⟩ ⊂ k[x1, . . . , xn, y],

where y is an extra variable.

Proof. The implication from right to left is clear from Step 2 of the proof of
Theorem 1.6.2. For the converse implication, let f ∈ rad I. Then fm ∈ I ⊂ J
for some m ≥ 1. Since yf − 1 ∈ J as well, we get, as desired:

1 = ymfm − (ymfm − 1) = ymfm − (yf − 1)
m−1∑

i=1

yif i ∈ J.
⊓*

Hilbert’s Nullstellensatz is fundamental to the geometry-algebra dictionary.
We will apply it to translate geometric statements into statements on ideals
I ⊂ k[x1, . . . , xn] or, in turn, statements on quotient rings k[x1, . . . , xn]/I.
Here is, for instance, a result which extends the weak version of the Nullst-
stellensatz in that it characterizes systems of polynomial equations with at
most finally many solutions:

Exercise∗ 1.6.5. Let I ⊂ k[x1, . . . , xn] be an ideal, and let k be the algebraic
closure of k. Show that the following are equivalent:

1. The locus of zeros of I in An(k) is a finite set of points (or empty).
2. For each i, 1 ≤ i ≤ n, there is a nonzero polynomial in I ∩ k[xi].
3. The k-vector space k[x1, . . . , xn]/I has finite dimension. ⊓*

How to decide algorithmically whether an ideal I ⊂ k[x1, . . . , xn] contains 1
or whether it satisfies conditions 2 and 3 above will be explained in Sections
2.3 and 2.4.

Exercise 1.6.6. Show that every algebraic subset of An(R) can be defined
by a single polynomial equation. Give examples of ideals I ⊂ R[x1, . . . , xn]
whose locus of zeros in An(R) is finite though dimR R[x1, . . . , xn]/I = ∞. ⊓*

See also Exercise 1.12.2.
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1.7 Irreducible Components

The algebraic set V(xz, yz) ⊂ A3(R) in Example 1.2.10 decomposes as the
union of the xy-plane V(z) and the z-axis V(x, y) which are, again, algebraic
sets. In this section, we will show that every algebraic set is the union of
finitely many algebraic sets which “cannot be decomposed any further”.

Definition 1.7.1. A nonempty algebraic set A ⊂ An(k) is reducible if it
can be expressed as the union A = A1 ∪ A2 of algebraic sets A1, A2 ⊂ An(k)
properly contained in A. Otherwise, A is called irreducible, or a subvariety
of An(k). The empty set is not considered to be irreducible. An affine variety
is a subvariety of some An(k). ⊓*

Proposition 1.7.2. let A ⊂ An(k) be an algebraic set. Then the following
conditions are equivalent:

1. A is irreducible.
2. I(A) is a prime ideal.
3. k[x1, . . . , xn]/I(A) is an integral domain.

Proof. 1 =⇒ 2: Suppose that A is irreducible. Then A ̸= ∅, so that I(A) is
a proper ideal. Let f, g ∈ k[x1, . . . , xn] such that fg ∈ I(A). Then

A = (A ∩V(f)) ∪ (A ∩ V(g)).

Since A is irreducible, we have either A = A ∩V(f) or A = A ∩V(g). Hence,
either f ∈ I(A) or g ∈ I(A).

2 =⇒ 1: Now, suppose that I(A) is a prime ideal. Then I(A) is a proper
ideal, so that A = V(I(A)) ̸= ∅. Let A1, A2 ⊂ An(k) be algebraic sets such
that A = A1 ∪ A2. Then I(A) = I(A1) ∩ I(A2). Since I(A) is a prime ideal,
we have either I(A) = I(A1) or I(A) = I(A2) (apply part 2 of Exercise 1.3.4).
Hence, either A = A1 or A = A2.

3 ⇐⇒ 2: This is a special case of Exercise 1.3.6, 2. ⊓*

Clearly, every prime ideal is a radical ideal.

Corollary 1.7.3. If k = k is algebraically closed, then I and V define a one-
to-one correspondence

{subvarieties of An(k)}
I !!

V
"" {prime ideals of k[x1, . . . , xn]}.

⊓*

Example 1.7.4. If k is infinite, then I(An(k)) = ⟨0⟩ by Exercise 1.2.1. In
particular, I(An(k)) is a prime ideal, so that An(k) is irreducible. In contrast,
if Fq is the finite field with q elements, then An(Fq) is reducible since it consists
of finitely many points. Accordingly, the ideal I(An(k)) is not prime. In fact,
as we will show in Exercise 2.9.1,

I(An(Fq)) = ⟨xq
1 − x1, . . . , x

q
n − xn⟩. ⊓*
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Example 1.7.5. If k is infinite, every linear subvariety A of An(k) is irre-
ducible. Indeed, in this case, k[x1, . . . , xn]/I(A) ∼= k[xi1 , . . . , xid ] for some d
and some i1, . . . , id. ⊓*

Example 1.7.6. Let k be infinite. Using its parametrization, we show that
the twisted cubic curve

C = V(y − x2, z − x3) = {(a, a2, a3) | a ∈ k} ⊂ A3(k),

is irreducible. In fact, we show that the vanishing ideal of C is prime. For this,
if f, g ∈ k[x, y, z] such that f · g ∈ I(C), set

F (t) = f(t, t2, t3) and G(t) = g(t, t2, t3) ∈ k[t].

Since k is infinite, we have F · G = 0, so that either F = 0 or G = 0. Hence,
either f ∈ I(C) or g ∈ I(C). ⊓*

Since a set consisting of a single point is irreducible, its vanishing ideal is a
prime ideal. In fact, even more is true:

Remark 1.7.7. If p = (a1, . . . , an) ∈ An(k) is a point, every polynomial
f ∈ k[x1, . . . , xn] can be written as a polynomial in the xi − ai:

f = f(p) + terms of degree ≥ 1 in the xi − ai. (1.2)

Indeed, this is the Taylor expansion of f at p which is obtained by substi-
tuting the (xi−ai)+ai for the xi in f and expanding the resulting expression.
It is clear from (1.2) that the vanishing ideal

I(p) := I({p}) = ⟨x1 − a1, . . . , xn − an⟩

is the kernel of the evaluation map

k[x1, . . . , xn] → k, f '→ f(p).

Hence, k[x1, . . . , xn]/I(p) ∼= k by the homomorphy theorem. In particular,
k[x1, . . . , xn]/I(p) is a field, so that I(p) is a maximal ideal. ⊓*

Conversely, the following holds:

Proposition 1.7.8. If k = k is algebraically closed, every maximal ideal of
k[x1, . . . , xn] is of the form ⟨x1 − a1, . . . , xn − an⟩ for some a1, . . . , an ∈ k.

Proof. Let m ! k[x1, . . . , xn] be a maximal ideal. Then V(m) ̸= ∅ by the weak
version of the Nullstellensatz. If p = (a1, . . . , an) ∈ V(m) is a point, we have
m ⊂ I(p) = ⟨x1 − a1, . . . , xn − an⟩. In fact, m = I(p) since m is maximal. ⊓*

Corollary 1.7.9. If k = k is algebraically closed, then I and V define a one-
to-one correspondence

{points of An(k)}
I !!

V
"" {maximal ideals of k[x1, . . . , xn]}.

⊓*



1.7 Irreducible Components 25

If k is not necessarily algebraically closed, the maximal ideals of k[x1, . . . , xn]
can be described as follows:

Exercise∗ 1.7.10. Let k be the algebraic closure of k, and let G be the Galois
group of k over k. Show:

1. Let p = (a1, . . . , an) ∈ An(k) be a point, and let mp be the kernel of the
evaluation map

k[x1, . . . , xn] → k, f '→ f(p).

Then mp is a maximal ideal of k[x1, . . . , xn]. Moreover, its locus of zeros
in An(k) is the orbit of p under the natural action of G on An(k). We,
then, say that the points of this locus are pairwise conjugate over k.

2. Every maximal ideal of k[x1, . . . , xn] is of type mp for some p ∈ An(k). ⊓*

Example 1.7.11. The principal ideal generated by x2 +1 in R[x] is maximal,
and its locus of zeros in A1(C) is {±i}. ⊓*

We, now, establish the main result of this section:

Theorem-Definition 1.7.12. Every algebraic set A ⊂ An(k) can be written
as a finite union

A = V1 ∪ · · · ∪ Vs

of irreducible algebraic sets Vi. We may, in fact, achieve that this decompo-
sition is minimal in the sense that Vi ̸⊃ Vj for i ̸= j. The Vi are, then,
uniquely determined up to order and are called the irreducible components
of A.

Proof. The existence part of the proof is a typical example of Noetherian
induction. Expressed in geometric terms, the maximal condition for ideals
in the Noetherian ring k[x1, . . . , xn] reads that every nonempty collection of
algebraic subsets of An(k) has a minimal element with respect to inclusion.
Using this, we show that the collection Γ of all algebraic subsets of An(k)
which cannot be written as a finite union of irreducible algebraic sets is empty.

Suppose that Γ ̸= ∅. Then Γ has a minimal element A which, by the very
definition of Γ , must be reducible. That is, A = A1 ∪ A2 for some algebraic
sets A1, A2 ! A. Due to the minimality of A, both A1 and A2 can be written
as a finite union of irreducible algebraic sets. Then the same is true for A, a
contradiction to A ∈ Γ .

We conclude that every algebraic set A ⊂ An(k) can be written as a
finite union of irreducible algebraic sets. Throwing away superfluous sets if
necessary, we get a minimal decomposition, as required.

To show uniqueness, let

A = V1 ∪ · · · ∪ Vs = V ′
1 ∪ · · · ∪ V ′

t

be two minimal decompositions. Then, for each i, we have
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Vi = Vi ∩ A = Vi ∩ (V ′
1 ∪ · · · ∪ V ′

t ) = (Vi ∩ V ′
1) ∪ · · · ∪ (Vi ∩ V ′

t ).

Since Vi is irreducible, we must have Vi = Vi ∩V ′
j for some j, so that Vi ⊂ V ′

j .
The same argument yields an inclusion V ′

j ⊂ Vk for some k. By minimality,
i = k and, thus, Vi = V ′

j . So every Vi occurs as one of the V ′
j which implies

that s ≤ t. Similarly, we get t ≤ s. Uniqueness up to order follows. ⊓*

Exercise∗ 1.7.13. Show:

1. Every proper algebraic subset of A1(k) is a finite set of points (or empty).
2. If f, g ∈ k[x, y] are polynomials without a common factor, then

V(f, g) = V(f) ∩ V(g) ⊂ A2(k)

is a finite set of points (or empty).
Hint. Prove that f and g are coprime in the PID k(x)[y], and deduce that
there exist a, b ∈ k(x)[y] such that af + bg = 1.

3. Every proper algebraic subset of A2(k) is a finite union of points and
(irreducible) curves (or empty). ⊓*

1.8 Primary Decomposition

The Nullstellensatz allows us to rephrase Theorem 1.7.12 in algebraic terms
as follows: If k = k is algebraically closed, the radical of every ideal I ⊂
k[x1, . . . , xn] has a unique minimal prime decomposition. That is, rad I
can be uniquely written as the intersection of finitely many prime ideals:

rad I = p1 ∩ · · · ∩ ps,

where pi ̸⊃ pj for i ̸= j. This is a purely algebraic result which, in fact,
can be proved by purely algebraic means (there is no need to translate the
Noetherian condition into geometry and apply the Nullstellensatz). In what
follows, we present the original argument of Emmy Noether which works for
any Noetherian ring R. In fact, the argument applies to arbitrary ideals of
R and not just to radical ideals. The resulting decomposition has, then, to
be of a more general type, however, since the intersection of prime ideals is
necessarily a radical ideal.

Definition 1.8.1. A proper ideal q of a ring R is a primary ideal if f, g ∈ R
and fg ∈ q implies f ∈ q or g ∈ rad q. ⊓*

Clearly, every prime ideal is primary.

Proposition 1.8.2. Let R be a ring.

1. If q is a primary ideal of R, then p := rad q is the smallest prime ideal
containing q. We refer to this fact by saying that q is p-primary.

2. A finite intersection of p-primary ideals is p-primary. ⊓*
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Exercise∗ 1.8.3. Prove Proposition 1.8.2. ⊓*

Definition 1.8.4. Let I be an ideal of a ring R. A primary decomposition
of I is an expression of I as a finite intersection of primary ideals, say

I = q1 ∩ · · · ∩ qt.

The decomposition is called minimal if the radicals rad qi are all distinct,
and qi ̸⊃

⋂
j ̸=i qj for all i. ⊓*

Theorem 1.8.5. Every proper ideal of a Noetherian ring R has a minimal
primary decomposition.

Proof. We proceed in three steps.
Step 1. In analogy to Definition 1.7.1, we say that an ideal of R is irre-

ducible if it is not the intersection of two strictly larger ideals. The algebraic
version of the proof of Theorem 1.7.12 shows that every ideal of the Noetherian
ring R can be written as a finite intersection of irreducible ideals.

Step 2. Let I ! R be an irreducible ideal. We prove that I is primary. For
this, let f, g ∈ R such that fg ∈ I and f ̸∈ I. To show that g ∈ rad I, observe
that we have a chain of ideals

I : g ⊂ I : g2 ⊂ · · · .

By the ascending chain condition, I : gm = I : gm+1 for some m ≥ 1. Then

I = (I : gm) ∩ ⟨I, gm⟩

by Exercise 1.3.3. Since fg ∈ I, also fgm ∈ I, so that f ∈ I : gm. This implies
that I ̸= I : gm since f ̸∈ I. Taking into account that I is irreducible, we
must have I = ⟨I, gm⟩, so that gm ∈ I. Hence, g ∈ rad I.

Step 3. Let I ! R be an arbitrary ideal. By Steps 1 and 2, there is a
primary decomposition of I. If two of the primary ideals occuring in this de-
composition have the same radical, we may replace them by their intersection
which is primary by Proposition 1.8.2. Continuing in this way, all primary
ideals will eventually have distinct radicals. Throwing away superfluous pri-
mary ideals if necessary, we get a minimal primary decomposition of I. ⊓*

Not all the ideals occuring in a primary decomposition of an ideal I are
uniquely determined by I:

Example 1.8.6. The ideal ⟨xy, y2⟩ ⊂ k[x, y] admits, for instance, the follow-
ing minimal primary decompositions:

⟨xy, y2⟩ = ⟨y⟩ ∩ ⟨x, y2⟩ = ⟨y⟩ ∩ ⟨x2, xy, y2⟩.

Note that both ⟨x, y2⟩ and ⟨x2, xy, y2⟩ are ⟨x, y⟩-primary. Furthermore, the
prime ideal ⟨x, y⟩ contains the prime ideal ⟨y⟩. ⊓*
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Theorem 1.8.7 (1st Uniqueness Theorem). Let I be a proper ideal of a
Noetherian ring R, and let I =

⋂t
i=1 qi be a minimal primary decomposition

of I. Then the radicals pi = rad qi are precisely the prime ideals occuring in
the set of ideals I : f , f ∈ R.

Proof. See Exercise 1.9.4. ⊓*

Remark-Definition 1.8.8. In the situation of the 1st uniqueness theorem,
we see, in particular, that the pi only depend on I (and not on the particular
minimal primary decomposition). We call each pi an associated prime of
I. We say that pi is a minimal associated prime of I if pi ̸⊃ pj for all
j ̸= i. Otherwise, pi is called an embedded associated prime of I. If, say,
p1 . . . , ps are the mimimal associated primes of I, then

rad I = p1 ∩ · · · ∩ ps

is the uniquely determined minimal prime decomposition of rad I (defined
as at the beginning of this section).

Any primary ideal occurring in one of the minimal primary decompositions
of I is called a primary component of I. It is called an isolated compo-
nent of I if its radical is a minimal associated prime of I, and an embedded
component of I, otherwise. ⊓*

The names isolated and embedded come from the geometric interpretation:
If k = k is algebraically closed, the minimal associated primes of an ideal
I ⊂ k[x1, . . . , xn] correspond to the irreducible components of V(I), and the
embedded associated primes to subvarieties of these.

Theorem 1.8.9 (2nd Uniqueness Theorem). Let I be a proper ideal of
a Noetherian ring. Then the isolated primary components of I are uniquely
determined by I.

Proof. We will show this in Exercise 4.5.6. ⊓*

Example 1.8.10. If R is a UFD, and f ∈ R is a nonzero nonunit, then all
the associated primes of ⟨f⟩ are minimal. Indeed, if

f = u · fµ1
1 · · · fµs

s

is the decomposition of f into distinct irreducible factors, the minimal primary
decomposition is

⟨f⟩ = ⟨fµ1
1 ⟩ ∩ · · · ∩ ⟨fµs

s ⟩.
Note that historically, the concept of primary decomposition grew out from
the search for some useful generalization of unique factorization. See Eisenbud
(1995), Section 1.1. ⊓*

If I is a proper ideal of a ring R, and p ⊂ R is a prime ideal containing I, we
say that p is a minimal prime of I if there is no prime ideal q of R such that
I ⊂ q ! p. A minimal prime of the zero ideal of R is also called a minimal
prime of R.
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Proposition 1.8.11. Let I be a proper ideal of a Noetherian ring R. Then
every prime ideal containing I contains a minimal associated prime of I. Thus,
the minimal associated primes of I are precisely the minimal primes of I.

Proof. Let p1, . . . , ps be the minimal associated primes of I. If p ⊃ I is a prime
ideal, then p = rad p ⊃ rad I =

⋂s
i=1 pi. Hence, we must have p ⊃ pi for some

i by part 2 of Exercise 1.3.4. ⊓*

1.9 Removing Algebraic Sets

The ideal I = ⟨xz, yz⟩ ⊂ R[x, y, z] in Example 1.2.10 is the intersection of the
prime ideals ⟨z⟩ and ⟨x, y⟩. In particular, I is a radical ideal. Geometrically, I
defines the union of the xy-plane and the z-axis. If we remove the xy-plane,
the remaining set is a punctured line, which is not an algebraic subset of A3(k)
(see Exercise 1.7.13). In this section, we show how to describe the smallest
algebraic set containing the difference of two algebraic sets.

We need the following notation. If I, J are two ideals of a ring R, the set

I : J∞ := {f ∈ R | fJm ⊂ I for some m ≥ 1} =
∞⋃

m=1

(I : Jm)

is an ideal of R. It is called the saturation of I with respect to J . If g is a
single element of R, we usually write I : g∞ instead of I : ⟨g⟩∞.

In any case, we have an ascending chain of ideals

I : J ⊂ I : J2 ⊂ I : J3 ⊂ · · · ⊂ I : J∞.

Thus, if R is Noetherian, we have I : Jm = I : Jm+1 = I : J∞ for some m ≥ 1
by the ascending chain condition.

Theorem 1.9.1. Let k = k be algebraically closed, and let I, J be ideals of
k[x1, . . . , xn]. Then

V(I) \ V(J) = V(I : J∞).

If I is a radical ideal, then

V(I) \ V(J) = V(I : J).

Proof. For the first statement, let I =
⋂t

i=1 qi be a primary decomposition.
To show the desired equality, we proceed in four steps, writing I : J∞ as the
intersection of the qi : J∞.

Step 1. If Jm ⊂ qi for some m ≥ 1, then qi : J∞ = k[x1, . . . , xn] by part
1 of Exercise 1.3.3. If Jm ̸⊂ qi for all m ≥ 1, then qi : J∞ = qi. Indeed, if
f ∈ qi : J∞, then fJk ⊂ qi for some k ≥ 1, so that f ∈ qi by part 2 of
Proposition 1.9.2 below. This shows that qi : J∞ ⊂ qi. The opposite inclusion
is clear.
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Step 2. We have Jm ̸⊂ qi for all m ≥ 1 iff V(J) ̸⊃ V(qi). Indeed, if
V(J) ⊃ V(qi), then J ⊂ rad J ⊂ rad qi by Hilbert’s Nullstellensatz, so that
Jm ⊂ qi for some m ≥ 1 by part 1 of Proposition 1.9.2 below. This shows the
implication from left to right. The converse implication is clear since V(Jm) =
V(J) for all m ≥ 1.

Step 3. If V(J) ̸⊃ V(qi), then

V(qi) = V(qi) \ V(J) ∪ (V(qi) ∩ V(J)) = V(qi) \ V(J)

since V(qi) = V(rad qi) is irreducible.
Step 4. By Exercise 1.3.3 and Steps 1 and 2,

I : J∞ =
t⋂

i=1

(qi : J∞) =

⎛

⎜⎜⎝
⋂

Jm⊂qi
for some m≥1

(qi : J∞)

⎞

⎟⎟⎠ ∩

⎛

⎜⎜⎝
⋂

Jm ̸⊂qi
for all m≥1

(qi : J∞)

⎞

⎟⎟⎠

=
⋂

Jm ̸⊂qi
for all m≥1

qi =
⋂

V(J) ̸⊃V(qi)

qi.

Hence, the first statement follows from Step 3:

V(I : J∞) =
⋃

V(J) ̸⊃V(qi)

V(qi) =
⋃

V(J) ̸⊃V(qi)

V(qi) \ V(J)

=
t⋃

i=1

(V(qi) \ V(J)) = V(I) \ V(J).

For the second statement, note that a radical ideal I can be written as the
intersection of prime ideals qi. The same arguments as above show, then, that

V(I) \ V(J) = V(I : J∞) = V(I : J). ⊓*

Proposition 1.9.2. Let I be an ideal of a Noetherian ring R. Then:

1. I contains a power of its radical.
2. If q ⊂ R is a primary ideal, and f ∈ R, then fI ⊂ q implies f ∈ q or

Im ⊂ q for some m ≥ 1.

Proof. 1. Since R is Noetherian, rad I is finitely generated, say rad I =
⟨f1, . . . , fr⟩. For each i, we may choose an integer mi ≥ 1 such that fmi

i ∈ I.
Let m =

∑r
i=1(mi − 1) + 1. Then (rad I)m is generated by the products

fk1
1 · · · fkr

r , where
∑r

i=1 ki = m. From the definition of m, we must have
ki ≥ mi for at least one i. Hence, all the products lie in I. This shows that
(rad I)m ⊂ I.

2. The argument is similar to that in part 1. ⊓*
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Exercise∗ 1.9.3. Let R be a Noetherian ring, let m be a maximal ideal of R,
and let I be any ideal of R. Show that the following are equivalent:

1. I is m-primary.
2. rad I = m.
3. m ⊃ I ⊃ mk for some k ≥ 1. ⊓*

Exercise∗ 1.9.4. Prove Theorem 1.8.7.
Hint. As a first step, show that the radicals pi = rad qi are precisely the prime
ideals occuring in the set of ideals (rad I) : f , f ∈ R. ⊓*

How to compute ideal quotients and saturation will be a topic of Section 2.4.

1.10 Modules

In this section, we set the geometry-algebra dictionary aside and introduce
modules which are to rings what vector spaces are to fields. We will treat
some basic operations on modules, including the tensor product.

An ideal I of a ring R and its quotient ring R/I are both examples of mod-
ules. By speaking of modules, we may often formulate definitions and results
such that they apply to ideals and quotient rings at the same time. Later in
the book, we will encounter further examples of modules which arise naturally
in algebraic geometry. Most notably, the syzygies introduced in Chapter 2 and
the Kähler differentials treated in Chapter 8 form modules.

Let R be a ring.

Definition 1.10.1. A module over R, or an R-module, is an additively
written group M , together with a map R × M → M , written (r, m) '→ rm,
such that for all r, s ∈ R and m, n ∈ M the following hold:

r(sm) = (rs)m, r(m + n) = rm + rn, (r + s)m = rm + sm, 1m = m. ⊓*

Example 1.10.2. 1. If I is an ideal of R, then I and R/I are R-modules.
In particular, R itself is an R-module.

2. Every Abelian group G is a Z-module: if g ∈ G, and n ∈ Z is positive (or
zero or negative), define ng to be g + · · · + g (or 0 or (-g) +. . . + (-g)). ⊓*

The notion of a linear map extends from vector spaces to modules:

Definition 1.10.3. Let M and N be R-modules. A map φ : M → N is called
an R-module homomorphism, or an R-linear map, if

φ(m + n) = φ(m) + φ(n) and φ(rm) = rφ(m)

for all r ∈ R and m, n ∈ M . ⊓*
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As usual, a homomorphism which is injective (or surjective or bijective) is
called a monomorphism (or epimorphism or isomorphism). Also, we
write M ∼= N and call M and N isomorphic if there exists an isomorphism
M → N . Note that an R-module homomorphism is an isomorphism iff it
admits an inverse homomorphism.

Remark 1.10.4. 1. If M and N are R-modules, the set

HomR(M, N) := {R-module homomorphisms from M to N}

ia again an R-module: if r ∈ R, and φ,ψ ∈ HomR(M, N), define

(φ+ ψ)(m) = φ(m) + ψ(m) and (rφ)(m) = rφ(m)

for all m ∈ M .
2. Given R-module homomorphisms α : M ′ → M and β : N → N ′′, we

obtain induced R-module homomorphisms

α̃ : Hom(M, N) → Hom(M ′, N) and β̃ : Hom(M, N) → Hom(M, N ′′)

by setting
α̃(φ) = φ ◦ α and β̃(φ) = β ◦ φ

for all φ ∈ Hom(M, N). ⊓*

Extending the notions of ideals I ⊂ R and quotient rings R/I, we get the
notions of submodules I ⊂ M and quotient modules M/I. That is, a sub-
module of an R-module M is an additive subgroup I of M such that if r ∈ R
and m ∈ I, then rm ∈ I. Then I inherits an R-module structure from M , and
we have the quotient module M/I together with the canonical projection
M → M/I (obtained as in Definition 1.3.5).

If φ : M → N is an R-module homomorphism, its kernel

kerφ := {m ∈ M | φ(m) = 0} ⊂ M

is a submodule of M , and its image

imφ := φ(M) ⊂ N

is a submodule of N . Its cokernel

cokerφ := N/ imφ

is a quotient module of N .

Exercise∗ 1.10.5 (Homomorphy Theorem). Let φ : M → N be an R-
module homomorphism. If I is a submodule of M contained in kerφ and
π : M → M/I is the canonical projection, show that there exists a unique
R-module homomorphism φ : M/I → N such that φ ◦ π = φ. That is, the
following diagram commutes:
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M

φ ##!
!!

!!
!

π !! M/I

φ$$"
"

"

N

In particular, taking I = kerφ, we get

M/ kerφ ∼= imφ. ⊓*

If X is any subset of an R-module M , we write ⟨X⟩ for the smallest submodule
of M containing X . Then ⟨X⟩ consists of all R-linear combinations of elements
of X and is called the submodule generated by X. The terminology and
notation introduced for ideals in this context will be used for modules as well.
In particular, we say that M is finitely generated if M = ⟨m1, . . . , mk⟩ for
some m1, . . . , mk ∈ M .

Most of the operations on ideals considered in Section 1.3 carry over to
submodules of M . For instance, the intersection

⋂
λ Iλ of a family {Iλ} of

submodules of M is a submodule of M . The sum
∑
λ Iλ of the {Iλ} is the

submodule generated by the union
⋃
λ Iλ.

Exercise∗ 1.10.6 (Isomorphy Theorems). Let N1, N2 be submodules of
an R-module M .

1. If N1 ⊂ N2, show that

(M/N1)/(N2/N1) ∼= M/N2.

2. Show that
(N1 + N2)/N1

∼= N2/(N1 ∩N2). ⊓*

The direct sum of two R-modules M and N is the set

M ⊕N := {(m, n) | m ∈ M, n ∈ N},

together with the module structure obtained by setting

(m1, n1) + (m2, n2) = (m1 + m2, n1 + n2) and r(m, n) = (rm, rn).

In the same way, we get the direct sum M1 ⊕ · · · ⊕ Mk of any finite set of
R-modules M1, . . . , Mk. Specifically, Rk denotes the direct sum of k copies of
R. More generally, we can define the direct sum

⊕
λMλ of any family {Mλ}

of R-modules; it consists of the tuples (mλ) such that mλ ∈ Mλ for all λ and
all but finitely many mλ are zero. In contrast, the direct product

∏
λ∈ΛMλ

consists of all tuples (mλ) satisfying mλ ∈ Mλ for all λ.
A module F over R is free if it is isomorphic to a direct sum of copies of

R. Equivalently, F admits a basis in the sense of linear algebra. That is, F
admits a set of generators, also called free generators, which are R-linearly
independent. By convention, also the zero module is free.
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As for vector spaces, if F admits a finite basis, the number of basis elements
is independent of the choice of basis. It is called the rank of F , written
rankF . If F is a free R-module of rank k with a fixed basis, we think of
it as the free R-module Rk with its canonical basis (formed by the column
vectors (1, 0, . . . , 0)t, . . . , (0, . . . , 0, 1)t). That is, we consider the elements of F
as column vectors with entries in R. Furthermore, given two such modules with
fixed bases, we may regard each homomorphism between them as a matrix
with entries in R.

Example 1.10.7. A nonzero ideal I of R is free iff it is a principal ideal
generated by a nonzerodivisor. In fact, if k ≥ 2 and f1, . . . , fk are nonzero
elements of I, then f1, . . . , fk are not R-linearly independent. For instance,
there are always the nontrivial relations fifj − fjfi = 0. ⊓*

Note that according to our definitions, an R-module M is finitely generated
iff it can be written as a quotient module of type Rk/I. Indeed, if M =
⟨m1, . . . , mk⟩, consider the (module) epimorphism

Rk → M, ei '→ mi,

where the ei are the canonical basis vectors of Rk, and take I to be the kernel.

Definition 1.10.8. An R-module M is called Noetherian if every submod-
ule of M is finitely generated. ⊓*

As in Exercise 1.4.5 one shows that M is Noetherian iff the ascending chain
condition (respectively, maximal condition) holds for submodules of M .

Exercise∗ 1.10.9. Let R be a Noetherian ring. Show that every finitely gen-
erated R-module is Noetherian.
Hint. Reduce the general case to the case of free R-modules. For free R-
modules, use induction on the rank. ⊓*

If I, J are two submodules of M , their submodule quotient is the set

I : J = {f ∈ R | fJ ⊂ I},

which is an ideal of R.

Definition 1.10.10. If M is an R-module, the ideal

Ann(M) = 0 : M = {r ∈ R | rm = 0 for all m ∈ M}

is called the annihilator of M . If m ∈ M is any element, we write Ann(m)
for the annihilator of ⟨m⟩, and call it the annihilator of m. ⊓*

Exercise 1.10.11. 1. Determine the annihilator of the Z-module

Z/2Z× Z/3Z× Z/4Z.
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2. If M, N are R-modules, show that

Ann(M ⊕N) = Ann(M) ∩ Ann(N). ⊓*

Given R-modules M, N, P , we say that a map Φ : M ×N → P is R-bilinear
if for each m ∈ M the induced map N → P, n '→ Φ(m, n), is R-linear, and
for each n ∈ N the induced map M → P, m '→ Φ(m, n), is R-linear. Our next
result allows us to interprete R-bilinear maps in terms of R-linear maps:

Theorem 1.10.12. Let M and N be R-modules. There is an R-module T ,
together with an R-bilinear map t : M × N → T , such that the following
universal property holds: Given any R-module P and any R-bilinear map
Φ : M×N → P , there is a unique R-linear map φ : T → P such that φ◦t = Φ.
That is, the following diagram commutes:

M ×N

Φ %%##
##

##
#

t !! T

φ&&$
$

$

P

Furthermore, if (T, t) and (T ′, t′) are two pairs satisfying the universal prop-
erty, there is a unique isomorphism ψ : T → T ′ such that ψ ◦ t = t′.

Proof. The uniqueness part of the proof is an application of the universal
property: Since both pairs (T, t) and (T ′, t′) satisfy this property, we get unique
R-linear maps φ : T → T ′ and φ′ : T ′ → T such that the diagrams

M ×N

t′ %%%%
%%

%%
%

t !! T

φ''&
&

&

T ′
and

M ×N

t %%%%
%%

%%
%

t′ !! T ′

φ′
''&

&
&

commute. Applying the universal property twice again, we obtain φ′ ◦φ = idT

and φ ◦ φ′ = idT ′ . Thus, φ is an isomorphism.
The existence is obtained as follows. Regarding M ×N as a set of indices,

pick a copy of R for each (m, n) ∈ M × N , let F be the direct sum of these
copies, and write e(m,n) for the canonical basis vector of F corresponding to
the index (m, n). Let I ⊂ F be the submodule generated by elements of the
following types:

e(m+m′,n) − e(m,n) − e(m′,n),
e(m,n+n′) − e(m,n) − e(m,n′),

e(rm,n) − re(m,n),
e(m,rn) − re(m,n),

where m, m′ ∈ M , n, n′ ∈ N , and r ∈ R. Let T = F/I, and let t : M ×N → T
be the map sending (m, n) to the residue class of e(m,n) ∈ F modulo I. Then,
by construction, t is R-bilinear.
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Given an R-module P and a map Φ : M × N → P , consider the R-linear
map Φ̃ : F → P defined by sending e(m,n) to Φ(m, n). If Φ is R-bilinear, then
Φ̃ vanishes on I and induces, thus, an R-linear map φ : T → P such that
φ ◦ t = Φ. In fact, this condition determines φ uniquely. We conclude that the
pair (T, t) has the desired properties. ⊓*

Definition 1.10.13. In the situation of the theorem, we call T the tensor
product of M and N over R, denoted

M ⊗N := M ⊗R N := T.

Furthermore, we write m ⊗ n for the image of (m, n) ∈ M ×N under t. ⊓*

Corollary 1.10.14. If M, N are R-modules, each element w ∈ M ⊗R N can
be written as a sum of type

w =
k∑

i=1

mi ⊗ ni.

Proof. Using the notation of the proof of the theorem, let f ∈ F be an element
representing w ∈ F/I. Then f is a (finite) R -linear combination of the basis
vectors e(m,n) of F . The result follows. ⊓*

Remark 1.10.15. Given sets of generators X and Y for M and N , respec-
tively, the tensor product M ⊗N is generated by the elements of type x⊗ y,
where x ∈ X and y ∈ Y . In particular, if M and N are finitely generated,
then so is M ⊗N . ⊓*

From this point on, we do not make use of the explicit construction of the
tensor product. Instead, we work with its universal property. In the same way,
we deal with the tensor product M1⊗ · · ·⊗Mk of more than two R-modules
M1, . . . , Mk: In analogy to the case of two R-modules, this tensor product is
defined by asking a universal property for k-linear maps over R.

Proposition 1.10.16. Let M, N, P be R-modules. There are unique isomor-
phisms

1. M ⊗N → N ⊗M ,
2. (M ⊗N)⊗ P → M ⊗ (N ⊗ P ) → M ⊗N ⊗ P ,
3. (M ⊕N)⊗ P → (M ⊗ P ) ⊕ (N ⊗ P ), and
4. R ⊗M → M

such that, respectively,

1. m ⊗ n '→ n⊗m,
2. (m ⊗ n)⊗ p '→ m ⊗ (n⊗ p) '→ m ⊗ n⊗ p,
3. (m ⊕ n)⊗ p '→ (m ⊗ p, n⊗ p), and
4. r ⊗m '→ m.
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Proof. All isomorphisms are obtained by applying the universal property. As
an example, we show 3.

The map (M ⊕N)×P → (M ⊗P )⊕ (N ⊗P ), ((m, n), p) '→ (m⊗p, n⊗p)
is R-bilinear in (m, n) and p. It induces, thus, an R-module homomorphism
(M ⊕N) ⊗ P → (M ⊗ P ) ⊕ (N ⊗ P ) such that (m, n) ⊗ p '→ (m ⊗ p, n⊗ p).
An inverse to this homomorphism is constructed by similar arguments. ⊓*

Exercise∗ 1.10.17. Complete the proof of Proposition 1.10.16. ⊓*

Exercise 1.10.18. Show:

1. Z/3Z⊗ Z/2Z = 0.
2. Q ⊗Z Q ∼= Q. ⊓*

Remark 1.10.19 (Tensor Product of Homomorphisms). If φ : M → N
and φ′ : M ′ → N ′ are homomorphisms of R-modules, the map M × M ′ →
N⊗N ′, (m, m′) '→ φ(m)⊗φ′(m′), is R-bilinear. It induces, thus, an R-module
homomorphism

φ⊗ φ′ : M ⊗M ′ → N ⊗N ′

such that
m ⊗m′ '→ φ(m) ⊗ φ′(m′). ⊓*

Our final remarks in this section deal with algebras. Given a ring homomor-
phism φ : R → S, we make S into an R-module by setting rs := φ(r)s for
all r ∈ R and s ∈ S. This R-module structure is compatible with the ring
structure on S in the sense that

(rs)s′ = r(ss′).

We refer to this fact by saying that S is an R-algebra. A subalgebra of S
is a subring S′ of S contained in the image of φ.

Remark 1.10.20. With notation as above, let R = k be a field (and suppose
that S nonzero). Then φ is necessarily a monomorphism. Identifying k with
its image in S by means of φ, we see that a k-algebra is nothing but a ring
S containing k as a subring. A particular example is the polynomial ring
k[x1, . . . , xn]. ⊓*

An R-algebra homomorphism between two R-algebras S and T is a ring
homomorphism S → T which is also an R-module homomorphism. Mono-,
epi-, and isomorphisms of R-algebras are defined in the usual way.

Exercise∗ 1.10.21 (Tensor Product of Algebras). Let S and T be R-
algebras, defined by maps φ : R → S and ψ : R → T . Use the universal
property of the tensor product and Proposition 1.10.16 to establish a multi-
plication on S ⊗R T such that

(s⊗ t)(s′ ⊗ t′) = ss′ ⊗ tt′.
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Show that this multiplication turns S ⊗R T into a (commutative) ring (with
multiplicative identity 1⊗1). Furthermore, show that S⊗R T is an R-algebra:
the map

R → S ⊗R T, r '→ φ(r) ⊗ ψ(r),

is a ring homomorphism. ⊓*

We say that an R-algebra S is finitely generated if there are elements
s1, . . . , sn ∈ S such that every element of S is a polynomial expression in the
si with coefficients in R. This means that S can be written as a quotient ring
of type R[x1, . . . , xn]/I. Indeed, consider the (R-algebra) epimorphism

R[x1, . . . , xn] → S, xi '→ si,

and take I to be the kernel. In combining this with the general version of
Hilbert’s basis theorem and Exercise 1.5.11, we see that a finitely generated
algebra over a Noetherian ring is again a Noetherian ring. In particular, every
finitely generated k-algebra is a Noetherian ring. We refer to such a k-algebra
as an affine k-algebra, or simply as an affine ring. An affine domain is an
affine ring without zerodivisors. This terminology is justified by Proposition
1.11.4 below.

1.11 Coordinate Rings and Morphisms

In this section, we will return to the geometry-algebra dictionary. We will take
up a theme familiar from other courses in mathematics: The study of a given
class of mathematical objects usually requires that we understand the natural
maps, or morphisms, between these objects. In linear algebra, for instance,
we deal with linear maps between vector spaces, and in topology, we consider
continuous maps between topological spaces. In algebraic geometry, where the
objects of study are given by polynomials, the morphisms are also given by
polynomials. In discussing this, we will first treat the polynomial functions on
an algebraic set. Then, we will use these functions to define the morphisms.

Definition 1.11.1. Let A ⊂ An(k) be a (nonempty) algebraic set. A poly-
nomial function on A is the restriction of a polynomial function on An(k)
to A. ⊓*

The set k[A] of all polynomial functions on A is made into a ring, with alge-
braic operations defined by adding and multiplying values in k: If f, g ∈ k[A],
for all p ∈ A set

(f + g)(p) = f(p) + g(p) and (f · g)(p) = f(p) · g(p).

We regard k as the subring of all constant functions and, thus, k[A] as a
k-algebra. Since two polynomials in k[x1, . . . , xn] define the same element of
k[A] iff their difference vanishes on A, we have a natural isomorphism
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k[x1, . . . , xn]/I(A) ∼= k[A]

which allows us to identify the two rings. Accordingly, the elements of k[A]
may be viewed in two ways – as residue classes of polynomials modulo I(A),
or as polynomial functions on A.

Definition 1.11.2. The coordinate ring of a (nonempty) algebraic set A ⊂
An(k) is the k-algebra k[A] defined above. ⊓*

The notion reflects the fact that k[A] is the k-algebra of functions on A gen-
erated by the coordinate functions on A.

Exercise 1.11.3. Let k be a finite field, and let A ⊂ An(k) be an algebraic
set. Show that k[A] is the ring of all k-valued functions on A. ⊓*

According to our definitions, coordinate rings are specific examples of affine
k-algebras. In particular, they are Noetherian. Furthermore, they are reduced
since vanishing ideals are radical ideals. Somewhat conversely, we have:

Proposition 1.11.4. If k = k is algebraically closed, every reduced affine
k-algebra T is of the form T = k[A] for some affine algebraic set A.

Proof. Write T as the quotient of a polynomial ring k[x1, . . . , xn] modulo an
ideal I. Then I is a radical ideal since T is reduced. The Nullstellensatz implies
that I = I(V(I)), and we may take A = V(I). ⊓*

In the following exercise, we write x = x1, . . . , xn and y = y1, . . . , ym.

Exercise∗ 1.11.5. Let A ⊂ An(k) and B ⊂ Am(k) be algebraic sets. Show:

1. The product A ×B ⊂ An(k) × Am(k) = An+m(k) is an algebraic set.
2. If I(A) ⊂ k[x] and I(B) ⊂ k[y] are the vanishing ideals of A and B, then

I(A ×B) = I(A) k[x, y] + I(B) k[x, y] ⊂ k[x, y].

3. For the cooordinate rings, we have

k[A ×B] ∼= k[A] ⊗k k[B]. ⊓*

Our next exercise shows that the idea of relating algebraic sets to ideals still
works nicely if we replace An(k) and k[x1, . . . , xn] by an arbitrary algebraic
set A ⊂ An(k) and its coordinate ring k[A]. We use the following notation:

Definition 1.11.6. Let A ⊂ An(k) be an algebraic set.

1. If J ⊂ k[A] is a subset, its locus of zeros in A is the set

VA(J) := {p ∈ A | f(p) = 0 for all f ∈ J}.

2. If B ⊂ A is a subset, its vanishing ideal in k[A] is the ideal

IA(B) := {f ∈ k[A] | f(p) = 0 for all p ∈ B}.
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3. An algebraic subset of A is an algebraic subset of An(k) contained in
A. A subvariety of A is a subvariety of An(k) contained in A. ⊓*

Exercise∗ 1.11.7. Let A ⊂ An(k) be an algebraic set. Show:

1. A subset B ⊂ A is algebraic iff B = VA(J) for some ideal J ⊂ k[A].
2. If B ⊂ A is a subset, then IA(B) is indeed an ideal of k[A].
3. The algebraic subsets of A are the closed sets of the Zariski topology on

A. The distinguished open sets

DA(f) := A \ VA(f), f ∈ k[A],

form a basis for this topology.
4. If B ⊂ A is an algebraic subset, then

VA(IA(B)) = B.

5. (Nullstellensatz in k[A]) If k = k is algebraically closed, and J ⊂ k[A]
is an ideal, then

IA(VA(J)) = rad J.

Hint. Deduce this from Hilbert’s Nullstellensatz by passing from ideals in
k[A] = k[x1, . . . , xn]/I(A) to ideals in k[x1, . . . , xn] (see Exercise 1.5.11).

6. If k = k, then IA and VA define a one-to-one inclusion-reversing corre-
spondence

{algebraic subsets of A}
IA !!

VA

"" {radical ideals of k[A]}.

Under this correspondence, subvarieties correspond to prime ideals, and
points to maximal ideals. ⊓*

Recall that the usual Euclidean topology over the real or complex numbers
is Hausdorff. In contrast, the Zarisky topology on an affine variety V is not
Hausdorff, except when V consists of a single point:

Proposition 1.11.8. Let A ⊂ An(k) be an algebraic set. Then the following
conditions are equivalent:

1. A is irreducible.
2. Any two nonempty open subsets of A have a nonempty intersection.
3. Any nonempty open subset of A is dense in A.

Proof. Since the intersection of two subsets of A is empty iff the union of
their complements equals A, condition 2 is just a restatement of the defining
condition of irreducibility. Condition 3, in turn, is a restatement of condition
2 since a subset of a topological space is dense iff it meets every nonempty
open subset. ⊓*
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We summarize some properties of the Zariski topology for later use:

Exercise∗ 1.11.9. Let A ⊂ An(k) be an algebraic set. Show:

1. The Zariski topology on A is quasicompact. That is, every open cover
of A has a finite subcover.

2. An open subset of A is dense in A iff it meets every irreducible component
of A.

3. Every open dense subset of A contains a distinguished open dense subset
of A.

4. A distinguished open set DA(f) is dense in A iff f is a nonzerodivisor of
k[A]. ⊓*

Exercise∗ 1.11.10. Let A ⊂ An(k) and B ⊂ Am(k) be algebraic sets.

1. Show that the product A×B is irreducible iff A and B are irreducible.
2. Give an example showing that the Zariski topology on A×B may not be

the product of the Zariski topologies on A and B. ⊓*

We, now, come to the morphisms of affine algebraic sets. In our discussion,
we will denote the coordinates on An and Am by x1, . . . , xn and y1, . . . , yn,
respectively.

Definition 1.11.11. Let A ⊂ An(k) and B ⊂ Am(k) be (nonempty) algebraic
sets. A map ϕ : A → B is a polynomial map, or a morphism, if its
components are polynomial functions on A. That is, there exist polynomials
f1, . . . , fm ∈ k[x1, . . . , xn] such that ϕ(p) = (f1(p), . . . , fm(p)) for all p ∈ A. ⊓*

Proposition 1.11.12. A map ϕ : A → B of affine algebraic sets is a polyno-
mial map iff for all f ∈ k[B], the composition f ◦ ϕ is in k[A].

Proof. If the condition on the right hand side is fulfilled, then, in particular,
the yj ◦ ϕ are polynomial functions on A. That is, ϕ is a polynomial map.

Conversely, let ϕ be given by polynomials f1, . . . , fm ∈ k[x1 . . . , xn].
If q '→ g(q) is a polynomial function on B, represented by a polynomial
g(y1, . . . , ym) ∈ k[y1 . . . , ym], then p '→ g(ϕ(p)) is a polynomial function on
A, represented by the polynomial g(f1, . . . , fm) ∈ k[x1 . . . , xn]. ⊓*

Theorem 1.11.13. Let A ⊂ An(k) and B ⊂ Am(k) be algebraic sets.

1. Every polynomial map induces a k-algebra homomorphism

ϕ∗ : k[B] → k[A], g '→ g ◦ ϕ.

2. Conversely, if φ : k[B] → k[A] is a k-algebra homomorphism, there exists
a unique polynomial map ϕ : A → B such that φ = ϕ∗.
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3. If ϕ : A → B and ψ : B → C are polynomial maps, their composition
(ψ ◦ ϕ) : A → C is a polynomial map as well, and

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

Furthermore,
id∗

A = idk[A]. ⊓*

Exercise∗ 1.11.14. Prove Theorem 1.11.13. To show part 2, for j = 1, . . . , m,
choose polynomials fj ∈ k[x1, . . . , xn] representing φ(yj + I(B)), and consider
the polynomial map ϕ : A → Am(k) defined by the fj . ⊓*

Remark 1.11.15. According to Definition 6.3.12, every morphism of affine
algebraic sets is induced by a morphism of the ambient affine spaces. That is,
with notation as in the definition, there is a commutative diagram

An(k)
F=(f1,...,fm)

!! Am(k)

A

((

ϕ !! B .

((

By Theorem 1.11.13, there is a corresponding commutative diagram of k-
algebra homomorphisms, with all arrows reversed:

k[x1, . . . , xn]

))

k[y1, . . . , ym]
F∗

""

))
k[A] k[B] .

ϕ∗
""

Here, F ∗ is obtained by substituting the fj for the yj . Any k-algebra homo-
morphism φ : k[y1, . . . , ym] → k[x1, . . . , xn] is a substitution homomorphism,
and the images fj := φ(yj) define a morphism An(k) → Am(k) whose restric-
tion to A is a morphism A → Am(k). Note, however, that this morphism maps
A to B only if φ(I(B)) ⊂ I(A). Thus, there are always plenty of morphisms
A → Am(k), but quite often only constant morphisms A → B. See Exercise
1.11.20 for an example. ⊓*

Remark 1.11.16. Every morphism A → B of affine algebraic sets is continu-
ous with regard to the respective Zariski topologies. Indeed, if DB(g) ⊂ B is a
distinguished open set, then ϕ−1(DB(g)) = DA(ϕ∗(g)) ⊂ A is a distinguished
open set as well. ⊓*

As ususal, an isomorphism is a morphism admitting an inverse morphism:

Definition 1.11.17. A morphism ϕ : A → B of affine algebraic sets is called
an isomorphism if there is a morphism ψ : B → A such that ψ ◦ ϕ = idA

and ϕ ◦ ψ = idB. We say that A and B are isomorphic, written A ∼= B, if
there is an isomorphism A → B. ⊓*
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Theorem 1.11.13 implies:

Corollary 1.11.18. A morphism ϕ : A → B of affine algebraic sets is an
isomorphism iff ϕ∗ : k[B] → k[A] is an isomorphism of k-algebras. Two affine
algebraic sets are isomorphic iff their coordinate rings are isomorphic. ⊓*

Exercise 1.11.19. Let k be infinite. Show:

1. The parametrization

A1(k) → V (y − x2, z − x3) ⊂ A3(k), a '→ (a, a2, a3),

of the twisted cubic curve is an isomorphism.
2. The map

A1(k) → V(y2 − x3) ⊂ A2(k), a '→ (a2, a3),

is a bijective morphism, but not an isomorphism.

⊓*

How to decide algorithmically whether a given morphism of affine algebraic
sets is an isomorphism will be explained in Section 2.5.

Exercise 1.11.20. If k is infinite, show that every morphism from the para-
bola A = V(y − x2) ⊂ A2(k) to the hyperbola B = V(xy − 1) ⊂ A2(k) is
constant. In particular, A and B are not isomorphic. ⊓*

The image of an affine algebraic set under an arbitrary morphism needs not
be Zariski closed (we postpone a discussion of this failure to Section 2.6).
Under an isomorphism A → B, however, algebraic subsets of A correspond to
algebraic subsets of B:

Exercise∗ 1.11.21. Let ϕ : A → B be an isomorphism of affine algebraic
sets, and let A1 ⊂ A be an algebraic subset. Show that B1 := ϕ(A1) is an
algebraic subset of B, and that ϕ restricts to an isomorphism of A1 with B1.
Hint. If A1 = VA(f1, . . . , fr), where f1, . . . , fr ∈ k[A], show that B1 =
VB(ψ∗(f1), . . . ,ψ∗(fr)), where ψ = ϕ−1. ⊓*

We usually think of isomorphic affine algebraic sets as the same geometric
object, embedded in possibly different ways in affine spaces of possibly dif-
ferent dimensions. On the algebraic side, the vanishing ideal depends on the
embedding, but the coordinate ring does not – the coordinate ring is invariant
under isomorphism.
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Definition 1.11.22. An isomorphism of an affine algebraic set A with itself
is called an automorphism of A. ⊓*

The automorphisms of A form a group under composition which acts on A in
the natural way. We write Aut(A) for this group.

Lemma 1.11.23. A morphism F = (f1, . . . , fn) : An(k) → An(k) is an au-
tomorphism of An(k) iff

k[x1, . . . , xn] = k[f1, . . . , fn].

Proof. The condition k[x1, . . . , xn] = k[f1, . . . , fn] means that the the k-
algebra homomorphism F ∗ induced by F is surjective. But, then, F ∗ is injec-
tive as well since, otherwise, the transcendence degree of the quotient field of
k[x1, . . . , xn]/ kerF ∗ ∼= k[x1, . . . , xn] over k would be smaller than n. ⊓*

If F = (f1, . . . , fn) is an automorphism of An(k), we will speak of f1, . . . , fn as
a coordinate system of An(k), and regard F as transforming x1, . . . , xn into
the new cooordinates f1, . . . , fn. The image of any algebraic subset A ⊂ An(k)
under F can, then, be thought of as the the original set A viewed using the
new coordinates.

Definition 1.11.24. An automorphism of An(k) is called a change of co-
ordinates of An(k). ⊓*

Example 1.11.25. We consider two types of automorphisms of An(k) which
are both preserved under taking the inverse (in fact, the automorphisms of
either type form a subgroup of Aut(An(k))):

1. An affine change of coordinates of An(k) is given by degree-1 polyno-
mials

fi = ai1x1 + · · · + ainxn + bi ∈ k[x1, . . . , xn], i = 1, . . . , n,

where (aij) is an invertible n × n matrix with entries in k, and where
b = (b1, . . . , bn) ∈ kn. We speak of a linear change of coordinates if b
is zero, and of a translation if (aij) is the identity matrix.

2. A triangular change of coordinates of An(k) is given by polynomials
of type

fi = xi + gi(x1, . . . , xi−1), i = 1, . . . , n,

where gi ∈ k[x1, . . . , xi−1] for all i (in particular, g1 = 0). ⊓*

Remark 1.11.26. 1. By results of Jung (1942) and van der Kulk (1953),
who treat the cases chark = 0 and char k > 0, respectively, Aut(A2(k)) is
generated by affine and triangular changes of coordinates. It is not known,
whether the analogous result holds in dimensions n ≥ 3.
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2. Given a morphism F : An(k) → An(k), we can easily write down
a necessary condition for F to be an isomorphism. In fact, suppose
that F admits an inverse G. Then G ◦ F = idAn(k), and we may ap-
ply the chain rule and take determinants to conclude that the deter-
minant of the Jacobian matrix

(
∂fi

∂xj

)
is a nonzero constant. In case

char k = 0, the famous Jacobian conjecture suggests that the condition
on the determinant is also sufficient. Recently, quite a number of false
proofs for this conjecture have been published – at least as e-prints (see
http://xxx.lanl.gov/archive/math).

See van den Essen (2000) for further reading. ⊓*

Exercise 1.11.27. 1. Show that the Jacobian conjecture is true if n = 1.
2. Show by example that the condition on the Jacobian determinant may

not be sufficient if chark > 0. ⊓*

Remark 1.11.28. 1. In the language of categories (see, for instance, Mac
Lane (1990) for categories), Theorem 1.11.13 can be rephrased as follows.
Over an algebraically closed field k, the functor A → k[A] induces an
arrow-reversing equivalence between the category of affine algebraic sets
over k and the category of reduced affine k-algebras. The subcategory of
affine varieties over k corresponds to that of affine domains over k.

2. Grothendieck’s concept of affine schemes gives a geometric interpretation
of the full category of rings (commutative, and with a multiplicative iden-
tity). See Hartshorne (1977) and Eisenbud and Harris (2000). The concept
of schemes, which will not be treated in this book, is fundamental to mod-
ern algebraic geometry. ⊓*

1.12 Additional Exercises

Exercise 1.12.1. Let A ⊂ An(k) be a finite set. Show that A is an algebraic
set which can be defined by n polynomial equations.
Hint. Use interpolation.

Exercise 1.12.2. If k is not algebraically closed, show that every algebraic
subset of An(k) can be defined by a single polynomial equation (see Exercise
1.6.6 for the case k = R).
Hint. Consider the case of the origin in A2(k) first.

Exercise 1.12.3. Describe all ideals of the quotient ring R/I for R = R[x]
and I = ⟨x3 − 2x2 − x + 2⟩.

Exercise 1.12.4. If chark = p > 0, show that the map

A1(k) → A1(k), a '→ ap,

is a bijective morphism, but not an isomorphism. This map is called the
Frobenius morphism. ⊓*





Chapter 2

Gröbner Bases

Our goal in this chapter is to tackle the computational problems arising from
the geometry-algebra dictionary. For a guiding example, recall from Section
1.6 that both the problem of solvability and the problem of radical membership
ask for a method to determine whether 1 belongs to a given ideal. Here,
we encounter a special instance of a problem which is known as the ideal
membership problem: Given g, f1, . . . , fr ∈ k[x1, . . . , xn], decide whether

g ∈ ⟨f1, . . . , fr⟩.

That is, decide whether there are g1, . . . , gr ∈ k[x1, . . . , xn] such that

g =
r∑

i=1

gifi. (2.1)

We may think of (2.1) as a system of (infinitely many) linear equations in the
unknown coefficients of the gi. To reduce to a finite number of equations (so
that the system could be attacked by means of linear algebra), an a priori
bound on the degree of the gi is needed, Such a bound was established in
the thesis of Grete Hermann (1926), a student of Emmy Noether. Hermann
proved that each g ∈ ⟨f1, . . . , fr⟩ can be written as a sum g =

∑r
i=1 gifi such

that
deg gi ≤ deg g + (rd)2

n

for all i.

Here, d is the maximum degree of the fi. Being doubly exponential in the
number of variables, Herrmann’s bound is quite large. Unfortunately, as shown
by examples due to Mayr and Meyer (1982), the double exponential form of
the bound cannot be improved.

It is worth pointing out that the special instance of checking whether
1 is contained in a given ideal and, thus, the radical membership problem
admit a bound which is single exponential in the number of variables: If h ∈
rad ⟨f1, . . . , fr⟩ ⊂ k[x1, . . . , xn], there is an expression hm =

∑r
i=1 gifi such
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that m ≤ dn and deg(gifi) ≤ (1 + deg h)dn, where d = max{3, deg fi} (see
Kollár (1999) for a more precise statement giving an optimal bound).

In developing computational tools, we will not make use of the bounds dis-
cussed above. Instead, taking our cue from the case of one variable in which
Euclidean division with remainder provides a solution to the ideal member-
ship problem, we will extend the division algorithm to polynomials in more
than one variable, allowing at the same time more than one divisor. Due to
some undesirable behavior of the extended algorithm, however, this does not
provide an immediate solution to the ideal membership problem. To remedy
the situation, we introduce Gröbner bases, which are sets of generators for
ideals behaving well under division with remainder. The name Gröbner basis
was coined in the 1960’s by Buchberger to honour his thesis advisor Gröbner.
In his thesis, Buchberger used Gröbner bases to give an algorithmic way of
computing in affine rings (1965, 1970). In particular, he designed an algorithm
which computes Gröbner bases. In subsequent years, this algorithm became
the major work horse of computational algebraic geometry. Though there is,
again, a worst-case upper bound (on the degree of the elements of a Gröbner
basis, see Möller and Mora (1984)) which is doubly exponential in the number
of variables, Buchberger’s algorithm works well in many examples of interest.

The algorithm is based on a criterion which allows one to check whether
a given set of polynomials is a Gröbner basis. The resulting test yields cer-
tain k[x1, . . . , xn]-linear relations on the elements of a Gröbner basis. These
relations play a key role in our proof of Buchberger’s criterion.

Given any k[x1, . . . , xn]-linear relation

g1f1 + · · · + grfr = 0

on polynomials f1, . . . , fr ∈ k[x1, . . . , xn], we think of it as a column vector

(g1, . . . , gr)t ∈ k[x1, . . . , xn]r,

and call it a syzygy on f1, . . . , fr. It will turn out that the concept of Gröbner
bases extends from ideals to submodules of free modules, and that Buch-
berger’s algorithm computes syzygies as well. In fact, if f1, . . . , fr form a
Gröbner basis, the special syzygies obtained in Buchberger’s test form a
Gröbner basis for the module of all the syzygies on f1, . . . , fr. In theoreti-
cal terms, this will allow us to give a short proof of Hilbert’s syzygy theorem
which, following Hilbert, will be used in Section 6.4 to verify the polynomial
nature of the Hilbert function. In practical terms, syzygy computations can
be used to compute, for instance, ideal intersections and ideal quotients.

Among the fundamental applications of Gröbner bases is the elimination of
variables from a given system of polynomial equations. Buchberger’s algorithm
extends, thus, Gaussian elimination. Geometrically, elimination amounts to
projection. More generally, it will allow us to compute the Zariski closure of
the image of an algebraic set under an arbitrary morphism

Historically, as already pointed out in Chapter 1, Gröbner bases made
their first appearance in Gordan’s proof (1899) of Hilbert’s basis theorem.
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This proof nicely demonstrates the key idea in the use of Gröbner bases which
is to reduce questions on arbitrary ideals to questions on monomial ideals and,
thus, to questions which are usually much easier.

2.1 Monomials and Monomial Ideals

A monomial in x1, . . . , xn is a product xα = xα1
1 · · ·xαn

n , where α =
(α1, . . . ,αn) ∈ Nn. A monomial ideal of k[x1, . . . , xn] is an ideal generated
by monomials.

Operations on polynomials become often simpler if we restrict them to
monomials. For example, if β = (β1, . . . ,βn) ∈ Nn is another multiindex, the
least common multiple of xα and xβ is

LCM(xα, xβ) = xmax(α1,β1)
1 · · ·xmax(αn,βn)

n ,

and their greatest common divisor is

GCD(xα, xβ) = xmin(α1,β1)
1 · · ·xmin(αn,βn)

n .

Similarly, monomial ideals are easier to handle than arbitrary ideals. As an
example, consider the ideal membership problem: If I ⊂ k[x1, . . . , xn] is a
monomial ideal, given by monomial generators m1, . . . , mr, a term is contained
in I iff it is divisible by at least one of the mi; an arbitrary polynomial g ∈
k[x1, . . . , xn] is contained in I iff all its terms are contained in I.

Example 2.1.1. In the following picture, we visualize the monomials in
k[x, y] via their exponent vectors. The monomials contained in the ideal
I = ⟨x3, xy⟩ correspond to the dots in the shaded region:

| | •
(3, 0)

• •

−

−

−

−

•
(1, 1)

• • •

• • • •

• • • •

• • • •

The monomials 1, x, x2 and all the powers of y are not contained in I. ⊓*

The first step in Gordan’s proof of Hilbert’s Basis Theorem 1.4.1 is to show
that monomial ideals are finitely generated (see Corollary 2.3.3 for the re-
maining part of the proof):

Exercise∗ 2.1.2 (Gordan’s Lemma). By induction on the number of vari-
ables, show that any nonempty set of monomials in k[x1, . . . , xn] has only
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finitely many minimal elements in the partial order given by divisibility
(xα ≥ xβ iff α−β ∈ Nn). Conclude that any monomial ideal I ⊂ k[x1, . . . , xn]
has finitely many monomial generators. ⊓*

The minimal elements in the sitation above are obtained from any set of mono-
mial generators by removing those generators which are divisible by others.
In this way, we obtain a uniquely determined set of monomial generators for
I, to which we refer as the minimal generators for I.

Exercise∗ 2.1.3. Let I and J be monomial ideals of k[x1, . . . , xn], given by
monomial generators m1, . . . , mr and n1 . . . , ns, respectively, and let m be a
monomial in k[x1, . . . , xn].

1. Show that

I ∩ J = ⟨LCM(mi, nj) | 1 ≤ i ≤ r, 1 ≤ j ≤ s⟩.

2. Show that I : m is generated by the monomials

LCM(mi, m)/m = mi/ GCD(mi, m), 1 ≤ i ≤ r.

In particular, I∩J and I : m are monomial ideals as well. The same is, hence,
true for I : J since I : J =

⋂s
k=1(I : nk) by part 3 of Exercise 1.3.3. ⊓*

Most of the terminology used when working with polynomials extends to
elements of free modules over polynomial rings. In what follows, let R =
k[x1, . . . , xn], and let F be a free R-module with a fixed basis {e1, . . . , es}.

Definition 2.1.4. A monomial in F , involving the basis element ei, is
a monomial in R times ei. A term in F is a monomial in F multiplied by a
coefficient c ∈ k. Every nonzero element f ∈ F can be uniquely expressed as
the sum of finitely many nonzero terms involving distinct monomials. These
terms (monomials) are called the terms (monomials) of f . ⊓*

To give an example, if F = k[x, y]3, and e1 = (1, 0, 0)t, e2 = (0, 1, 0)t, e3 =
(0, 0, 1)t are the canonical basis vectors, then

f :=

⎛

⎝
x2y + x2

1
x

⎞

⎠ = x2y · e1 + x2 · e1 + 1 · e2 + x · e3 ∈ F.

For terms in F , notions like multiple or divisible are defined in the obvious
way. For instance, the nonzero term cxαei is divisible by the nonzero term
dxβej , with quotient c/d xα−β ∈ R, if i = j and xα is divisible by xβ .
Furthermore, the least common multiple of two nonzero terms involving
the same basis element ei is defined by the formula

LCM(cxαei, dxβei) = LCM(xα, xβ) ei ∈ F.

If cxαei and dxβej involve distinct basis elements, we set
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LCM(cxαei, dxβej) = 0.

A submodule of F is a monomial submodule if it is generated by mono-
mials. It easily follows from Gordan’s lemma that every such submodule is
generated by finitely many monomials (see Exercise 1.10.9). As in the ideal
case, there ie a unique finite set of minimal generators. Moreover, mem-
bership in monomial submodules can be decided as for monomial ideals.

Exercise∗ 2.1.5. If I, J are monomial submodules of F , given by monomial
generators, and if m ∈ F is a term, show how to obtain monomial generators
for the submodule I ∩ J ⊂ F and the ideal I : m ⊂ R. ⊓*

2.2 Division with Remainder

Euclid’s division algorithm for polynomials in one variable, which we recall
now, relies on the fact that the monomials in k[x] and, thus, the terms of
every polynomial f ∈ k[x] \ {0} can be arranged unambiguously by degree.
In fact, for the division process, we write the terms of f in decreasing order
by degree, referring to the term of highest degree as the leading term. In the
discussion below, we denote this term by L(f).

Theorem 2.2.1 (Euclidean Division with Remainder). Let f be a
nonzero polynomial in k[x]. For every polynomial g ∈ k[x], there are uniquely
determined polynomials g1, h ∈ k[x] such that

g = g1f + h and deg h < deg f. ⊓*

Indeed, Euclid’s division algorithm finds the remainder h and the quotient
g1 by successively using f to cancel leading terms. We write this in pseudocode:

1. Set h := g and g1 := 0.
2. while

(
h ̸= 0 and L(h) is divisible by L(f)

)

• set h := h− L(h)
L(f)f and g1 := g1 + L(h)

L(f)f .
3. return(h, g1).

This process must terminate since, at each stage, the degree of the new divi-
dend is smaller than that of the preceeding dividend.

Remark 2.2.2. Euclidean division with remainder also works for univariate
polynomials with coefficients in a ring, provided the divisor f is monic. That
is, the coefficient of the leading term of f is 1. ⊓*
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Exercise 2.2.3 (Euclid’s GCD algorithm). If an expression g = g1f +
h as in Theorem 2.2.1 is given, show that GCD(f, g) = GCD(f, h) (here,
GCD refers to the monic greatest common divisor). Deduce Euclid’s classical
algorithm for computing GCD(f, g). Show how to extend this algorithm such
that it computes not only the GCD but also a representation

GCD(f, g) = sf + tg, where s, t ∈ k[x]. ⊓*

Euclidean division with remainder allows us to decide ideal membership in k[x]
as follows. If nonzero polynomials g, f1, . . . , fr ∈ k[x] are given, use Euclid’s
algorithm to compute f = GCD(f1, . . . , fr). Then ⟨f1, . . . , fr⟩ = ⟨f⟩, so that
g ∈ ⟨f1, . . . , fr⟩ iff the remainder of g on division by f is zero.

To solve the ideal membership problem for polynomials in more than one
variable in a similar way, we have to extend the division algorithm. Since for
n ≥ 2 not every ideal of k[x1, . . . , xn] is generated by just one element, we ask
for an algorithm which divides by several polynomials in k[x1, . . . , xn] instead
of a single polynomial. As in the case of one variable, we need to impose a
total order on the set of monomials in k[x1, . . . , xn] which allows us to single
out leading terms of polynomials. This has to be done with some care:

Example 2.2.4. If f1 = x2 + xy ∈ k[x, y], any polynomial g ∈ k[x, y] can
be written in the form g = g1f1 + h, where no term of h is a multiple of x2.
Similarly, we may use f2 = y2 + xy ∈ k[x, y] to cancel the multiples of y2.
It is not possible, however, to cancel the multiples of x2 and the multiples of
y2 simultaneously using f1 and f2: If every polynomial g ∈ k[x, y] could be
written in the form

g = g1f1 + g2f2 + h,

where no term of h is contained in the ideal ⟨x2, y2⟩, the monomials 1, x, y, xy
would represent generators for k[x, y]/⟨f1, f2⟩ as a k-vector space. Thus, by
Exercise 1.6.5, the locus of zeros of ⟨f1, f2⟩ in A2(k) would be finite. This is
impossible since this locus contains the line with equation x + y = 0.

The problem with choosing the leading terms x2 of f1 and y2 of f2 is that
this choice is not compatible with the multiplication in k[x, y] in the sense of
the following definition. ⊓*

Definition 2.2.5. A monomial order on k[x1, . . . , xn] is a total order > on
the set of monomials in k[x1, . . . , xn] such that if α,β, γ ∈ Nn, then

xα > xβ =⇒ xγxα > xγxβ . ⊓*

Example 2.2.6. The following are monomial orders on k[x1, . . . , xn]:

1. (Lexicographic order) Set

xα >lex xβ ⇐⇒ the first nonzero entry of α− β is positive.
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2. (Weight orders) If w = (w1, . . . , wn) : Rn → R is a linear form with
Q-linearly independent coefficients wi, set

xα >w xβ ⇐⇒ w(α) > w(β).

In this context, given a term cxα with 0 ̸= c ∈ k, we will occasionally
abuse notation by writing w(cxα) = w(α). ⊓*

Note that we have defined >lex such that the variables are ordered according
to their appearance when writing k[x1, . . . , xn]. For instance, in k[x, y, z],

x3 >lex xyz >lex x >lex y25 >lex y >lex z.

Given a monomial order > on k[x1, . . . , xn], we will abuse notation as follows:
If c, d ∈ k \ {0} are scalars and xα, xβ are monomials in k[x1, . . . , xn] such
that xα > xβ (or xα ≥ xβ), we will write cxα > dxβ (or cxα ≥ dxβ). In the
same spirit, we will occasionally speak of the maximum of a finite number of
nonzero terms (which is determined up to a scalar).

Definition 2.2.7. Let > be a monomial order on k[x1, . . . , xn], and let f ∈
k[x1, . . . , xn] be a nonzero polynomial. The leading term (or initial term)
of f with respect to >, written

L>(f) = L(f),

is the largest term of f with repect to >. By convention, L>(0) = L(0) = 0.
If L(f) = cxα, with c ∈ k, then c is called the leading coefficient of f and
xα is called the leading monomial of f . ⊓*

Remark 2.2.8. Since monomial orders are compatible with multiplication,

L(fg) = L(f)L(g)

for all f, g ∈ k[x1, . . . , xn]. Furthermore, if f , g, and f + g are nonzero, then

max{L(f),L(g)} ≥ L(f + g).

The inequality is strict iff L(f) and L(g) cancel each other in f + g. ⊓*

This shows that if L(h) is divisible by L(f), and if we think of computing
h− L(h)

L(f)f as a single step of a division process, then the new dividend in such a
step will be zero, or its leading term will be smaller than that of the preceeding
dividend. This does not imply, however, that the process terminates:

Example 2.2.9. In k[x], choose the terms of lowest degree as the leading
terms. Divide g = x by f = x − x2 using division steps as described above.
Then, the successive intermediate dividends are f = x − x2, x2, x3, . . . . ⊓*

Proposition 2.2.10. Let > be a monomial order on k[x1, . . . , xn]. Then the
following are equivalent:
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1. > is Artinian. That is, each nonempty set of monomials has a least
element with respect to >.

2. > is global. That is,

xi > 1 for i = 1, . . . , n.

3. > refines the partial order defined by divisibility. That is,

xα divisible by xβ =⇒ xα > xβ .

Proof. The only nontrivial part of the proof is to show that condition 3 implies
condition 1. If condition 3 holds, and X is a nonempty set of monomials, the
monomial ideal I = ⟨X⟩ ⊂ k[x1, . . . , xn] generated by X is, in fact, generated
by a finite subset Y of X due to Gordan’s lemma. Hence, every monomial in
X is divisible by a monomial in Y , and the least element of Y is the least
element of X . ⊓*

We use the word global to distinguish the monomial orders considered in this
chapter from those used in Section 4.4, where we will explain how to compute
in local rings. The lexicographic order is global. A weight order >w is global
iff the coefficients of w are strictly positive.

Exercise∗ 2.2.11. Let > be a monomial order on k[x1, . . . , xn], and let X
be a finite set of monomials in k[x1, . . . , xn]. Prove that there exists a weight
order >w on k[x1, . . . , xn] which coincides on X with the given order >. If >
is global, show that >w can be chosen to be global as well.
Hint. Consider the set of differences

{α− β | xα, xβ ∈ X, xα > xβ},

and show that its convex hull in Rn does not contain the origin. For the second
statement, add 1, x1, . . . , xn to X if necessary. ⊓*

We are, now, ready to extend the division algorithm. In several variables,
allowing several divisors, the result of the division process may depend on
some choices made in carrying out the process. For instance, if h is some
intermediate dividend, and f1, . . . , fr are the divisors, it may happen that
L(h) is divisible by more than one of the L(f)i, and any of these can be used
to cancel L(h). Our first version of the extended division algorithm avoids
such ambiguities. For us, this determinate version will be particularly useful
in relating Buchberger’s algorithm to syzygies (see Corollary 2.3.17).

Theorem 2.2.12 (Division with Remainder, Determinate Version).
Let > be a global monomial order on R = k[x1, . . . , xn], and let f1, . . . , fr ∈
R \ {0}. For every g ∈ R, there exists a uniquely determined expression

g = g1f1 + . . . + grfr + h, with g1, . . . , gr, h ∈ R,

and such that:
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(DD1) For i > j, no term of gi L(fi) is divisible by L(fj).
(DD2) For all i, no term of h is divisible by L(fi).

We call h the remainder of g on determinate division by f1, . . . , fr.

Proof. Uniqueness. Given any representation as in the assertion, conditions
(DD1) and (DD2) imply that the nonzero terms among the L(gifi) =
L(gi)L(fi) and L(h) involve different monomials. Hence, these terms do not
cancel with each other on the right hand side of the representation. If two
such representations for g ∈ R are given, their difference is a representation
for the zero polynomial satisfying (DD1) and (DD2). According to what we
just said, the difference must be the trivial representation.

Existence. The determinate division algorithm finds the desired rep-
resentation for g ∈ R as follows.

If f1, . . . , fr are terms, first remove any multiple of f1 from g. Then cancel
the remaining multiples of f2. Continue in this way until any multiple of any
fk has been removed.

If f1, . . . , fr are arbitrary, apply the above to g and L(f1), . . . ,L(fr). If

g =
r∑

i=1

gi L(fi) + h

is the resulting representation, then either g(1) := g −
∑r

i=1 gifi − h is zero,
and we are done, or L(g) > L(g(1)). By recursion, since > is Artinian, we may
assume in the latter case that g(1) has a representation g(1) =

∑r
i=1 g(1)

i fi +
h(1) satisfying (DD1) and (DD2). Then g =

∑r
i=1(gi + g(1)

i )fi + (h + h(1)) is
a representation for g satisfying (DD1) and (DD2). ⊓*

Conditions (DD1) and (DD2) are best understood by considering a partition
of the monomials in k[x1, . . . , xn] as in the following example:

Example 2.2.13. Let f1 = x2, f2 = xy +x ∈ k[x, y] with >lex. Then L(f1) =
f1 = x2 and L(f2) = xy. In the picture below, the monomials divisible by
L(f1) correspond to the dots in the region which is shaded in light grey:

| •
(2, 0)

• •

−

−

−

−

•
(1, 1)

• • •

• • • •

• • • •

• • • •

Given g ∈ k[x, y] and a representation g = g1f1 + g2f2 + h, condition (DD1)
means that that the monomials of g2L(f2) are represented in the region shaded
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in dark grey. Condition (DD2), in turn, requires that the monomials of h are
represented in the nonshaded region.

Dividing, for instance, g = x3 + x2y3 + xy2 by f1 and f2, we get:

g = (x + y3) · L(f1) + y · L(f2) + 0,

g(1) = g − (x + y3) · f1 − y · f2 = −xy = 0 · L(f1) − 1 · L(f2) + 0,

g(2) = g(1) + f2 = x = 0 · L(f1) + 0 · L(f2) + x,

and
g(3) = g(2) − x = 0.

Thus, the desired representation is

g = (x + y3) · f1 + (y − 1) · f2 + x. ⊓*

It should be particularly clear from the picture in the example above that con-
dition (DD1) makes the order in which f1, . . . , fr are listed play a crucial role
in the determinate division algorithm. We illustrate this by another example:

Example 2.2.14. Let f1 = x2y − y3, f2 = x3 ∈ k[x, y] with >lex. Then
L(f1) = x2y. For g = x3y, the determinate division algorithm proceeds as
follows:

x3y = x · L(f1) + 0 · L(f2) + 0,

g(1) = g − x · f1 = xy3 = 0 · L(f1) + 0 · L(f2) + xy3,

and
g(2) = g(1) − xy3 = g − x · f1 − xy3 = 0.

Thus, the desired representation is

x3y = x · (x2y − y3) + 0 · (x3) + xy3.

If we interchange f1 and f2, determinate division yields the expression

x3y = y · (x3) + 0 · (x2y − y3) + 0. ⊓*

Exercise 2.2.15. Define a global monomial order on k[x, y, z] yielding the
leading terms y of y − x2 and z of z − x3, and reconsider part 1 of Exercise
1.5.4. ⊓*

Remark 2.2.16 (Division with Remainder, Indeterminate Version).
With notation as in Theorem 2.2.12, the steps below describe a version of the
division algorithm which is indeterminate: the computed remainder depends
on the choices made in the while loop (termination follows once more from
the fact that a global monomial order is Artinian).

1. Set h := g and D := {f1, . . . , fr}.
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2. while
(
h ̸= 0 and D(h) := {f ∈ D | L(h) is divisible by L(f)} ̸= ∅

)

• choose f ∈ D(h);
• set h := h− L(h)

L(f)f .
3. return(h).

With some extra bookkeeping as in Euclid’s division algorithm, the algorithm
also returns polynomials g1, . . . , gr such that g = g1f1 + . . . + grfr + h. This
representation of g satisfies the conditions (ID1) and (ID2) below which are
weaker than the conditions (DD1) and (DD2), respectively:

(ID1) L(g) ≥ L(gifi) whenever both sides are nonzero.
(ID2) If h is nonzero, then L(h) is not divisible by any L(fi).

Each such representation is called a standard expression for g with re-
mainder h (in terms of the fi, with respect to >).

In practical terms, it is often useful to give up uniqueness and allow choices
to be made since some choices are more efficient than others. In fact, there
are various possible selection strategies for the division process. It is not clear
to us whether there is a “generally best” strategy. Typically, the selection of
the strategies depends on the particular application one has in mind.

A version of the division algorithm which is even more indeterminate is
discussed in the exercise below. ⊓*

Exercise 2.2.17. Show that we still get a division process which terminates
if, at each stage, we remove some term of the current dividend with the help of
some L(fi) by which it is divisible, and if we stop as soon as this is no longer
possible. Show that the resulting representation g = g1f1 + . . . + grfr + h
satisfies the conditions (ID1) and (DD2). ⊓*

Remark 2.2.18 (Leading Terms in Standard Expressions). If g is a
nonzero polynomial in k[x1, . . . , xn], and g = g1f1+. . .+grfr +h is a standard
expression, then L(g) is the maximum nonzero term among the L(gifi) =
L(gi)L(fi) and L(h) (the term is determined up to a scalar). Indeed, this
follows from condition (ID1) in conjunction with Remark 2.2.8. In particular,
if the remainder h is zero, then L(g) is divisible by one of L(f1), . . . ,L(fr).
We, then, write

L(g) = max{L(g1)L(f1), . . . ,L(gr)L(fr)} ∈ ⟨L(f1), . . . ,L(fr)⟩. ⊓*

Our goal in this chapter is to develop the computational concepts not only for
polynomial rings, but also for free modules over polynomial rings. In extending
division with remainder to free modules, we write R = k[x1, . . . , xn], and
consider a free R-module F with a fixed basis {e1, . . . , es}.
Definition 2.2.19. A monomial order on F is a total order > on the set
of monomials in F such that if xαei and xβej are monomials in F , and xγ is
a monomial in R, then

xαei > xβej =⇒ xγxαei > xγxβej . ⊓*
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In this book, we require in addition that

xαei > xβei ⇐⇒ xαej > xβej for all i, j.

Then > induces a unique monomial order on R in the obvious way, and we
say that > is global if the induced order on R is global.

Remark 2.2.20. One way of getting a monomial order on F is to pick a
monomial order > on R, and extend it to F . For instance, setting

xαei > xβej ⇐⇒ xα > xβ or (xα = xβ and i > j)

gives priority to the monomials in R, whereas the order defined below gives
priority to the components of F :

xαei > xβej ⇐⇒ i > j or (i = j and xα > xβ). ⊓*

Exercise∗ 2.2.21 (Division with Remainder in Free Modules). Start-
ing with determinate division with remainder, rewrite our discussion on the
division process such that it applies to elements of the free module F . Extend
the relevant definitions and results from R to F . ⊓*

Exercise 2.2.22. Consider F = k[x, y]3 with its canonical basis and the vec-
tors

g =

⎛

⎝
x2y + x2 + xy2 + xy

xy2 − 1
xy + y2

⎞

⎠ , f1 =

⎛

⎝
xy + x

0
y

⎞

⎠ , f2 =

⎛

⎝
0
y2

x + 1

⎞

⎠ ∈ F.

Extend >lex on k[x, y] to F in the two ways described in Remark 2.2.20. With
respect to both orders, find L(g), L(f1), and L(f2), and divide g by f1 and
f2 (use the determinate division algorithm). ⊓*

2.3 Gröbner Bases and Buchberger’s Algorithm

In Example 2.2.14, with f1 = x2y−y3 and f2 = x3, we computed the standard
expressions

x3y = x · f1 + 0 · f2 + xy3

and
x3y = y · f2 + 0 · f1 + 0,

which, in particular, have two different remainders. The problem with the
first standard expression is that x3y and, thus, xy3 are contained in the ideal
⟨x2y − y3, x3⟩, but xy3 cannot be removed in the division process since it
is not divisible by any of the leading terms x2y and x3 of the divisors. To
decide ideal membership, we need to be able to cancel any leading term of
any element of I, using the leading terms of the divisors.

Based on this consideration, we make the following definition:
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Definition 2.3.1. Let F be a free k[x1, . . . , xn]-module with a fixed finite
basis, let > be a global monomial order on F , and let I ⊂ F be a submodule.

1. The leading submodule (or initial submodule) of I is the monomial
submodule

L(I) := L>(I) :=
〈
L>(f)

∣∣ f ∈ I
〉
⊂ F.

That is, L(I) is generated by the leading terms of the elements of I. In
the special case where I is an ideal of k[x1, . . . , xn], we refer to L(I) as
the leading ideal (or initial ideal) of I.

2. A finite subset G = {f1, . . . , fr} of I is a Gröbner basis for I if

L>(I) =
〈
L>(f1), . . . ,L>(fr)

〉
.

That is, the leading submodule of I is generated by the leading terms of
the elements of G.

For simplicity, we will say that a finite subset G of F is a Gröbner basis if
it is a Gröbner basis for the submodule it generates. ⊓*
Our terminology in the definition above is somewhat inaccurate in that we
should have written leading module with respect to > and Gröbner basis with
respect to >. Indeed, leading modules depend on the choice of the monomial
order. Furthermore, if G is a Gröbner basis with respect to >, and if >′ is
another monomial order, then G may fail to be a Gröbner basis with respect to
>′. See Exercise 2.5.6 below for a simple example. For the rest of this section,
> will be a fixed global monomial order on a free k[x1, . . . , xn]-module F with
a fixed finite basis.

In contrast to the polynomials f1, f2 in Example 2.2.14, the elements of a
Gröbner basis behave well under division with remainder and can, thus, be
used to decide ideal and submodule membership:
Proposition 2.3.2. Let {f1, . . . , fr} ⊂ F \ {0} be a Gröbner basis for the
submodule I := ⟨f1, . . . , fr⟩ ⊂ F . If g =

∑r
i=1 gifi+h is a standard expression

for an element g ∈ F , then g ∈ I iff the remainder h is zero.

Proof. If h is zero, then clearly g ∈ I. Conversely, if g ∈ I, then h ∈ I, which
implies that L(h) ∈ L(I) = ⟨L(f1), . . . ,L(fr)⟩. So L(h) and, thus, h are zero
by condition (ID2) on the remainder of a standard expression. ⊓*
Corollary 2.3.3 (Gordan). Every submodule I ⊂ F has a Gröbner ba-
sis. Furthermore, the elements of any such basis generate I. In particular,
k[x1, . . . , xn] is Noetherian.

Proof. As remarked earlier, it follows from Gordan’s lemma that every mono-
mial submodule of F is generated by finitely many monomials. In partic-
ular, there are finitely many elements f1, . . . , fr ∈ I such that L(I) =
⟨L(f1), . . . ,L(fr)⟩. That is, f1, . . . , fr form a Gröbner basis for I. If G ⊂ F \{0}
is any such basis, and g ∈ I is any element, division with remainder yields a
standard expression for g in terms of the elements of G whose remainder is
zero (apply Proposition 2.3.2). In particular, I is generated by G. ⊓*
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Remark 2.3.4. Gordan’s proof has as every other proof of Hilbert’s basis the-
orem two ingredients, namely induction on the number of variables (here used
to verify Gordan’s Lemma 2.1.2) and division with remainder. The advantage
of Gordan’s proof is that it separates these ingredients. ⊓*

Macaulay (1927) used the idea of obtaining information on an ideal from
information on its leading ideal to classify Hilbert functions (see Section 6.4
for Hilbert functions). On his way, he proved the following crucial result:

Theorem-Definition 2.3.5 (Macaulay). If I ⊂ F is a submodule, the mo-
nomials not contained in L>(I) represent a k-vector space basis for F/I. We
refer to these monomials as standard monomials (for I, with respect to >).

Proof. Let

B := {m + I | m ∈ F a standard monomial} ⊂ F/I.

To show that the elements of B are k-linearly independent, consider a k-linear
combination g of standard monomials such that the residue class g+I is zero.
Then g ∈ I, so that L(g) ∈ L(I). Since L(g) is a scalar times a standard
monomial, this implies 0 = L(g) = g by the very definition of the standard
monomials.

To show that the elements of B generate F/I as a k-vector space, consider
any element g ∈ F . Choose elements f1, . . . , fr ∈ F \{0} which form a Gröbner
basis for I, and let g =

∑r
i=1 gifi + h be a standard expression satisfying

condition (DD2) of determinate division with remainder. Then no term of h
is in ⟨L(f1), . . . ,L(fr)⟩ = L(I). Hence, the residue class g + I = h + I is a
k-linear combination of the elements of B, as desired. ⊓*

Remark-Definition 2.3.6. In the situation of Macaulay’s theorem, given
g ∈ F , the remainder h in a standard expression g =

∑r
i=1 gifi + h satisfying

(DD2) is uniquely determined by g, I, and > (and does not depend on the
choice of Gröbner basis). It represents the residue class g + I ∈ F/I in terms
of the standard monomials. We write NF(g, I) = h and call NF(g, I) the
canonical representative of g + I ∈ F/I (or the normal form of g mod
I), with respect to >. ⊓*

If a Gröbner basis for an ideal I of k[x1, . . . , xn] is given, we may use normal
forms to perform the sum and product operations in k[x1, . . . , xn]/I (this is
Buchberger’s original application of Gröbner bases):

Exercise∗ 2.3.7. Let I ⊂ k[x1, . . . , xn] be an ideal. If f, g ∈ k[x1, . . . , xn],
show that

NF(f + g, I) = NF(f, I) + NF(g, I), and

NF(f · g, I) = NF(NF(f, I) · NF(g, I), I). ⊓*
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Following these first indications of the usefulness of Gröbner bases, we, now,
treat their computation.

In principle, finding a Gröbner basis for a submodule I = ⟨f1, . . . , fr⟩ ⊂ F
amounts to adding suitable elements of I to f1, . . . , fr such that, eventually,
the leading terms of the resulting set of generators for I generate L(I). A pos-
sible approach to detecting new leading terms is to form k[x1, . . . , xn]-linear
combinations of f1, . . . , fr and divide them by f1, . . . , fr. Then the remainder
is an element of I, and is either zero, or its leading term is not divisible by any
of the L(fi). In the simplest possible case, we face combinations gifi + gjfj

involving just two of the generators. To increase our chances of getting a
nonzero remainder in this case, we choose gi and gj such that L(gifi) and
L(gjfj) cancel each other in gifi + gjfj :

Definition 2.3.8. Let f1, . . . , fr ∈ F be nonzero polynomial vectors. For each
pair of indices i, j, the S-vector S(fi, fj) ∈ F is defined by setting

S(fi, fj) = mjifi −mijfj ∈ F,

where
mij = LCM(L(fi),L(fj))/L(fj) ∈ k[x1, . . . , xn].

In the special case where F is the polynomial ring, we say that S(fi, fj) is an
S-polynomial. ⊓*
As it turns out, the division of S-vectors by f1, . . . , fr suffices to decide whether
f1, . . . , fr form a Gröbner basis. Since S(fi, fj) = − S(fj , fi) for all i, j, we
only need to consider the S(fi, fj) with j < i. In fact, we can do even better:
For i = 2, . . . , r, let Mi be the monomial ideal

Mi = ⟨L(f1), . . . ,L(fi−1)⟩ : L(fi) ⊂ k[x1, . . . , xn].

Then, by Exercises 2.1.3 and 2.1.5, Mi is generated by the terms

mji = LCM(L(fj),L(fi))/L(fi), j < i.

For every i and every minimal monomial generator xα for Mi, choose an index
j = j(i,α) < i such that mji = cxα for some nonzero scalar c ∈ k. Moreover,
choose a standard expression for S(fi, fj) in terms of the fk with remainder
hi,α (we suppress the index j in our notation).

Theorem 2.3.9 (Buchberger’s Criterion). Let f1, . . . , fr ∈ F be nonzero
polynomial vectors. With notation as above, f1, . . . , fr form a Gröbner basis
iff all remainders hi,α are zero. ⊓*
In the situation of the criterion, we refer to the selection of the indices j =
j(i,α) together with the computation of the remainders hi,α as Buchberger’s
test. It is clear from the criterion that the amount of computation needed for
the test depends in a crucial way on the order in which we list f1, . . . , fr.

Before proving the criterion, we illustrate it by an example. Also, we show
how to use the criterion for computing Gröbner bases. For the example, recall
that a k × k minor of a matrix is the determinant of a k × k submatrix.
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Example 2.3.10. Consider the ideal generated by the 3 × 3 minors of the
matrix ⎛

⎝
x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

z1 z2 z3 z4 z5

⎞

⎠

and the lexicographic order on k[x1, . . . , z5]. The leading terms of the minors
and the minimal generators for the corresponding monomial ideals Mi are:

x1y2z3

x1y2z4 M2 = ⟨z3⟩
x1y3z4 M3 = ⟨y2⟩
x2y3z4 M4 = ⟨x1⟩
x1y2z5 M5 = ⟨z3, z4⟩
x1y3z5 M6 = ⟨y2, z4⟩
x2y3z5 M7 = ⟨x1, z4⟩
x1y4z5 M8 = ⟨y2, y3⟩
x2y4z5 M9 = ⟨x1, y3⟩
x3y4z5 M10 = ⟨x1, x2⟩

So only 15 out of
(10

2

)
= 45 S-vectors are needed in Buchberger’s test. The

test shows that the minors form a Gröbner basis (we will work this out in
Exercise 2.3.21): ⊓*

The proof of our next result consists of Buchberger’s algorithm for com-
puting Gröbner bases:

Corollary 2.3.11. Given polynomial vectors f1, . . . , fr ∈ F \ {0}, a Gröbner
basis for I := ⟨f1, . . . , fr⟩ ⊂ F can be computed in finitely many steps.

Proof. If f1, . . . , fr satisfy Buchberger’s criterion, we are done. Otherwise,
Buchberger’s test yields a remainder 0 ̸= h ∈ I with L(h) /∈ ⟨L(f1), . . . ,L(fr)⟩.
That is, ⟨L(f1), . . . ,L(fr)⟩ ! ⟨L(f1), . . . ,L(fr),L(h)⟩. In this case, add
fr+1 := h to the set of generators, and start over again. After finitely steps, the
resulting process must terminate with a Gröbner basis f1, . . . , fr, fr+1, . . . , fr′

for I. Indeed, as a consequence of Gordan’s lemma, every ascending chain of
(monomial) submodules of F is eventually stationary. ⊓*

Example 2.3.12. Let f1 = x2, f2 = xy−y2 ∈ k[x, y] with >lex. Then L(f2) =
xy and M2 = ⟨x⟩. We compute the standard expression

S(f2, f1) = x · f2 − y · f1 = −xy2 = 0 · f1 − y · f2 − y3,

and add the nonzero remainder f3 := −y3 to the set of generators. Then
M3 = ⟨x2, x⟩ = ⟨x⟩. Computing the standard expression

S(f3, f2) = x · f3 + y2 · f2 = −y4 = 0 · f1 + 0 · f2 + y · f3
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with remainder zero, we find that f1, f2, f3 form a Gröbner basis for the ideal
I = ⟨f1, f2⟩.

We visualize, once more, the monomials in k[x, y]:

| •
(2, 0)

• •

−

−

•(0, 3)

•

•
(1, 1)

• • •

• • • •

• • • •

• • • •

The dots in the shaded region correspond to the monomials in the ideal L(I)
which is minimally generated by y3, xy, and x2. The monomials 1, x, y, y2

respresented outside the shaded region are the standard monomials. Due to
Macaulay’s Theorem 2.3.5, their residue classes form a k-vector space basis
for k[x, y]/I. Hence, every class g + I ∈ k[x, y]/I is canonically represented by
a uniquely determined k-linear combination a + bx + cy + dy2 (see Remark
2.3.6). To add and multiply residue classes, we add and multiply the canonical
representatives according to the rules in Exercise 2.3.7. The multiplication in
k[x, y]/I is, thus, determined by the following table (we write f = f + I):

· 1 x y y2

1 1 x y y2

x x 0 y2 0
y y y2 y2 0
y2 y2 0 0 0 ⊓*

Exercise 2.3.13. Let f1 = x2y−y3, f2 = x3 ∈ k[x, y] with >lex as in Example
2.2.14. Compute a Gröbner basis for the ideal I = ⟨f1, f2⟩. Visualize the
monomials in L(I), and compute a multiplication table for k[x, y]/I. ⊓*

In general, the products in a multiplication table as above are not represented
by terms only:

Exercise 2.3.14. A polynomial in k[x1, . . . , xn] is called a binomial if it has
at most two terms. An ideal of k[x1, . . . , xn] is called a binomial ideal if it
is generated by binomials.

Now let > be any global monomial order on k[x1, . . . , xn]. Show that the
following conditions on an ideal I ⊂ k[x1, . . . , xn] are equivalent:

1. I is a binomial ideal.
2. I has a binomial Gröbner basis, that is, a Gröbner basis consisting of

binomials.
3. The normal form mod I of any monomial is a term.
4. The multiplication table of k[x1, . . . , xn]/I consists of terms only.
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See Eisenbud and Sturmfels (1996) for more on binomial ideals. ⊓*

We, next, prove Buchberger’s criterion. For this, recall that the S-vectors are
designed to cancel leading terms:

mjiL(fi) −mijL(fj) = 0. (2.2)

Rewriting the standard expressions

S(fi, fj) = g(ij)
1 f1 + . . . + g(ij)

r fr + 0

with remainder zero as

−g(ij)
1 f1− · · ·+(−mij−g(ij)

j )fj− · · ·+(mji−g(ij)
i )fi− · · ·−g(ij)

r fr = 0, (2.3)

we may rephrase Buchberger’s criterion by saying that f1, . . . , fr form a
Gröbner basis iff every relation of type (2.2) considered in Buchberger’s test
“lifts” to a relation of type (2.3) such that L(S(fi, fj)) ≥ L(g(ij)

k fk) whenever
both sides are nonzero.

In general, we think of a relation

g1f1 + · · · + grfr = 0 ∈ F

as a column vector (g1, . . . , gr)t ∈ k[x1, . . . , xn]r, and call it a syzygy on
f1, . . . , fr:

Definition 2.3.15. Let R be a ring, let M be an R-module, and let f1, . . . , fr ∈
M . A syzygy on f1, . . . , fr is an element of the kernel of the homomorphism

φ : Rr → M, ϵi '→ fi,

where {ϵ1, . . . , ϵr} is the canonical basis of Rr. We call kerφ the (first) syzygy
module of f1, . . . , fr, written

Syz (f1, . . . , fr) = kerφ.

If Syz (f1, . . . , fr) is finitely generated, we regard the elements of a given finite
set of generators for it as the columns of a matrix which we call a syzygy
matrix of f1, . . . , fr. ⊓*

Exercise 2.3.16. Determine a syzygy matrix of x, y, z ∈ k[x, y, z]. ⊓*

To handle the syzygies on the elements f1, . . . , fr of a Gröbner basis, we con-
sider the free module F1 = k[x1, . . . , xn]r with its canonical basis {ϵ1, . . . , ϵr}
and the induced monomial order >1 on F1 defined by setting

xαϵi >1 xβϵj ⇐⇒ xαL(fi) > xβL(fj), or
xαL(fi) = xβL(fj) (up to a scalar) and i > j.
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Note that >1 is global if this is true for > (what we suppose, here).

Proof of Buchberger’s criterion. Write R = k[x1, . . . , xn] and I =
⟨f1, . . . , fr⟩ ⊂ F . If f1, . . . , fr form a Gröbner basis for I, all remainders
hi,α are zero by Proposition 2.3.2. Indeed, the S-vectors are contained in I.

Conversely, suppose that all the hi,α are zero. Then, for every pair (i,α),
we have a standard expression of type

S(fi, fj) = g(ij)
1 f1 + . . . + g(ij)

r fr + 0,

where j = j(i,α) < i is as selected in Buchberger’s test. Let

G(i,α) := (−g(ij)
1 , . . . ,−mij − g(ij)

j , . . . , mji − g(ij)
i , . . . ,−g(ij)

r )t ∈ F1 = Rr

be the corresponding syzygy on f1, . . . , fr (we suppress the index j in our
notation on the left hand side). On F1, we consider the induced monomial
order. The leading term of G(i,α) with respect to this order is

L(G(i,α)) = mjiϵi.

Indeed,
mjiL(fi) = mijL(fj), but i > j,

and
mjiL(fi) > L(S(fi, fj)) ≥ L(g(ij)

k )L(fk)

whenever these leading terms are nonzero.
To prove that the fk form a Gröbner basis for I, let g be any nonzero

element of I, say g = a1f1 + . . . + arfr, where a1, . . . , ar ∈ k[x1, . . . , xn].
The key point of the proof is to replace this representation of g in terms of
the fk by a standard expression g =

∑r
k=1 gkfk (with remainder zero). The

result, then, follows by applying Remark 2.2.18 on leading terms in standard
expressions:

L(g) = max{L(g1)L(f1), . . . ,L(gr)L(fr)} ∈ ⟨L(f1), . . . ,L(fr)⟩.

To find the desired standard expression, we go back and forth between F1 = Rr

and F : Consider the polynomial vector A := (a1, . . . , ar)t ∈ Rr, and let
G = (g1, . . . , gr)t ∈ Rr be the remainder of A under determinate division by
the G(i,α) (listed in some order). Then

g = a1f1 + . . . + arfr = g1f1 + . . . + grfr (2.4)

since the G(i,α) are syzygies on f1, . . . , fr. We show that the right hand side of
(2.4) satisfies condition (DD1) of determinate division by the fk (in particular,
it is a standard expression). Suppose the contrary. Then there is a pair k < i
such that one of the terms of gi L(fi) is divisible by L(fk). In turn, one of the
terms of gi is contained in the monomial ideal
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Mi = ⟨L(f1), . . . ,L(fi−1)⟩ : L(fi) ⊂ R

which is generated by the mji selected in Buchberger’s test. In F1, this means
that one of the terms of G is divisible by some mjiϵi = L(G(i,α)), contradicting
the fact that according to how we found G, the terms of G satisfy condition
(DD2) of determinate division by the G(i,α) in F1. ⊓*

Corollary 2.3.17. If f1, . . . , fr ∈ F \{0} form a Gröbner basis with respect to
>, the G(i,α) considered in the proof of Buchberger’s criterion form a Gröbner
basis for the syzygy module Syz (f1, . . . , fr) with respect to the induced mono-
mial order. In particular, the G(i,α) generate the syzygies on f1, . . . , fr.

Proof. Let A ∈ Rr be an arbitrary syzygy on f1, . . . , fr, and let G =
(g1, . . . , gr) ∈ Rr be the remainder of A under determinate division by the
G(i,α) (listed in some order). Then, since A and the G(i,α) are syzygies on
f1, . . . , fr, the same must be true for G:

0 = g1f1 + . . . + grfr.

Furthermore, as shown in the proof of Buchberger’s criterion, the gi satisfy
condition (DD1) of determinate division by f1, . . . , fr. Since standard expres-
sions under determinate division are uniquely determined, the gi and, thus,
G must be zero. Taking, once more, Remark 2.2.18 into account, we find that
L(A) is divisible by some L(G(i,α)). The result follows. ⊓*

Remark 2.3.18. The S in S-vector stands for syzygy. In fact, the relations

mjiL(fi) −mijL(fj) = 0 (2.5)

corresponding to the S-vectors S(fi, fj) generate Syz (L(f1), . . . ,L(fr)). In our
version of Buchberger’s test, selecting the mji for all i means that we select a
subspace X ⊂ {S(fi, fj) | j < i} such that the relations (2.5) corresponding
to the S-vectors in X still generate Syz (L(f1), . . . ,L(fr)). It is this property
of X on which our proof of Buchberger’s criterion is based. Hence, in stating
the criterion, we can choose any set of S-vectors satisfying this property. ⊓*

Remark 2.3.19. Let f1, . . . , fr ∈ F \ {0}, and let I = ⟨f1, . . . , fr⟩ ⊂ F . If
we compute a Gröbner basis f1, . . . , fr, fr+1, . . . , fr′ for I using Buchberger’s
algorithm, the syzygies G(i,α) generating Syz (f1, . . . , fr, fr+1, . . . , fr′) are ob-
tained in two ways. Either, G(i,α) arises from a division leading to a new
generator fk, k ≥ r + 1:

S(fi, fj) = g(ij)
1 f1 + . . . + g(ij)

k−1fk−1 + fk.

Or, G(i,α) arises from a division with remainder zero:

S(fi, fj) = g(ij)
1 f1 + . . . + g(ij)

ℓ fℓ + 0. ⊓*



2.3 Gröbner Bases and Buchberger’s Algorithm 67

Example 2.3.20. In Example 2.3.12, the matrix
⎛

⎝
−y 0

x + y y2

−1 x − y

⎞

⎠

is a syzygy matrix of f1 = x2, f2 = xy − y2, f3 = −y3 ∈ k[x, y]. ⊓*

Exercise 2.3.21. Consider the ideal generated by the 3 × 3 minors of the
matrix ⎛

⎝
x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

z1 z2 z3 z4 z5

⎞

⎠

and the lexicographic order on k[x1, . . . , z5] as in Example 2.3.10. Prove that
the minors form a Gröbner basis, and show that their syzygy module is gen-
erated by 15 elements. Referring to the syzygies on these 15 (first order)
syzygies as the second order syzygies on the minors, how many elements of
k[x1, . . . , z5]15 do we need to generate the second order syzygies?
Hint. In this example, lengthy computations can be avoided by using Laplace
expansion. ⊓*

A Gröbner basis {f1, . . . , fr} ⊂ F computed with Buchberger’s algorithm
quite often contains elements whose leading terms are unneeded generators
for L(⟨f1, . . . , fr⟩). By eliminating superfluous generators and by adjusting
constants such that the coefficient of each leading term is 1, we get a mi-
nimal Gröbner basis, that is, a Gröbner basis whose leading terms are the
minimal generators for L(⟨f1, . . . , fr⟩). In addition, we may “reduce the tail”
of each element in the Gröbner basis:

Exercise∗ 2.3.22. A minimal Gröbner basis {f1, . . . , fr} ⊂ F is reduced if,
for i ̸= j, no term of fi is divisible by L(fj). Show that if ⟨0⟩ ̸= I ⊂ F is a
submodule, there is a uniquely determined reduced Gröbner basis for I with
respect to the given monomial order, namely

m1 −NF(m1, I), . . . , mr −NF(mr, I),

where m1, . . . , mr are the minimal generators for L(I). Explain how to com-
pute the reduced Gröbner basis from any given Gröbner basis. ⊓*

Remark 2.3.23. Buchberger’s algorithm generalizes both Gaussian elimina-
tion and Euclid’s GCD algorithm:

1. Given homogeneous degree-1 polynomials

fi = ai1x1 + · · · + ainxn ∈ k[x1, . . . , xn], i = 1, . . . , r,

let > be a global monomial order on k[x1, . . . , xn] such that x1 > · · · >
xn. Computing a minimal Gröbner basis for ⟨f1, . . . , fr⟩ amounts, then, to
transforming the coefficient matrix A = (aij) into a matrix in row echelon
form with pivots 1.



68 2 Gröbner Bases

2. In the case of one variable x, there is precisely one global monomial order:
· · · > x2 > x > 1. Given f1, f2 ∈ k[x], the reduced Gröbner basis for ⟨f1, f2⟩
with respect to this order consists of exactly one element, namely the greatest
common divisor GCD(f1, f2), and Buchberger’s algorithm takes precisely the
same steps as Euclid’s algorithm for computing the GCD. ⊓*

2.4 First Applications

As already remarked, division with remainder, Proposition 2.3.2, and Buch-
berger’s algorithm allow us to decide submodule (ideal) membership:

Algorithm 2.4.1 (Submodule Membership). Given a free module F
over k[x1, . . . , xn] with a fixed finite basis, and given nonzero elements g,
f1, . . . , fr ∈ F , decide whether

g ∈ I := ⟨f1, . . . , fr⟩ ⊂ F.

[If so, express g as a k[x1, . . . , xn]-linear combination

g = g1f1 + . . . + grfr.]

1. Compute a Gröbner basis f1, . . . , fr, fr+1, . . . , fr′ for I using Buchberger’s
algorithm. [Store each syzygy arising from a division which leads to a new
generator fk in Buchberger’s test.]

2. Compute a standard expression for g in terms of f1, . . . , fr′ with remainder
h (use the same global monomial order on F as in Step 1).

3. If h = 0, then g ∈ I. [In this case, for k = r′, . . . , r + 1, successively do
the following: in the standard expression computed in Step 2, replace fk

by the expression in terms of f1, . . . , fk−1 given by the syzygy leading to
fk in Step 1.] ⊓*

Example 2.4.2. In Example 2.3.12, we computed the lexicographic Gröbner
basis

f1 = x2, f2 = xy − y2, f3 = −y3

for the ideal I = ⟨f1, f2⟩ ⊂ k[x, y]. Dividing

g = x3 − x2 + xy2

by f1, f2, f3, we get the standard expression g = (x− 1) · f1 + y · f2 − f3 with
remainder zero. Hence, g ∈ I. Substituting, then, (x + y) · f2 − y · f1 for f3 in
the standard expression (see Example 2.3.20), we find that

g = (x − 1 + y) · f1 − x · f2. ⊓*
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Exercise∗ 2.4.3 (Equality of Submodules). Let F be a free k[x1, . . . , xn]-
module, and let I, J ⊂ F be submodules. Note that if I, J are monomial
submodules, then I = J iff I and J have the same minimal generators. Show
that if > is any global monomial order on F , then

I ⊂ J and L(I) = L(J) =⇒ I = J.

Finally, note that if I, J are arbitrary, then

I = J ⇐⇒ I = I + J and J = I + J.

.

⊓*

As already remarked earlier, Algorithm 2.4.1 can be used to decide solvability.
More generally, inspecting the Gröbner basis computed in the first step of the
algorithm, we get the following information on the set of solutions (see the
Nullstellensatz, Exercise 1.6.5, and Macaulay’s Theorem 2.3.5):

Remark 2.4.4. Let f1, . . . , fr ∈ k[x1, . . . , xn] \ {0}, let I := ⟨f1, . . . , fr⟩, and
let k be the algebraic closure of k. Then we can determine whether the system

f1(x1, . . . , xn) = 0, . . . , fr(x1, . . . , xn) = 0

has no solution in An(k), at most finitely many solutions in An(k), or infinitely
many solutions in An(k) by checking whether any monomial in x1, . . . , xn is
contained in L(I), at most finitely many monomials are not contained in L(I),
or infinitely many monomials are not contained in L(I). In terms of a Gröbner
basis G for I, the first condition means that at least one element of G is a
nonzero constant. The second condition means that, for any 1 ≤ i ≤ n, there
is an element of G whose leading monomial is of type xαi

i for some αi ≥ 1.

| • • •

−

−

•
•

• • • •

• • • •

• • • •

• • • •

Finitely many solutions.

| • • •

−

−

−

−

• • • •

• • • •

• • • •

• • • •

Infinitely many solutions.

Note that though our check gives a result over k, the actual Gröbner basis
computation is carried through over k (see Section 2.7 for more remarks on
the role of the ground field). ⊓*

Exercise∗ 2.4.5. If the system defined by f1, . . . , fr ∈ k[x1, . . . , xn] has only
finitely many solutions in An(k), prove that the number of these solutions
is at most dimk k[x1, . . . , xn]/⟨f1, . . . , fr⟩. That is, the number of monomials
not in L(f1, . . . , fr) is an upper bound for the number of solutions. Show that
these numbers are equal if ⟨f1, . . . , fr⟩ is a radical ideal. ⊓*
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Exercise 2.4.6. If I ⊂ Q[x, y, z] is the ideal generated by the polynomials

f1 = 3xz + 4x− 2y − z2 − 4z,
f2 = −2x + 3yz − 2y + 2z2 − z,
f3 = −3xy + 5x + 3y2 − y − 2z2 − 2z,

show that the reduced Gröbner basis for I with respect to >lex is given by
the polynomials

g1 = x − 1/12z4 + 1/3z3 + 1/12z2 − 4/3z,
g2 = y + 1/3z4 + 1/6z3 − 4/3z2 − 1/6z,
g3 = z5 − 5z3 + 4z.

Deduce from the new set of generators that the locus of zeros V(I) ⊂ A3(Q)
consists of precisely five points:

(0, 0, 0), (1, 1, 1), (−1, 1,−1), (1,−1, 2), (1, 1,−2).

Note that the number of solutions is exactly dimQ Q[x, y, z]/I: the five mono-
mials zi, 0 ≤ i ≤ 4, represent a Q-vector space basis for Q[x, y, z]/I. ⊓*

Exercise 2.4.7. If I ⊂ Q[x, y, z] is the ideal generated by the polynomials

f1 = x3 + y3 + z3 − 1,
f2 = x2 + y2 + z2 − 1,
f3 = x + y + z − 1,

show that the reduced Gröbner basis for I with respect to >lex is given by
the polynomials

g1 = x + y + z − 1
g2 = y2 + yz − y + z2 − z,
g3 = z3 − z2.

Conclude that dim Q Q[x, y, z]/I = 6 though there are only three solutions in
A3(Q):

(1, 0, 0), (0, 1, 0) , (0, 0, 1). ⊓*

We already know that Buchberger’s algorithm computes the syzygies on the
elements of a Gröbner basis (see Corollary 2.3.17). Based on this, we can
compute the syzygies on any given set of generators:

Algorithm 2.4.8 (Syzygy Modules). Given a free k[x1, . . . , xn]-module F
with a fixed finite basis and polynomial vectors f1, . . . , fr ∈ F \ {0}, compute
a syzygy matrix of f1, . . . , fr.

1. Compute a Gröbner basis f1, . . . , fr, fr+1,. . . , fr′ for ⟨f1, . . . , fr⟩ ⊂ F us-
ing Buchberger’s algorithm. On your way, store each syzygy on f1, . . . , fr′

obtained in Buchberger’s test. Let t be the number of these syzygies.



2.4 First Applications 71

2. Arrange the syzygies such that those obtained from a division leading to
a new generator fk are first (and those arising from a division with re-
mainder zero are second). Then the syzygies fit as columns into an r′ × t

matrix which has block form
(

A B
C D

)
, where C is an upper triangular

square matrix of size r′ − r with diagonal entries 1 (if signs are adjusted
appropriately).

3. The r × (t − r′ + r) matrix B −AC−1D is a syzygy matrix of f1, . . . , fr.

Proof (of correctness). By Corollary 2.3.17, the columns of
(

A B
C D

)
generate

all the syzygies on f1, . . . , fr, fr+1, . . . , fr′ . We multiply
(

A B
C D

)
with the in-

vertible t× t matrix
(

Er′−r −C−1D
0 Et−r′+r

)
, where Ej stands for the j × j identity

matrix. As a result, we obtain new generators for the syzygies, namely the

columns of the matrix M =
(

A B −AC−1D
C 0

)
. A k[x1, . . . , xn]-linear com-

bination of the columns of M defines a syzygy just on f1, . . . , fr iff its last
r′ − r entries are zero. It is, then, a k[x1, . . . , xn]-linear combination of the
last t − r′ + r columns of M since C has maximal rank. We conclude that
B −AC−1D is a syzygy matrix of f1, . . . , fr. ⊓*

Example 2.4.9. Recall from Exercise 2.3.20 how we computed the lexico-
graphic Gröbner basis f1 = x2, f2 = xy − y2, f3 = −y3 for the ideal
I = ⟨f1, f2⟩ ⊂ k[x, y]. With conventions as in Algorithm 2.4.8, the result-
ing syzygy matrix is

(
A B
C D

)
=

⎛

⎝
y 0

−x − y y2

1 x − y

⎞

⎠ .

Thus, Syz (f1, f2) is generated by the single syzygy
(

0
y2

)
−
(

y
−x− y

)
(x − y) =

(
−f2

f1

)
.

⊓*

We give two examples of how syzygy computations may be used to perform
operations on ideals (the same ideas work, more generally, for submodules
of free modules). We begin with ideal intersections (geometrically, with the
union of algebraic sets). The correctness of the algorithm is obvious.

Algorithm 2.4.10 (Ideal Intersection). Given ideals I = ⟨f1, . . . , fr⟩ and
J = ⟨g1, . . . , gs⟩ of R = k[x1, . . . , xn], compute generators for the intersection

I ∩ J.
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1. Compute the kernel of the map Rr+s+1 → R2 with matrix
(

f1 . . . fr 0 . . . 0 1
0 . . . 0 g1 . . . gs 1

)
.

That is, compute a syzygy matrix of the columns of the matrix.
2. The entries of the last row of the syzygy matrix generate I ∩ J . ⊓*

Now we deal with ideal quotients and saturation (geometrically, with the
Zariski closure of the difference of two algebraic sets):

Exercise∗ 2.4.11. Let I and J be ideals of k[x1, . . . , xn]. Design algorithms
for computing I : J and I : J∞.
Hint. For I : J , if I = ⟨f1, . . . , fr⟩ and J = ⟨g1, . . . , gs⟩, consider the matrix

⎛

⎜⎜⎜⎝

f1 . . . fr 0 . . . . . . 0 g1

0 . . . 0 f1 . . . fr 0 . . . 0 g2
...

. . .
...

0 . . . . . . 0 f1 . . . fr gs

⎞

⎟⎟⎟⎠
.

For I : J∞, proceed by iteration. ⊓*

The following exercise contains examples of how these algorithms work:

Exercise 2.4.12. Let k be infinite. Consider the ideal

I = ⟨xz − y2, x2 − y⟩ ⊂ k[x, y, z].

1. Observe that the line V(x, y) is contained in V(I) ⊂ A3(k).
2. Compute that I : ⟨x, y⟩ = I : ⟨x, y⟩∞ = I(C), where I(C) = ⟨x2−y, xy−z⟩

is the vanishing ideal of the twisted cubic curve C ⊂ A3(k).
3. Compute that I = ⟨x, y⟩ ∩ I(C). Conclude that this intersection is a pri-

mary decomposition of I and that V(I) = V(x, y)∪C is the decomposition
of V(I) into its irreducible components. ⊓*

The example in the exercise shows, in particular, that the intersection of two
varieties needs not be a variety.

Remark 2.4.13. The arguments used in the exercise are special to the case
I = ⟨xz − y2, x2 − y⟩. A more sytematic approach to decomposing ideals is
provided by a number of algorithms for computing radicals and, more gener-
ally, primary decomposition. These algorithms are quite involved. Typically,
they use Gröbner basis methods (or other means of manipulating ideals) to
reduce to the hypersurface case, and algorithms for square-free decomposition
and, more generally, polynomial factorization to settle the hypersurface case.
We will not discuss any details in this book. See Decker, Greuel, and Pfister
(1999) for a survey on algorithms for primary decomposition, and Kaltofen
(1982, 1990, 1992, 2003) for the history of polynomial factorization. ⊓*
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2.5 The Use of Different Monomial Orders

Buchberger’s algorithm requires the choice of a global monomial order. The
performance of the algorithm and the resulting Gröbner basis depend in a
crucial way on this choice. For most applications, in principle, any Gröbner
basis and, thus, any order will do. With regard to efficiency, however, the
global monomial order defined next appears to be best possible (see the dis-
cussion following Example 2.5.2 below and Bayer and Stillman (1987) for some
remarks in this direction):

Definition 2.5.1. We define the degree reverse lexicographic order on
k[x1, . . . , xn] by setting

xα >drlex xβ ⇐⇒ deg xα > deg xβ , or (deg xα = deg xβ and the
last nonzero entry of α− β ∈ Zn is negative).

This order is extended to free k[x1, . . . , xn]-modules as in Remark 2.2.20 (we
suggest to give priority to the monomials in k[x1, . . . , xn]). ⊓*

Note that as in the case of >lex, we have defined >drlex such that the vari-
ables are ordered according to their appearance when writing k[x1, . . . , xn].
In contrast to >lex, however, >drlex refines the partial order by total degree:

deg xα > deg xβ =⇒ xα >drlex xβ .

We will refer to this fact by saying that >drlex is degree-compatible.

Example 2.5.2. With respect to >lex and >drlex, the monomials of degree 2
in k[x, y, z] are ordered as follows:

x2 >lex xy >lex xz >lex y2 >lex yz >lex z2

and
x2 >drlex xy >drlex y2 >drlex xz >drlex yz >drlex z2. ⊓*

For monomials of the same degree, the difference between >lex and >drlex is
subtle but crucial. The use made of these orders relies on their key properties
(which, as we will see in Exercise 2.9.4, characterize >lex and >drlex among
all global monomial orders).

The key property of >drlex is: >drlex is degree-compatible, and if f ∈
k[x1, . . . , xn] is homogeneous, then

>drlex chooses the leading term of f in a subring k[x1, . . . , xk]
such that k is as small as possible.

This property has usually the effect that, compared to other global mono-
mial orders, the monomial ideals Mi in Buchberger’s test have fewer minimal
generators.

The key property of >lex is that the following holds for all f ∈ k[x1, . . . , xn]:
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L(f) ∈ k[xk+1, . . . , xn] for some k =⇒ f ∈ k[xk+1, . . . , xn].

This makes >lex useful for eliminating variables, an application of Buch-
berger’s algorithm which requires the computation of special Gröbner bases
and, thus, the choice of special monomial orders.

Definition 2.5.3. If I ⊂ k[x1, . . . , xn] is an ideal, its kth elimination ideal
is the ideal

Ik = I ∩ k[xk+1, . . . , xn]. ⊓*

In particular, I0 = I.

Algorithm 2.5.4 (Elimination Using >lex). Given I = ⟨f1, . . . , fr⟩ ⊂
k[x1, . . . , xn], compute all elimination ideals Ik.

1. Compute a Gröbner basis G for I with respect to >lex on k[x1, . . . , xn].
2. For any k, the elements g ∈ G with L(g) ∈ k[xk+1, . . . , xn] form a Gröbner

basis for Ik with respect to >lex on k[xk+1, . . . , xn].

Proof (of correctness). If f ∈ I ∩ k[xk+1, . . . , xn], then L(f) is divisible by
L(g) for some g ∈ G. Since f does not involve x1, . . . , xk, the same holds for
L(g) and, thus, also for g due to the key property of >lex. ⊓*

Example 2.5.5. Let I = ⟨f1, f2⟩ ⊂ k[x, y, z], with f1 = x2 − y, f2 = xy −
z. Then I is the vanishing ideal of the twisted cubic curve. We compute a
lexicographic Gröbner basis for I. To begin with, M2 = ⟨x2⟩ : xy = ⟨x⟩, and
we have the standard expression

S(f2, f1) = x(xy − z)− y(x2 − y) = −xz + y2 =: f3.

We add f3 to the set of generators. Then M3 = ⟨x2, xy⟩ : xz = ⟨x, y⟩, and we
have the standard expressions

S(f3, f1) = x(−xz + y2) + z(x2 − y) = xy2 − yz = y(xy − z)

and
S(f3, f2) = y(−xz + y2) + z(xy − z) = y3 − z2 =: f4.

In the next step, M4 = ⟨x2, xy, xz⟩ : y3 = ⟨x⟩, and

S(f4, f2) = x(y3 − z2) − y2(xy − z) = −xz2 + y2z = z(−xz + y2)

is a standard expression with remainder zero. Hence, f1, f2, f3, f4 form a
Gröbner basis for I.

We visualize the monomials in L(I) via their exponent vectors:
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The computaion shows that the elimination ideal I1 ⊂ k[y, z] is generated by
the polynomial f4 = y3 − z2. As will become clear in Section 2.6 below, the
geometric interpretation of this is:

In the yz-plane, the equation
f4 = 0 defines the image of the
twisted cubic curve V(f1, f2) un-
der the projection which sends
(a, b, c) to (b, c).

⊓*

Exercise 2.5.6. In the previous example, f1 = x2 − y, f2 = xy − z, −f3 =
xz − y2, and f4 = y3 − z3 form the reduced lexicographic Gröbner basis for
the ideal I = ⟨f1, f2⟩. In contrast, show that f1, f2, and f3 form the reduced
Gröbner basis with respect to >drlex. ⊓*

A single Gröbner basis computation with respect to >lex yields the whole flag
of elimination ideals Ik, k = 0, . . . , n− 1. If only one of the elimination ideals
is needed, other monomial orders are usually more effective.

Definition 2.5.7. A monomial order > on the polynomial ring

k[x, y] = k[x1, . . . , xn, y1, . . . ym]

is an elimination order with respect to x1, . . . , xn if the following holds for
all f ∈ k[x, y]:

L(f) ∈ k[y] =⇒ f ∈ k[y]. ⊓*



76 2 Gröbner Bases

Example 2.5.8. Let >1 on k[x] and >2 on k[y] be monomial orders. The
product order (or block order) > = (>1, >2) on k[x, y] is defined by

xαyγ > xβyδ ⇐⇒ xα >1 xβ , or (xα = xβ and yγ >2 yδ).

It is an elimination order with respect to x1, . . . , xn which is global if >1 and
>2 are global. Choosing >1 and >2 to be degree reverse lexicographic is often
most efficient. ⊓*

As for >lex, one shows:

Proposition 2.5.9 (Elimination). Let I ⊂ k[x, y] be an ideal, let > be a
global elimination order on k[x, y] with respect to x1, . . . , xn, and let G be a
Gröbner basis for I with respect to >. Then G ∩ k[y] is a Gröbner basis for
I ∩ k[y] with respect to the restriction of > to k[y]. ⊓*

Remark 2.5.10. Computing a Gröbner basis G for I with respect to an elim-
ination order may be costly. It is usually much faster to proceed along the
following lines. First, compute a Gröbner basis G′ for I with respect to >drlex.
Then apply a Gröbner walk algorithm which, starting from G′, approaches
the target Gröbner basis G in several steps, “walking” along a path through
the Gröbner fan of I (see Sturmfels (1996) for the Gröbner fan). In each
step, a Gröbner basis with respect to an “intermediate order” is computed.
There are several strategies for choosing the path through the Gröbner fan,
leading to different variants of the algorithm (see Decker and Lossen (2006)
and the references cited there). A completely different approach to computing
Gröbner bases with respect to slow orders makes use of Hilbert functions (see
Remark 6.4.44). ⊓*

As already indicated in Example 2.5.5, the geometric meaning of elimination
is projection. We will treat this systematically in Section 2.6 below. Applying
projection to the graph of an arbitrary morphism ϕ, given by polynomials
f1, . . . , fm ∈ k[x1, . . . , xn], we will find a way of computing the Zariski closure
of the image of a given algebraic set under ϕ. The corresponding algebraic
result is our next topic in this section. Rather than considering R-module
relations as in Definition 2.3.15, we are, now, interested in k-algebra relations:

Definition 2.5.11. Let S be a k-algebra, and let s1, . . . , sm be elements of
S. A k-algebra relation on s1, . . . , sm is a polynomial expression of type

∑
cαs

α1
1 · · · sαm

m = 0 ∈ S,

with coefficients cα ∈ k. Formally, consider a polynomial ring k[y1, . . . , ym] and
think of a k-algebra relation as an element of the kernel of the homomorphism

φ : k[y1, . . . , ym] → S, yi '→ si.

If only the trivial such relation exists, s1, . . . , sm are algebraically indepen-
dent over k. ⊓*
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Proposition 2.5.12 (Algebra Relations in Affine Rings). Let I be an
ideal of k[x1, . . . , xn], and let f1 = f1 + I, . . . , fm = fm + I ∈ k[x1, . . . , xn]/I.
Consider the homomorphism

φ : k[y1, . . . , ym] → S = k[x1, . . . , xn]/I, yi '→ f i.

If J is the ideal

J = I k[x, y] + ⟨f1 − y1, . . . , fm − ym⟩ ⊂ k[x, y],

then
kerφ = J ∩ k[y].

Proof. Let g ∈ k[y] ⊂ k[x, y]. To prove the assertion, we have to show:

g(f1, . . . , fm) ∈ I ⇐⇒ g ∈ J.

If g = h +
∑

gj(fj − yj) ∈ J , with h ∈ I k[x, y], then g(f1, . . . , fm) =
h(x1, . . . , xn, f1, . . . , fm) ∈ I k[x, y] ∩ k[x] = I.

For the converse, observe that substituting the fj − (fj − yj) for the yj in
g and expanding gives an expression of type

g(y) = g(f1, . . . , fm) +
∑

gj(fj − yj). ⊓*

Since we already know how to compute in affine rings, a particular application
of the proposition is a method for computing in the algebra k[f1, . . . , fm] ∼=
k[y1, . . . , ym]/ kerφ. Once we have the required Gröbner basis for J , we know,
in particular, whether kerφ = 0. That is, we can decide whether f1, . . . , fm

are algebraically independent over k. In addition, we can check whether φ is
surjective:

Exercise∗ 2.5.13 (Subalgebra Membership). With notation as above,
let g, f1, . . . , fm be elements k[x1, . . . , xn]/I, and let > be a global elimination
order on k[x, y] with respect to x1, . . . , xn. Show:

1. We have g ∈ k[f1, . . . , fm] iff the normal form h = NF(g, J) ∈ k[x, y] is
contained in k[y]. In this case, g = h(f1, . . . , fm) is a polynomial expres-
sion for g in terms of the fk.

2. The homomorphism φ : k[y1, . . . , ym] → k[x1, . . . , xn]/I is surjective iff
NF(xi, J) ∈ k[y] for i = 1, . . . , n. ⊓*

Exercise 2.5.14. 1. Compute the algebra relations on the polynomials

f1 = x2 + y2, f2 = x2y2, f3 = x3y − xy3 ∈ k[x, y].

2. Consider the polynomials

g = x4 + y4, g1 = x + y, g2 = xy ∈ k[x, y].

Show that g is contained in the subalgebra k[g1, g2] ⊂ k[x, y], and express
g as a polynomial in g1, g2.
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3. Consider the endomorphism φ of k[x1, x2, x3] defined by

x1 '→ x2x3, x2 '→ x1x3, x3 '→ x1x2.

Prove that φ induces an automorphism of

k[x1, x2, x3]/⟨x1x2x3 − 1⟩.

This means that the variety A = V(x1x2x3 − 1) ⊂ A3(k) admits a nonlin-
ear automorphism. Determine the fixed points of this automorphism. ⊓*

2.6 The Geometry of Elimination

To study the geometry of elimination, we consider the projection map

πk : An(k) → An−k(k), (a1, . . . , an) '→ (ak+1, . . . , an).

Let I ⊂ k[x1, . . . , xn] be an ideal, let

Ik = I ∩ k[xk+1, . . . , xn]

be its kth elimination ideal, and let A = V(I) ⊂ An(k). Then

πk(A) ⊂ V(Ik) ⊂ An−k(k). (2.6)

Indeed, every element f ∈ Ik ⊂ I vanishes on A and, thus, on πk(A). Note
that πk(A) may well be strictly contained in V(Ik). In fact, even over an
algebraically closed field, the image πk(A) needs not be Zariski closed:

Exercise 2.6.1. Let k be any field, and let I = ⟨xy − 1, y2 − z⟩ ⊂ k[x, y, z].
We project A = V(I) ⊂ A3(k) to the yz-plane: Apply Algorithm 2.5.4 to show
that I1 = ⟨y2 − z⟩ ⊂ k[y, z] is the first elimination ideal of I. Then note that
the origin o = (0, 0) is a point of V(I1) ⊂ A2(k) which has no preimage in A.

−→

⊓*
In Chapter 6, it will turn out that missing preimage points may be realized as
some sort of “points at infinity”. In fact, the idea of adding points at infinity
will lead us to the introduction of projective algebraic sets, and we will see in
Theorem 6.3.26 that the image of a projective algebraic set under a morphism
is always Zariski closed – provided we work over an algebraically closed field.
In the affine case, we have the following result:
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Theorem 2.6.2. With notation as at the beginning of this section, suppose
that k = k is algebraically closed. Then

πk(A) = V(Ik) ⊂ An−k(k).

That is, V(Ik) is the smallest algebraic subset of An−k(k) containing πk(A).

Proof. From (2.6), we have πk(A) ⊂ V(Ik), so that also πk(A) ⊂ V(Ik).
For the opposite inclusion, let f ∈ k[xk+1, . . . , xn] ⊂ k[x1, . . . , xn] be a

polynomial vanishing on πk(A) and, thus, on A. Then, by the Nullstellensatz,
fm ∈ I ∩ k[xk+1, . . . , xn] = Ik for some m ≥ 1. It follows that I(πk(A)) ⊂
rad Ik, so that

πk(A) = V(I(πk(A))) ⊃ V(rad Ik) = V(Ik). ⊓*

The theorem implies the following more general result:

Corollary 2.6.3. Let I ⊂ k[x] = k[x1, . . . , xn] be an ideal, let A = V(I) ⊂
An(k), and let

ϕ : A → Am(k), p '→ (f1(p), . . . , fm(p)),

be a morphism, given by polynomials f1, . . . , fm ∈ k[x]. Let J be the ideal

J = I k[x, y] + ⟨f1 − y1, . . . , fm − ym⟩ ⊂ k[x, y],

where y stands for the coordinate functions y1, . . . , ym on Am(k). If k = k is
algebraically closed, then

ϕ(A) = V(J ∩ k[y]) ⊂ Am(k).

Proof. If k is any field, the locus of zeros of J in An+m(k) is the graph of ϕ:

V(J) = {(p,ϕ(p)) | p ∈ A} ⊂ An+m(k).

Thus, if π : An+m(k) → Am(k), (p, q) '→ q, is projection onto the y-
components, then

ϕ(A) = π(V(J)) ⊂ V(J ∩ k[y]) ⊂ Am(k).

If k = k is algebraically closed, Theorem 2.6.2 implies that

ϕ(A) = π(V(J)) = V(J ∩K[y]). ⊓*

If k is not algebraically closed, the conclusions of Theorem 2.6.2 and Corollary
2.6.3 may fail (for instance, consider V(x2 + 1, y) ⊂ A2(R) and project to the
y-axis). They hold, however, under an additional hypothesis:
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Corollary 2.6.4. Let I, A,ϕ, and J be as in the preceeding corollary. If k is
not algebraically closed, suppose that A is Zariski dense in the locus of zeros
of I in An(k). Then

ϕ(A) = V(J ∩ k[y]) ⊂ Am(k).

Proof. We write V for taking loci of zeros over k and ϕ for the morphism
V(I) → Am(k) given by f1, . . . , fm.

From the proof of the preceeding corollary, we already know that

ϕ(A) ⊂ V(J ∩ K[y]) ⊂ Am(k).

To show that V(J∩K[y]) is the smallest algebraic subset of Am(k) containing
ϕ(A), let g ∈ k[y1, . . . , ym] be any polynomial vanishing on ϕ(A). Then the
polynomial g(f1, . . . , fm) ∈ k[x1, . . . , xn] vanishes on A and, thus, on V(I) ⊂
An(k) since A is Zariski dense in V(I). So g vanishes on ϕ(V(I)) ⊂ Am(k)
and, thus, on V(J ∩k[y]) by the preceeding corollary. In particular, g vanishes
on V(J ∩ k[y]). We conclude that every algebraic subset of Am(k) containing
ϕ(A) must contain V(J ∩ k[y]) as well. ⊓*

Remark 2.6.5. If k is infinite, then An(k) is Zariski dense in An(k). Indeed,
the same argument as in Exercise 1.2.1 shows that if f ∈ k[x1, . . . , xn] is a
polynomial vanishing on An(k), then f is zero. ⊓*

Exercise 2.6.6 (Steiner Roman Surface). Consider the real 2-sphere

S2 = V(x2
1 + x2

2 + x2
3 − 1) ⊂ A3(R)

and the morphism

ϕ : S2 → A3(R), (a1, a2, a3) '→ (a1a2, a1a3, a2a3).

Show that the hypersurface defined by the polynomial

f = y2
1y

2
2 + y2

1y
2
3 + y2

2y
2
3 − y1y2y3

is the smallest algebraic subset of A3(R) containing ϕ(S2). Show that ϕ(S2)
is not Zariski closed. Precisely, what zeros of f are not contained in ϕ(S2)?

In the analogous situation over C, show that ϕ is onto. ⊓*
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Definition 2.6.7. Let B ⊂ Am(k) be algebraic. A polynomial parametriza-
tion of B is a morphism

ϕ : An(k) → Am(k) such that ϕ(An(k)) = B. ⊓*

Example 2.6.8. Let k be infinite. As we already know, the map

A1(k) → C, a '→ (a, a2, a3),

is a polynomial parametrization of the twisted cubic curve C (in fact, it is
an isomorphism onto C). This fits well with the fact that the polynomials
y2 − xz, xy − z, x2 − y, t− x form a Gröbner basis for the ideal

J = ⟨x − t, y − t2, z − t3⟩ ⊂ k[t, x, y, z]

with respect to the product order (>1, >2), where >2 is the degree reverse
lexicographic order on k[x, y, z] (and >1 is the unique global monomial order
on k[t]). ⊓*

Exercise 2.6.9 (Whitney Umbrella). Show that the map

ϕ : A2(R) → A3(R), (a, b) '→ (ab, b, a2),

is a polynomial parametrization of the Whitney umbrella V(x2 − y2z) which
is not onto. Exactly, what points do not have a preimage?

In the analogous situation over C, show that ϕ is onto. ⊓*

Exercise 2.6.10. If chark ̸= 2, show that the circle

C = V(x2 + y2 − 1) ⊂ A2(k)

does not admit a polynomial parametrization. ⊓*

There is, however, a parametrization of the circle given by rational functions:
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Example 2.6.11 (Stereographic Projection). If char k ̸= 2, we construct
a rational parametrization of the circle C = V(x2 + y2−1) ⊂ A2(k) by means
of projecting C onto the x-axis, with p = (0, 1) as the projection center:

• p

•(x(t), y(t))

•
(t, 0)

'''''''''''''''''''''''''''''''''''''

If t ̸= 0, the line L through p and the point (t, 0) on the x-axis is given
by the equation y = − 1

t x + 1. It intersects C in p and one further point
(x(t), y(t)) ∈ C. The coordinate x(t) is obtained as the nonzero solution of
the equation x2 +(− 1

t x+1)2− 1 = x( t2+1
t2 x− 2

t ) = 0. Thus, the circle admits
the rational parametrization

(x(t), y(t)) = (
2t

t2 + 1
,
t2 − 1
t2 + 1

), t ∈ A1(k) \ V(t2 + 1).

Observe that the line through p and the origin is the y-axis. It intersects C
in p and the point (0,−1) which is also in the image of the parametrization:
(x(0), y(0)) = (0,−1). The point p itself has no preimage (again, we would
have to add some sort of “point at infinity” corresponding to the tangent line
to C at p). ⊓*

In defining rational functions and rational parametrizations formally, we make
use of the construction of the quotient field which we briefly recall, now (a
more general construction will be considered in Section 4.2):

Remark-Definition 2.6.12. If R is an integral domain, the relation on R×
(R \ {0}) defined by

(r, u) ∼ (r′, u′) ⇐⇒ ru′ − ur′ = 0

is an equivalence relation. We think of the equivalence class of (r, u) ∈ R ×
(R \ {0}) as a fraction, and denote it by r/u. The set Q(R) of all equivalence
classes becomes a field, with algebraic operations

r/u + r′/u′ = (u′r + ur′)/uu′ and r/u · r′/u′ = (rr′)/(uu′).
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We consider R as a subring of Q(R) by means of the natural ring monomor-
phism

R → Q(R), r '→ r/1,

and call Q(R) the quotient field of R. ⊓*
Applying this construction to the polynomial ring k[x1, . . . , xn], we get the
field k(x1, . . . , xn) of rational functions in x1, . . . , xn with coeffients in k.
Applying it to the coordinate ring of an affine variety V , which is an integral
domain by Proposition 1.7.2, we get the rational function field of V :

Definition 2.6.13. Let V ⊂ An(k) be a variety. The rational function field
of V , denoted k(V ), is defined to be

k(V ) = Q(k[V ]).

A rational function on V is an element f ∈ k(V ). ⊓*
According to the definition, a rational function on V is a fraction f = g/h
of two polynomial functions g, h ∈ k[V ], where h ̸= 0. Viewing f itself as a
function, however, has to be done with some care since the denominator h
may have zeros.
Definition 2.6.14. Let V ⊂ An(k) be a variety. A rational function f on V
is defined at a point p ∈ V (or regular at p) if there is a representation
f = g/h such that g, h ∈ k[V ] and h(p) ̸= 0. The set

dom(f) := {p ∈ V | f is defined at p}

is called the domain of definition of f . ⊓*

Proposition 2.6.15. Let V ⊂ An(k) be a variety, and let f ∈ k(V ). Then:

1. The domain dom(f) is open and dense in the Zariski topology on V .
2. If k = k is algebraically closed, then

dom(f) = V ⇐⇒ f ∈ k[V ].

In other words, a rational function f ∈ k(V ) is regular everywhere on V
iff f is a polynomial function on V .

Proof. Considering the ideal If of denominators of f ,

If = {h ∈ k[V ] | fh ∈ k[V ]}
= {h ∈ k[V ] | there is an expression f = g/h with g ∈ k[V ]} ∪ {0},

we find that
V \ dom(f) = VV (If )

is an algebraic subset of V . Hence, dom(f) is Zariski open and, being
nonempty, dense in the Zariski topology on V (see Proposition 1.11.8). Fur-
thermore, if k = k, then

dom(f) = V ⇐⇒ VV (If ) = ∅ ⇐⇒ 1 ∈ If ⇐⇒ f ∈ k[V ]

by the Nullstellensatz in k[V ] (see Exercise 1.11.7). ⊓*
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If p ∈ dom(f), the value f(p) := g(p)/h(p) ∈ k does not depend on the choice
of representation f = g/h with h(p) ̸= 0. We, hence, have a well-defined map

f : dom(f) → A1(k), p '→ f(p).

That the function f is not necessarily defined everywhere on V is usually
indicated by writing

f : V !!" A1(k).

Remark 2.6.16. If R is a UFD, every element f ∈ Q(R) admits a represen-
tation f = g/h such that g, h ∈ R are coprime. In such a representation, g
and h are uniquely determined up to common unit factors. ⊓*

Exercise 2.6.17. Show that

V = V(x1x2 − x3x4) ⊂ A4(k)

is a variety whose coordinate ring k[V ] is not a UFD. Write xi for the residue
class of xi in k[V ], and observe that the fractions x1/x3 and x4/x2 represent
the same rational function f on V . Show that there is no representation of f
as a fraction g/h such that h(p) ̸= 0 for all p ∈ dom(f). ⊓*

By definition, polynomial maps are maps whose components are polynomial
functions. Similarly, we use rational functions to define rational maps:

Remark-Definition 2.6.18. Let V ⊂ An(k) be a variety.

1. A rational map
ϕ : V !!" Am(k)

is a tuple (f1, . . . , fm) of rational functions fi ∈ k(V ). The domain of defi-
nition of ϕ, written dom(ϕ), is the set

dom(ϕ) =
m⋂

i=1

dom(fi).

This set is open and dense in the Zariski topology on V . Furthermore, we
have a well-defined map

ϕ : dom(ϕ) → Am(k), p '→ ϕ(p) := (f1(p), . . . , fm(p)).

If B ⊂ Am(k) is any subset, its preimage under ϕ is the set

ϕ−1(B) := {p ∈ dom(ϕ) | ϕ(p) ∈ B}.

2. If W ⊂ Am(k) is another variety, a rational map

ϕ : V !!" W

is a rational map V !!" Am(k) such that ϕ(dom(ϕ)) ⊂ W . ⊓*
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Exercise∗ 2.6.19. Let I ⊂ k[x1, . . . , xn] be a prime ideal, let V = V(I) ⊂
An(k) be the corresponding variety, and let ϕ : V !!" Am(k) be a rational
map given by rational functions fi = (gi + I)/(hi + I) ∈ k(V ), where the
gi, hi ∈ k[x1, . . . , xn]. Supposing that V is Zariski dense in the locus of zeros
of I in An(k), design an algorithm which computes the Zariski closure of
ϕ(dom(ϕ)) ⊂ Am(k).
Hint. Consider the ideal

J = I k[x, y] + ⟨h1y1 − g1, . . . , hmym − gm, zh− 1⟩ ⊂ k[x, y, z],

where z is an extra variable, and h = h1 · · ·hm. ⊓*

Exercise 2.6.20. Consider the rational map ϕ : A1(R) !!" A2(R) given by

x(t) =
−1024t3

256t4 + 32t2 + 1
and y(t) =

−2048t4 + 128t2

256t4 + 32t2 + 1
.

Compute the smallest algebraic subset of A2(R) containing ϕ(dom(ϕ)):

⊓*

By Theorem 1.11.13, the composite of two polynomial maps is again a polyno-
mial map. The attempt of formulating an analogous result for rational maps
reveals a difficulty which is caused by the fact that rational maps are not
really maps: the composite ψ ◦ ϕ of two rational maps ϕ : V !!" W and
ψ : W !!" X may not be defined. As a map in the usual sense, ψ ◦ ϕ should
be defined on ϕ−1(dom(ψ)) ∩ dom(ϕ). However, this set may well be empty.
For instance, consider the morphism ϕ : A1(k) → A2(k), a '→ (a, 0), and the
rational function ψ : A2(k) !!" A1(k) given by x/y.

On the algebraic side, arguing as in the proof of Proposition 1.11.12, we
obtain a well-defined k-algebra homomorphism

ϕ∗ : k[W ] → k(V ).

Indeed, let ϕ be given by a tupel (f1, . . . , fm) of rational functions on V . If
g ∈ k[W ], then g is a polynomial expression in the coordinate functions yi

on W . Substituting the fi for the yi, we get a rational function on V which
we take to be the image ϕ∗(g). The attempt of extending ϕ∗ to a k-algebra
homomorphism k(W ) → k(V ) reveals our problem again: we would like to
define the image of g/h ∈ k(W ) as the fraction ϕ∗(g)/ϕ∗(h); but this is not
possible if h is in the kernel of ϕ∗.
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Lemma-Definition 2.6.21. Let ϕ : V !!" W be a rational map between
affine varieties. Then the following are equivalent:

1. The image ϕ(dom(ϕ)) is Zariski dense in W .
2. The k-algebra homomorphism ϕ∗ : k[W ] → k(V ) defined above is injec-

tive.

If these conditions are satisfied, ϕ is called dominant.

Proof. If g ∈ k[W ], then

g ∈ kerϕ∗ ⇐⇒ ϕ(dom(ϕ)) ⊂ VW (g).

That is, ϕ∗ is not injective iff ϕ(dom(ϕ)) is contained in a proper algebraic
subset of W . ⊓*

Now, we can formulate a result for rational maps which is analogous to The-
orem 1.11.13 for polynomial maps:

Theorem 2.6.22. Let V ⊂ An(k) and W ⊂ Am(k) be subvarieties.

1. Every dominant rational map ϕ : V !!" W induces a k-algebra homomor-
phism

ϕ∗ : k(W ) → k(V ).

2. Conversely, if φ : k(W ) → k(V ) is a k-algebra homomorphism, there
exists a unique dominant rational map ϕ : V !!" W such that φ = ϕ∗.

3. Let ϕ : V !!" W be a dominant rational map. If X ⊂ Ar(k) is any variety,
and ψ : W !!" X is any rational map, given by a tupel (g1, . . . , gr) of
rational functions on W , the composition ψ ◦ ϕ : V !!" X is defined to
be the rational map given by the tupel (ϕ∗(g1), . . . ,ϕ∗(gr)). If, in addition,
ψ is dominant, then ψ ◦ ϕ is dominant, and

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗. ⊓*

Exercise∗ 2.6.23. Prove the theorem. ⊓*

Note that if ψ ◦ϕ is defined, then dom(ψ ◦ϕ) contains ϕ−1(dom(ψ)), but may
well be larger (see Exercise 2.6.26 below for examples).

According to our definition in Chapter 1, an isomorphism of algebraic sets
is a morphism admitting an inverse morphism. In the same spirit, we define:

Definition 2.6.24. A rational map ϕ : V !!" W of affine varieties is called a
birational map (or a birational equivalence) if it is dominant and admits
a rational inverse. That is, there is a dominant rational map ψ : W !!" V such
that ψ ◦ ϕ = idV and ϕ ◦ ψ = idW . We say that V and W are birationally
equivalent if there is a birational map V !!" W . ⊓*

Theorem 2.6.22 implies:
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Corollary 2.6.25. A dominant rational map ϕ : V → W of affine varieties is
birational iff ϕ∗ : k(W ) → k(V ) is an isomorphism of k-algebras. Two affine
varieties are birationally equivalent iff their function fields are isomorphic as
k-algebras. ⊓*

Exercise 2.6.26. Consider the polynomial parametrizations

A1(k) → V(y2 − x3) ⊂ A2(k), a '→ (a2, a3),

and
A1(k) → V(y2 − x3 − x2) ⊂ A2(k), a '→ (a2 − 1, a3 − a).

Show that each of the parametrizations admits a rational inverse. Use these
examples to show that the domain of definition of the composite ψ ◦ϕ of two
rational maps may be strictly larger than ϕ−1(dom(ψ)). ⊓*

Now, finally, we come to the definition of a rational parametrization:

Definition 2.6.27. Let W ⊂ Am(k) be a variety. A rational parametriza-
tion of W is a dominant rational map

ϕ : An(k) !!" W. ⊓*

Exercise 2.6.28. If char k ̸= 2, 3, find a rational parametrization of the affine
plane curve with equation y3 − 3x2y = (x2 + y2)2:

⊓*

Systematic ways of computing rational parametrizations of curves will be
discussed in Theorem 5.4.13, in Section 7.2, and in Chapter 8.

As already mentioned in Remark 1.2.6, most curves do not admit a rational
parametrization. Here is a first example:
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Example 2.6.29. Suppose that chark ̸= 2, 3. The affine plane curve with
equation

y2 = x3 + ax + b,

where a, b ∈ k, has a rational parametrization iff the discriminant D :=
4a2+27b3 is zero. This will follow from the general theory of curves developed
in Chapters 7 and 8 of this book. For an elementary proof based on Fermat’s
method of infinite descent, see Reid (1988). ⊓*

Remark 2.6.30. Suppose that k = k is algebraically closed. In this case, an
affine variety is called unirational if it admits a rational parametrization. It
is called rational if it is birationally equivalent to some affine space Ad(k).
We will show in Corollary 8.4.10 that every unirational curve is rational. This
result is also true for surfaces (see Barth et al (2004)), but fails to hold in
higher dimension (see Iskovskikh and Manin (1971) and Clemens and Griffiths
(1972)). ⊓*

2.7 The Role of the Ground Field

In the preceeding section, in proving results on the image of a morphism which
hold over an arbitrary field, we made use of a strategy which allows one to
benefit from Hilbert’s Nullstellensatz though this requires that the ground
field is algebraically closed. Namely, to study the set of solutions of a system
of polynomial equations with coefficients in k, one first investigates the locus
of zeros in An(K), where K is an algebraically closed extension field of k. Then,
in a second step, one studies the solutions in An(k) as a subset of those in
An(K). In this book, we are mainly concerned with the first step. The second
step involves methods from number theory (if k is a number field) and real
algebraic geometry (if k = R).

On the other hand, to compute examples with exact computer algebra
methods, one typically works over a finite field, the field of rational numbers,
or a number field. Due to the behavior of Buchberger’s algorithm, this fits
nicely with the strategy outlined above:

Remark 2.7.1 (Buchberger’s Algorithm and Field Extensions). Let
K ⊃ k be a field extension. If I ⊂ k[x1, . . . , xn] is an ideal, any Gröbner basis
f1, . . . , fr for I is also a Gröbner basis for the extended ideal I K[x1, . . . , xn].
Indeed, all computations in Buchberger’s test are carried through over k.

This shows, in particular, that if a property of ideals can be checked using
Gröbner bases, then I has this property iff the extended ideal has this prop-
erty. To give an example, we know that elimination ideals can be computed
using Gröbner bases. It follows that if I1 is the first elimination ideal of I,
then I1 K[x2, . . . , , xn] is the first elimination ideal of I K[x1, . . . , xn]. ⊓*

For almost every application of Buchberger’s algorithm to geometry, the re-
mark allows one to study the vanishing locus of I in An(K) by computations
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over k. The exceptions are those discussed in Remark 2.4.13: for radical com-
putations and for primary decomposition, algorithms for square-free decom-
position and polynomial factorization are needed in addition to Buchberger’s
algorithm. These algorithms are sensitive to the ground field. From a theoret-
ical point of view, the behavior of ideals under extensions of the ground field
is discussed in Zariski and Samuel (1975–1976), Vol II, Chapter VII, §11. For
the interested reader, we summarize some of this discussion, now.

We begin by pointing out that if q is a primary ideal of k[x1, . . . , xn] with
radical p, then the associated primes of q K[x1, . . . , xn] are precisely the prime
ideals of K[x1, . . . , xn] which intersect k[x1, . . . , xn] in p and have the same
dimension as p (the dimension of ideals will be treated in Chapter 3).

Note, however, that the extension p K[x1, . . . , xn] of a prime ideal p of
k[x1, . . . , xn] cannot always be written as an intersection of prime ideals (that
is, the extended ideal may not be a radical ideal). The situation is different
if K ⊃ k is a separable field extension. In particular, if k is a perfect field,
and I ⊂ k[x1, . . . , xn] is any radical ideal, then also I K[x1, . . . , xn] is a radical
ideal. Recall that finite fields, fields of characteristic zero, and algebraically
closed fields are perfect.

If the extended ideal p k[x1, . . . , xn] of a prime ideal p of k[x1, . . . , xn] is
again prime, then p K[x1, . . . , xn] is prime for any extension field K of k. In
this case, we say that p is absolutely prime.

Taking these remarks into account, we will ease our notation further on:

Convention 2.7.2. From now on, K will denote an algebraically closed ex-
tension field of k. We will write An := An(K). If I ⊂ k[x1, . . . , xn] is any
subset, then A = V(I) will be its locus of zeros in An. Furthermore, I(A) will
be the vanishing ideal of A in K[x1, . . . , xn], and K[A] = K[x1, . . . , xn]/I(A)
will be the coordinate ring of A. ⊓*

Remark-Definition 2.7.3. 1. With notation as above, we say that k is a
field of definition of A, or that A is defined over k. Moreover, we refer to

A(k) := A ∩ An(k)

as the set of k-rational points of A.
2. If p ⊂ k[x1, . . . , xn] is absolutely prime, then V = V(p) ⊂ An is a variety

with rational function field

K(V ) = Q(K[x1, . . . , xn]/p K[x1, . . . , xn]).

Furthermore,
k(V ) := Q(k[x1, . . . , xn]/p)

is contained in K(V ) as a subfield. We refer to the elements of k(V ) as the
rational functions on V defined over k.
3. A rational parametrization defined over k is a rational parametriza-

tion
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ϕ : An !!" W ⊂ Am, p '→ (f1(p), . . . , fm(p)),

such that f1, . . . , fm are defined over k. ⊓*

Parametrizations defined over number fields are useful for answering questions
in arithmetic. Here is an example:

Exercise 2.7.4. Find all Pythagorean tripels, that is, triples (a, b, c) of
integers such that a2 + b2 = c2.
Hint. Use the parametrization of the circle given in Example 2.6.11 by means
of the stereographic projection. ⊓*

Exercise 2.7.5. Let n ≥ 2, and suppose that chark ̸= 2. Let Q ⊂ An be a
nondegenerate quadric. That is, Q is defined by an equation of type

(1, x1, . . . , xn)

⎛

⎜⎜⎜⎝

a00 a01 . . . a0n

a10 a11 a1n
...

. . .
...

an0 an1 . . . ann

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

1
x1
...

xn

⎞

⎟⎟⎟⎠
= 0,

where (aij) is a symmetric (n+1)×(n+1) matrix of scalars aij ∈ k which has
maximal rank n + 1. Prove that Q admits a rational parametrization defined
over k iff Q(k) ̸= ∅ (that is, Q has a k-rational point). ⊓*

Exercise 2.7.6. Let C ⊂ A2 be an irreducible conic.

1. If C is defined over k, show that the following are equivalent:
a) There exists a k-rational parametrization of C whose components are

fractions of polynomials of degree ≤ 2.
b) There exists a k-rational point on C.

2. Let D = V(f) ⊂ A2 be another curve. If C ̸⊂ D, show that C and D can
have at most 2 · deg f intersection points. ⊓*

2.8 Hilbert’s Syzygy Theorem

As a final application of Gröbner bases in this Chapter, we give an elementary
proof of Hilbert‘s syzygy theorem. Hilbert’s own proof (1890) is based on
elimination and is, as Hilbert remarked, “nicht ganz ohne Mühe”1. The syzygy
theorem is the starting point of homological algebra, a mathematical discipline
of its own which is crosslinked to many other areas of mathematics (see, for
instance, Eisenbud (1995)). We use the following terminology:

Definition 2.8.1. Let R be a ring. A complex of R-modules is a finite or
infinite sequence of R-modules and homomorphisms of R-modules

1 not without difficulty



2.8 Hilbert’s Syzygy Theorem 91

. . . −→ Mi+1
φi+1−→ Mi

φi−→ Mi−1 −→ . . .

such that φi ◦ φi+1 = 0 for all i. The homology of the complex at Mi is
defined to be kerφi/ imφi+1. We say that the complex is exact at Mi if the
homology at Mi is zero. It is exact if it is exact at every Mi. ⊓*

For instance, a finite sequence of type

Mr → Mr−1 → · · · → Ms+1 → Ms

is exact iff it is exact at every Mi, r − 1 ≤ i ≤ s + 1.

Example 2.8.2. Let R be a ring, and let φ : M → N be a homomorphism of
R-modules. Write 0 for the trivial R-module, and let 0 → M and N → 0 be
the zero homomorphisms. Then:

1. φ is injective ⇐⇒ the sequence 0 → M → N is exact.
2. φ is surjective ⇐⇒ the sequence M → N → 0 is exact.
3. φ is bijective ⇐⇒ the sequence 0 → M → N → 0 is exact. ⊓*

Example 2.8.3. Let R be a ring. A short exact sequence is an exact se-
quence of R-modules of type

0 −→ M ′ φ−→ M
ψ−→ M ′′ −→ 0.

That is, φ is injective, ψ is surjective, and imφ = kerψ. For instance, if M
is an R-module and N ⊂ M is a submodule, we have a canonical short exact
sequence

0 −→ N −→ M −→ M/N −→ 0.

A sequence
. . . −→ Mi+1

φi+1−→ Mi
φi−→ Mi−1 −→ . . .

as in Definition 2.8.1 is exact iff each induced sequence

0 −→ Mi+1/ kerφi+1 −→ Mi −→ imφi −→ 0

is exact. ⊓*

Exercise∗ 2.8.4. Show that if

0 → Mr → Mr−1 → . . . → Ms → 0

is an exact sequence of finite dimensional k-vector spaces, then

s∑

i=r

(−1)i dimk Mi = 0.

⊓*
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Exercise∗ 2.8.5. Let M be an R-module, and let

0 −→ N ′ −→ N −→ N ′′ −→ 0

be a short exact sequence. Prove that the induced sequence

0 −→ HomR(M, N ′) −→ HomR(M, N) −→ HomR(M, N ′′)

is exact. Show by example that the map HomR(M, N) −→ HomR(M, N ′′) is
not necessarily surjective. ⊓*

Following Hilbert, we, now, consider exact sequences of a type which allows us
to obtain information on arbitrary modules from information on free modules.

It is clear from our discussion on syzygies that every module M over a
ring R is the epimorphic image of a free R-module. Indeed, choose generators
{fλ} of M , a free R-module F0 on a corresponding basis {ϵλ}, and consider
the homomorphism

F0
π−→ M, ϵλ '→ fλ.

In a next step, applying the same argument to the kernel of π, we get a free
R-module F1 together with an epimorphism F1 → kerπ. If φ is the composite
map F1 → kerπ → F0, then M = cokerφ.

Definition 2.8.6. Let M be a module over a ring R. A free presentation
of M is an exact sequence

F1
φ−→ F0 −→ M −→ 0,

with free R-modules F0, F1. Given such a presentation, we also say that M
is given by generators and relations. Moreover, if F0 and F1 are finitely
generated, we often regard φ as a matrix, and call it a presentation matrix
of M . ⊓*

Further repetitions in the process discussed before the definition yield a (pos-
sibly infinite) exact sequence

. . . −→ Fi+1
φi+1−→ Fi

φi−→ Fi−1 −→ . . . −→ F1
φ1−→ F0 −→ M −→ 0,

with free R-modules Fi (and φ1 = φ).

Definition 2.8.7. By abuse of notation, we refer to every sequence as above,
as well as to its “free part”

. . . −→ Fi+1
φi+1−→ Fi

φi−→ Fi−1 −→ . . . −→ F1
φ1−→ F0,

as a free resolution of M . We call imφi an ith syzygy module and its
elements ith order syzygies of M . We say that the resolution is finite if
there is an integer c such that Fi = 0 for i ≥ c + 1. In this case, the least such
c is the length of the resolution. ⊓*
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Note that the syzygy modules depend on the choices made when constructing
the resolution. It follows from the construction and Exercise 1.10.9 that every
finitely generated module M over a Noetherian ring R admits a free resolution
by finitely generated free R-modules. If we, then, think of ϕi as a matrix, we
call it an ith syzygy matrix of M .

Example 2.8.8. If R is a PID, and M is a finitely generated R-module, the
structure theorem for such modules tells us that M is of type

M ∼= Rs ⊕R/⟨d1⟩ ⊕ · · ·⊕R/⟨dt⟩,

where s ≥ 0 is a uniquely determined integer, and the di are nonzero nonunits
in R such that di divides di+1, for i = 1, . . . , t − 1 (see, for instance Dummit
and Foote (2003), Section 12.1). The di, which are uniquely determined up
to unit multiples, are known as the elementary divisors of M . In terms of
syzygies, the structure theorem means that M has a free resolution of type

0 −→ F1
φ−→ F0 −→ M −→ 0,

where

φ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 0 . . . 0
0 d2 0
...

. . .
...

0 . . . dt

0 . . . 0
...

...
0 . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

⊓*

Definition 2.8.9. If d1, . . . , dr are elements of a PID such that di divides
di+1, for i = 1, . . . , t− 1, then a diagonal matrix of block form

(
D 0
0 0

)
, where D =

⎛

⎜⎝
d1

. . .
dt

⎞

⎟⎠ ,

is said to be in Smith normal form. ⊓*

Exercise 2.8.10. 1. In the case where R = k[x], prove the structure theorem
by showing that every matrix A with entries in R can be put into Smith
normal form. More precisely, design an algorithm which, given A, finds
invertible matrices P and Q with entries in R such that PAQ is in Smith
normal form (use Euclid’s extended GCD algorithm in conjunction with
elementary row and column operations).

2. Applying the algorithm from part 1, show that
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φ =

⎛

⎜⎜⎝

1 0 3 0
0 1 2x 3

x2 − x 0 3x2 − 3x 2x
0 x2 − x 0 3x2 − 3x

⎞

⎟⎟⎠ ∼
k[x]

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 x 0
0 0 0 x2(x − 1)

⎞

⎟⎟⎠ ,

where ∼
k[x]

refers to taking the Smith normal form over k[x]. Conclude that

M := cokerφ has the free resolution

0 !! R2

0

@x 0
0 x2(x − 1)

1

A

!! R2 !! 0 .

From this, conclude that M ∼= R/⟨x⟩ ⊕R/⟨x2⟩ ⊕R/⟨x − 1⟩. ⊓*

The structure theorem for PID’s says, in particular, that every finitely gener-
ated module over the polynomial ring k[x] in one variable has a free resolution
of length one, by finitely generated free R-modules. Hilbert’s syzygy theorem
treats the case of several variables:

Theorem 2.8.11 (Hilbert’s Syzygy Theorem). If R = k[x1, . . . , xn],
every finitely generated R-module M has a finite free resolution of length at
most n, by finitely generated free R-modules.

Proof. We give a constructive proof. If M is free, there is nothing to do. So
suppose the contrary, and let M be given by generators and relations:

Rr φ−→ Rs0 −→ M −→ 0

Regard φ as a matrix and, thus, its columns as a set of generators for imφ.
Starting from these generators, compute a minimal Gröbner basis f1, . . . , fs1

for imφ with respect to some global monomial order on Rs0 . Consider the
syzygies G(i,α) obtained by applying Buchberger’s test to f1, . . . , fs1 . With
respect to the induced order on Rs1 , the G(i,α) form a minimal Gröbner basis
for the kernel of the composite map φ1 : Rs1 → imφ → Rs0 which sends the
ith canonical basis vector ϵi of Rs1 to fi.

Computing, now, the syzygies on the G(i,α) and so forth, we successively
get minimal Gröbner bases which generate syzygy modules of M of higher
order. At each stage, the new Gröbner basis depends, in particular, on how
we arrange the elements of the Gröbner basis computed in the previous step.
We show that if this arrangement is done properly, then the process just
described will terminate after finitely many steps.

To begin with, fix an integer 1 ≤ k ≤ n such that none of the leading
terms L(fi) involves the variables xk+1, . . . , xn (choose k = n if one of the
L(fi) involves xn). In Buchberger’s test, let the fi be arranged such that, for
i > j, the exponent of xk in L(fj) is strictly smaller than that of xk in L(fi)
whenever these leading terms involve the same basis element of Rs0 . Then
none of the resulting leading terms L(G(i,α)) = c(i,α)xαϵi involves xk, . . . , xn.
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Arranging the Gröbner basis elements at each stage of our process accord-
ingly, we obtain after, say, ℓ ≤ k steps an exact sequence

Rsℓ
φℓ−→ Rsℓ−1 −→ . . . −→ Rs1 φ1−→ Rs0 −→ M −→ 0

together with a Gröbner basis G for kerφℓ such that none of the leading terms
L(g), g ∈ G, involves x1, . . . , xn. Having chosen a minimal Gröbner basis in
the previous step, this implies that G = {0}. Thus, kerφℓ = 0 and

0 −→ Rsℓ
φℓ−→ Rsℓ−1 −→ . . . −→ Rs1 φ1−→ Rs0 −→ M −→ 0

is a finite free resolution as desired. ⊓*

Example 2.8.12. Our computations in Exercise 2.3.21 show that the affine
ring R/I, where R = k[x1, . . . , z5] and I is generated by the 3 × 3 minors of
the matrix ⎛

⎝
x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

z1 z2 z3 z4 z5

⎞

⎠ ,

has a free resolution of type

0 −→ R6 −→ R15 −→ R10 −→ R −→ R/I −→ 0. ⊓*

Example 2.8.13. Consider the ideal

I = ⟨f1, . . . , f5⟩ ⊂ R = k[w, x, y, z]

generated by the polynomials

f1 = w2 − xz, f2 = wx − yz, f3 = x2 − wy, f4 = xy − z2, f5 = y2 − wz.

We compute a finite free resolution of M = R/I, starting with the degree
reverse lexicographic order on k[w, x, y, z]. We successively obtain three syzygy
matrices φ1, φ2, and φ3 which we present in a compact way as follows:

w2 − xz −x y 0 −z 0 −y2 + wz
wx− yz w −x −y 0 z z2

x2 − wy −z w 0 −y 0 0
xy − z2 0 0 w x −y yz
y2 − wz 0 0 −z −w x w2

0 y −x w −z 1
−y2 + wz z2 −wy yz −w2 x

All initial terms are printed in bold. The first column of our table is the
transposed of the matrix φ1. It contains the original generators for I which,
as Buchberger’s test shows, form already a Gröbner basis for I. The syzygy
matrix φ2 resulting from the test is the 5 × 6 matrix in the middle of our
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table. Note that, for instance, M4 = ⟨w, x⟩ can be read from the 4th row of
φ2. At this point, we already know that the columns of φ2 form a Gröbner
basis for Syz (f1, . . . , f5) with respect to the induced monomial order on R5.
Buchberger’s test applied to these Gröbner basis elements yields a 6×2 syzygy
matrix φ3 whose transposed is printed in the two bottom rows of our table.
The map defined by φ3 is injective since the initial terms involve different
basis vectors. Thus, we obtain a free resolution of type

0 −→ R2 φ3−→ R6 φ2−→ R5 φ1−→ R −→ R/I −→ 0.

Observe that once we have the initial terms of the Gröbner basis for I, we can
easily compute the initial terms of the Gröbner bases for all syzygy modules,
that is, all bold face entries of our table. This gives us an an early idea on the
amount of computation lying ahead.

We visualize the monomials in L(I):

y

0

5
5

0 0

5

xw

Note that the ranks of the free modules in the resolution are visible in this
picture. ⊓*

Exercise 2.8.14. Compute a finite free resolution of the ideal generated by
the 2 × 2 minors of the matrix

(
x0 x1 x2 x3

x1 x2 x3 x4

)
.

⊓*

Remark 2.8.15. 1. If R is an arbitrary Noetherian ring, it is not necessarily
true that every finitely generated R-module has a finite free resolution.
For instance, if R = k[x, y]/⟨xy⟩, the ideal generated by the residue class
x = x + ⟨xy⟩ has the infinite periodic resolution

. . . −→ R
y−→ R

x−→ R
y−→ R −→ ⟨x⟩ −→ 0.
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By a result of Auslander-Buchsbaum and Serre (see, for instance, Eisenbud
(1995), Theorem 19.12), the following conditions on a local Noetherian
ring R are equivalent:
a) There exists a number s such that every finitely generated R-module

has a finite free resolution of length at most s.
b) R is regular.

We will introduce regular rings in Chapter 4.
2. Hilbert’s original application of the syzygy theorem, the proof of the poly-

nomial nature of the Hilbert function, will be treated in Section 6.4.
3. Some references for further reading on free resolutions are Serre (1965),

Eisenbud (1995), and Avramov (1989). ⊓*

Exercise 2.8.16 (Syzygies Over Affine Rings). Design an algorithm
which computes syzygy modules over an affine ring k[x1, . . . , xn]/I using
Gröbner bases in k[x1, . . . , xn]. ⊓*

Exercise 2.8.17. Let 0 ← M ← F0 ← F1 ← . . . be a free complex, i.e the Fi

are free modules, and let 0 ← N ← G0 ← G1 ← . . . be an exact complex. Then
every morphism ψ ∈ Hom(M, N) extends to a morphism ψ∗ of complexes, i.e.
there is a commutative diagram

0 M

ψ

))

"" F0

ψ0

))

"" F1

ψ1

))

"" F2

ψ2

))

"" . . .""

0 N"" G0
"" G1

"" G2
"" . . .""

The morphisms ψi are uniquely determined up to a homotopy, which means,
that given another extension ψ′

∗, there exist maps hi : Fi → Gi + 1, such that

ψi − ψ′
i = hi−1 ◦ ϕF

i + ϕG
i+1 ◦ hi.

Conclude, that in any extension ψ∗ of idM between two minimal free res-
olutions each ψi is an isomorphism. ⊓*
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Appendix: Computing Ext and Tor

For the benefit of those readers, which are already familiar with the usage
of the functors Ext and Tor of Cartan-Eilenberg [1956], we explain how to
compute these modules over affine rings R = k[x1, . . . , xn]/I with computer
algebra.

The main purpose of the functors

ExtiR(M,−) : N '→ ExtiR(M, N),

is to measure the failure of the left exactness of the functor HomR(M,−) in
the following sense: Given a short exact sequence

0 → N ′ → N → N ′′ → 0,

of R-modules, there is a long exact sequence

0 !! HomR(M, N ′) !! HomR(M, N) !! HomR(M, N ′′)

!! Ext1R(M, N ′) !! Ext1R(M, N) !! Ext1R(M, N ′′)

!! Ext2R(M, N ′) !! . . .

Thus Ext1R(M, N ′) = 0 is a sufficient condition for the exactness of the short
sequence

HomR(M, 0 → N ′ → N → N ′′ → 0).
Similarly there are long exact sequences

0 !! HomR(N ′′, M) !! HomR(N, M) !! HomR(N ′, M)

!! Ext1R(N ′′, M) !! Ext1R(N, M) !! Ext1R(N ′, M)

!! Ext2R(N ′′, M) !! . . .

and
!!M ⊗R N ′ !! M ⊗R N !!M ⊗R N ′′ !! 0

!!TorR
1 (M, N ′) !! TorR

1 (M, N) !!TorR
1 (M, N ′′)

. . . !!TorR
2 (M, N ′′)
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which measure the exactness of

HomR(0 → N ′ → N → N ′′ → 0, M)

and
M ⊗R (0 → N ′ → N → N ′′ → 0)

respectively.
To compute Exti

R(M, N) one can use can either an injective resolution

0 → N → I0 → I1 → . . .

of N , or an projective resolution

. . . → F1 → F0 → M → 0

of M and apply the formula

Exti
R(M, N) ∼= Hi Hom(M, I∗) ∼= Hi Hom(F∗, N).

Similarly,
TorR

i (M, N) ∼= Hi(F∗ ⊗N).

Since injective modules are rarely finitely presented we work with a projective
or even simpler free resolution. We proceed in several steps.

Remark 2.8.18 (Presentation of homomorphism). Any morphism ϕ ∈
HomR(M, N) can be represented by a commutative diagram involving the free
presentations E∗ and F∗ of M and N respectively.

E1

ϕ1

))

a1 !! E0

ϕ0

))

!! M

ϕ

))

!! 0

F1
b1 !! F0

!! N !! 0

Conversely any ϕ0, which can be completed with some ϕ1 to a commutative
diagram, represents an homomorhism ϕ. An ϕ0 represents the zero homomor-
phism, if it factors over F1, that is ϕ0 = b1h for a map h : E0 → F1.

Algorithm 2.8.19 (Hom). . Input: Two R-modules specified via free pre-
sentations

E1
a1 !! E0

!! M !! 0

and
F1

b1 !! F0
!! N !! 0 .

Output: a presentation of HomR(M, N).

1. Compute generators F2
b2 !! F1 of ker(b1 : F1 → F0).
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2. Compute the homology of the sequence

Hom(E0, F1)⊕Hom(E1, F2) → Hom(E0, F0) ⊕Hom(E1, F1) → Hom(E1, F0)

defined by

(h0, h1) '→ (b1h0, h0a1 − b2h1) and (ϕ0,ϕ1) '→ ϕ0a1 − ϕ1b1.

Note that for free modules F and G the module Hom(F, G) is free of
rankHom(F, G) = rankF rankG. So we have to compute in the Algorithm
above the homology of a complex of free modules, which is simpler than the
general case.

Algorithm 2.8.20 (Homology). . Input: A complex

M
ϕ !! N

ψ !! L

specified via presentations

E1

ϕ1

))

a1 !! E0

ϕ0

))

!! M

ϕ

))

!! 0

F1

ψ1

))

b1 !! F0

ψ0

))

!! N

ψ

))

!! 0

G1
c1 !! G0

!! L !! 0

.

Output: A presentation of the homology

H = H(M → N → L) =
ker(ψ)
im(ϕ)

.

1. Compute the syzygies matrix (h0 g0)t of
(
ψ0 c1

)
:

H0

0

@h0

g0

1

A

−→ F0 ⊕G1

“
ψ0 c1

”

−→ G0.

2. Compute the syzygy matrix (h1 f1 e0)t in

H1

0

BB@

h1

f1

e0

1

CCA

−→ H0 ⊕ F1 ⊕ E0

“
h0 b1 ϕ0

”

−→ F0.

3. H = Coker(H1
h1−→ H0).



2.8 Hilbert’s Syzygy Theorem 101

Exercise 2.8.21 (ker, coker ). Give an algorithm to compute Ker(ψ : N → L)
and Coker(ϕ : M → N) by simplifying the computation of homology in these
cases.

Exercise 2.8.22. Complete the Algorithm 2.8.19 for the computation of
Hom(M, N) by including a simplified version of homology in this cases.

Exercise 2.8.23. Given a homorphism N ′ f−→ N and a module M specified
by presentations, design an algorithm which computes the presentations of

Hom(N, M)
Hom(f,M)−→ Hom(N ′, M)

and
Hom(M, N ′)

Hom(M,f)−→ Hom(M, N).

Algorithm 2.8.24 (Ext). . Input: An integer i and two R-modules specified
via free presentations

F1
a1 !! F0

!! M !! 0

and
G1

b1 !! G0
!! N !! 0 .

Output: a presentation of Exti
R(M, N).

1. Compute i + 1 steps of a free resolution of M :

Fi+1
ai+1−→ Fi

ai−→ Fi−1
ai−1−→ . . .

a2−→ F1
a1−→ F0

2. Make a presentation of the complex Hom(F∗, N):

Hom(Fi−1, G1)
Hom(Fi−1,b1)!!

Hom(ai,G1)

))

Hom(Fi−1, G0) !!

Hom(ai,G0)

))

Hom(Fi−1, N) !!

Hom(ai,N)

))

0

Hom(Fi, G1)
Hom(Fi,b1) !!

Hom(ai+1,G1)

))

Hom(Fi, G0) !!

Hom(ai+1,G0)

))

Hom(Fi, N)

Hom(ai+1,N)

))

!! 0

Hom(Fi+1, G1)
Hom(Fi+1,b1)!! Hom(Fi+1, G0) !! Hom(Fi+1, N) !! 0

3. Compute a presentation of the homology

ExtiR(M, N) = Hi(Hom(F∗, N)) =
kerHom(ai+1, N)
im Hom(ai, N)
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Finally to compute Tor recall the definition of M ⊗ N . For free modules
F and G with basis fi and gj, the tensor product F ⊗ G is free on the basis
fi ⊗ gj. In general, given presentations

F1
a1 !! F0

!! M !! 0

and
G1

b1 !! G0
!! N !! 0 ,

then

F1 ⊗G0 ⊕ F0 ⊗G1
a1⊗idG0+idF0⊗b1−→ F0 ⊗G0 → M ⊗ N → 0

is a presentation of the tensor product.

Algorithm 2.8.25 (Tor). . Input: An integer i and two R-modules specified
via free presentations

F1
a1 !! F0

!! M !! 0

and
G1

b1 !! G0
!! N !! 0 .

Output: a presentation of TorR
i (M, N).

1. Compute i + 1 steps of a free resolution of M :

Fi+1
ai+1−→ Fi

ai−→ Fi−1
ai−1−→ . . .

a2−→ F1
a1−→ F0

2. Make a presentation of the complex F∗ ⊗N :

Fi+1 ⊗G1

idFi+1⊗b1
!!

ai+1⊗idG1

))

Fi+1 ⊗G0
!!

ai+1⊗idG0

))

Fi+1 ⊗N !!

ai+1⊗idN

))

0

Fi ⊗G1

idFi⊗b1 !!

ai⊗idG1

))

Fi ⊗G0) !!

ai⊗idG0

))

Fi ⊗N

ai⊗idN

))

!! 0

Fi−1 ⊗G1

idFi−1⊗b1
!! Fi−1 ⊗G0

!! Fi−1 ⊗N !! 0

3. Compute a presentation of the homology

TorR
i (M, N) = Hi(F∗ ⊗N) =

ker(ai ⊗ idN )
im(ai+1 ⊗ idN )
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Exercise 2.8.26. Given a module M and a short exact sequence

0 → N ′ → N → N ′′ → 0

specified via presentations, design an algorithm which computes the connect-
ing homomorphisms

Exti
R(M, N ′′) → Exti+1

R (M, N ′)

ExtiR(N ′, M) → Exti+1
R (N ′′, M)

and
TorR

i (N ′, M) → TorR
i−1(N

′′, M)

of the long exact sequences.

Exercise 2.8.27. Consider R = k[x1, x2, x3, x4] and M = R/⟨x1x2, x2x3, x1x4, x3x4⟩
and N = R/⟨x1 − x2, x3 − x4⟩. Compute all TorR

i (M, N).

Besides measuring exactness Ext1R(M, N) is used to describe extensions.

Definition 2.8.28. Let A and C be R-modules. An extension of C by A is
an R-module B, together with a short exact sequence

0 → A → E → C → 0.

Two extension E, E′ are isomorphic, if there exists a commutative diagram

0 → A → E → C → 0
↓ ↓ ↓

0 → A → E′ → C → 0

with idA and idC as outer arrows.

0 → A → A ⊕ C → C → 0

is called the trivial (or split) extension. ⊓*

Exercise 2.8.29. Prove:

1. An extension
0 → A → E → C → 0

is isomorphic to the split extention iff idC ∈ HomR(C, C) maps to 0 ∈
Ext1R(C, A) under the connecting homomorphism δ.

2. For every class e ∈ Ext1(C, A) there exists an extension

0 → A → E → C → 0

with δ(idC) = e.
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2.9 Additional exercises

Exercise 2.9.1. Let Fq be the field with q elements of characteristic p. Prove
that

f1 = xq
1 − xq, . . . , fn = xq

n − xn ∈ Fp[x1. . . . , xn]

form a Gröbner basis for the ideal of the finitely many Fq-rational points
I(An(Fq)) (with respect to any global monomial order on Fp[x1. . . . , xn]).

Exercise 2.9.2. Let f1, . . . , fr ∈ F = R be nonzero polynomials, and let
GCD(L(fi),L(fj)) = 1 for some pair (i, j). Show that a standard expression
for S(fi, fj) with remainder zero is obtained by rewriting the syzygy fjfi −
fifj = 0.

Exercise 2.9.3. Integer programming, applications of binomial ideals.

Exercise 2.9.4. Show that the key properties of >lex respectively >drlex char-
acterize these orders among all global monomial orders.
Hint. If > satisfies the key property of >drlex, we have, for instance, x2

2 >drlex

x1x3. Since > is compatible with multiplication, also x2
2x4 >drlex x1x3x4. ⊓*

Exercise 2.9.5. Let V = V(I) be an absolutely irreducible variety defined
by a binomial ideal. Show that V is rational.

Exercise 2.9.6. toric varieties

Exercise 2.9.7. Systems of polynomial equations of type

f1 = x1 − h1(x2, . . . , xn), . . . , fn−1 = xn−1 − hn−1(xn), fn = hn(xn)

are called triangular (the Gröbner basis in Exercise 2.4.6 gives an example).
Such a system has at most deg fn solutions in An(k). It has precisely deg fn

solutions iff fn is square-free.
... ⊓*

Exercise 2.9.8. module quotients, annihilators

Exercise 2.9.9 (5-Lemma). Let R be a ring, and let

M1

α1

))

!! M2

β1

))

!! M3

γ

))

!! M4

β2

))

!! M5

α2

))
N1

!! N2
!! N3

!! N4
!! N5

be a commutative diagram of R-modules with exact rows. Show that if β1

and β2 are isomorphisms, α1 is an epimorphism, and α2 is a monomorphism,
then γ is an isomorphism.

Exercise 2.9.10. system solving



Chapter 3

Noether Normalization

We know from Chapter 1 that the strong version of Hilbert’s Nullstellensatz
follows from its weak version. Now, in the first section of this chapter, we will
establish the weak version. A key ingredient of our proof is the projection the-
orem, which is interesting in its own right. In fact, interpreting the projection
theorem from an algebraic point of view, we will be lead to the concept of
integral ring extensions. Preparing, thus, the grounds for dimension theory,
we will show three major results on prime ideals in integral ring extensions:
the lying over theorem, the going up theorem, and the going down theorem.
Dimension theory itself will take center stage in Sections 3.3 and 3.4. Moti-
vated by our proof of the Nullstellensatz, and formulated in terms of affine
rings, our definition of the dimension of an algebraic set relies on the concept
of Noether normalization. There are several equivalent ways of characterizing
dimension. A characterization in terms of leading ideals is the key to comput-
ing dimension via Gröbner bases. The notion of Krull dimension will allow us
to assign a dimension to every ring.

In the final section of this chapter, starting from a field theoretic version
of Noether normalization, we will show how to reduce problems concerning
the birational geometry of varieties to problems concerning hypersurfaces.

3.1 Proof of the Nullstellensatz

With notation as in Convention 2.7.2, our goal is to show that if I ⊂
k[x1, . . . , xn] is an ideal, then A = V(I) ⊂ An is empty iff 1 ∈ I. As pointed
out in Section 1.3, this is clearly true in the case of one variable. To prove
the general case, we do induction on the number of variables, projecting A
to An−1 in order to connect to the induction hypothesis. Here, as already
remarked in Section 2.6, we face the problem that the projected set may not
be Zariski closed. The key point of our proof is to show that this problem may
be overcome by choosing a sufficiently general projection map.
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For this, we proceed in two steps. First, in the projection theorem, we
specify an extra hypothesis which guarantees that the image of A under pro-
jection onto the last n−1 components is Zariski closed. Then, in Lemma 3.1.3,
we show how to achieve the extra hypothesis by means of a triangular change
of coordinates (which can be taken linear if k is infinite).

As some sort of motivation for the extra hypothesis, we discuss a simplified
version of the example given in Exercise 2.6.1:

Example 3.1.1. Let π : A2 → A1, (a, b) '→ b, be projection of the xy-plane
onto the y-axis. Then π maps the hyperbola C = V(xy−1) onto the punctured
line π(C) = A1 \ {0} which is not an algebraic subset of A1:

If K = C, a reason for this failure can be seen in the fact that the function
y '→ 1/y is unbounded on C near A1(C) × {0} in the Euclidean topology.

In contrast, suppose that A ⊂ A2(C) is an algebraic set on which a monic
equation in x of type

xd + c1(y)xd−1 + . . . + cd(y) = 0

is satisfied for some d ≥ 1. Then, since the roots of this equation in x vary
continously with y in the Euclidean topology, the preimage (π|A)−1(U) of any
bounded domain U ⊂ A1(C) is bounded as well. ⊓*

Taking our cue from this observation, we show:

Theorem 3.1.2 (Projection Theorem). Let I ⊂ k[x1, . . . , xn] be an ideal,
and let I1 = I ∩ k[x2, . . . , xn] be its first elimination ideal. Suppose that I
contains a polynomial f which is monic in x1 of some degree d ≥ 1:

f = xd
1 + c1(x2, . . . , xn)xd−1

1 + . . . + cd(x2, . . . , xn),

with coefficients ci ∈ k[x2, . . . , xn]. Let

π : An → An−1, (a1, . . . , an) '→ (a2, . . . , an),

be projection onto the last n− 1 components, and let A = V(I) ⊂ An. Then

π(A) = V(I1) ⊂ An−1.

In particular, π(A) is Zariski closed.
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Proof. As we already know, the inclusion π(A) ⊂ V(I1) holds since I1 ⊂ I. For
the opposite inclusion, let p′ = (a2, . . . , an) ∈ An−1 \ π(A) be any point. To
prove that p′ ∈ An−1\V(I1), we need to show that there is a polynomial h ∈ I1

such that h(p′) ̸= 0. For this, we first suppose that k = K is algebraically
closed. In this case, we find the desired h in two steps:

Step 1. For each polynomial g ∈ k[x1, . . . , xn], there is a polynomial g̃ ∈
k[x1, . . . , xn] of degree < d in x1 such that g̃(x1, p′) = 0 and g ≡ g̃ mod I.

Indeed, consider the homomorphism

φ : k[x1, . . . , xn] → k[x1], g '→ g(x1, p
′).

The image φ(I) ⊂ k[x1] is an ideal whose locus of zeros in A1 is empty
by the assumption on p′. The Nullstellensatz in one variable implies that
φ(I) = k[x1]. In particular, if g ∈ k[x1, . . . , xn] is any polynomial, we can
find a polynomial g1 ∈ I such that g(x1, p′) − g1(x1, p′) = 0 ∈ k[x1]. Set
g2 = g − g1. Euclidean division with remainder in k[x2, . . . , xn][x1] yields an
expression g2 = qf + g̃ such that the degree of g̃ in x1 is < d (here, we
make use of the assumption that f is monic in x1 of degree d). Plugging in
p′, we see that g̃(x1, p′) is the unique remainder of degree < d on Euclidean
division of 0 = g2(x1, p′) by f(x1, p′) in k[x1]. Thus, g̃(x1, p′) = 0. Moreover,
g − g̃ = qf + g1 ∈ I. That is, g ≡ g̃ mod I.

Step 2. Applying the above to each of the polynomials 1, x1, . . . , x
d−1
1 , we

get expressions

1 ≡ g00 + . . . + g0,d−1x
d−1
1 mod I,

x1 ≡ g10 + . . . + g1,d−1x
d−1
1 mod I,

...
...

xd−1
1 ≡ gd−1,0 + . . . + gd−1,d−1x

d−1
1 mod I,

with gij ∈ k[x2, . . . , xn] and gij(p′) = 0 for all i, j. In matrix notation,

(Ed −B)

⎛

⎜⎝
1
...

xd−1
1

⎞

⎟⎠ ≡ 0 mod I,

where B = (gij) and Ed is the d×d identity matrix. Multiplying by the matrix
of cofactors of (Ed −B), we get

det(Ed −B)

⎛

⎜⎝
1
...

xd−1
1

⎞

⎟⎠ ≡ 0 mod I.

In particular, h := det(Ed −B) · 1 ∈ I ∩ k[x2, . . . , xn] = I1. Moreover, h(p′) =
1 ̸= 0 since all the gij(p′) are zero.
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This settles the case where k = K. For the general case, recall from
Remark 2.7.1 on Buchberger’s algorithm and field extensions that Ie

1 :=
I1 K[x2, . . . , , xn] is the first elimination ideal of I K[x1, . . . , , xn]. According
to what we just proved, there is a polynomial in Ie

1 which does not vanish at
the point p′. Since Ie

1 is generated by the polynomials in I1, at least one of
these polynomials does not vanish at p′. ⊓*

Lemma 3.1.3. Let f ∈ k[x1, . . . , xn] be a nonconstant polynomial.

1. If k is infinite, let a2, . . . , an ∈ k be sufficiently general. Substituting

xi = x̃i + aix1

in f , i = 2, . . . , n, we get a polynomial of type

axd
1 + c1(x̃2, . . . , x̃n)xd−1

1 + . . . + cd(x̃2, . . . , x̃n),

where a ∈ k is a nonzero scalar, d ≥ 1, and each ci ∈ k[x̃2, . . . , x̃n].
2. If k is arbitrary, let r ∈ N be sufficiently large. Substituting

xi = x̃i + xri−1

1

in f , i = 2, . . . , n, we get a polynomial as in 1.

Proof. 1. Let f = fd+fd−1+. . .+f0, fd ̸= 0, be the decomposition of f into its
homogeneous components. After substituting x̃i+aix1 for xi in f , i = 2, . . . , n,
the coefficient of xd

1 is fd(1, a2, . . . , an). Since fd is homogeneous and nonzero,
also fd(1, x2, . . . , xn) is nonzero. Thus, since k is infinite, fd(1, a2, . . . , an) is
nonzero for sufficiently general a2, . . . , an ∈ k by Exercise 1.2.1. The result
follows.

2. Write f as the finite sum of its terms,

f =
∑

cα1...αnxα1
1 · . . . · xαn

n ,

and let r ∈ N. After substituting x̃i + xri−1

1 for xi in f , i = 2, . . . , n, the
terms depending only on x1 are of type cα1...αnxα1+α2r+···+αnrn−1

1 . If r is
strictly larger than all exponents αi appearing in a term of f , the numbers
α1 + α2r + . . . + αnrn−1 are distinct for different (α1, . . . ,αn), and the terms
depending only on x1 cannot cancel with each other. The result follows. ⊓*

Example 3.1.4. Substituting y = ỹ + x in xy − 1, we get the polynomial
x2 + xỹ − 1 which is monic in x. Accordingly, the hyperbola C = V(xy − 1)
projects onto A1 via (a, b) '→ (a, b− a) '→ b− a:
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⊓*

Exercise 3.1.5. Consider the ideal

I = ⟨xy(x + y) + 1⟩ ⊂ F2[x, y].

Determine coordinates in which I satisfies the extra hypothesis of the projec-
tion theorem. Show that the extra hypothesis cannot be achieved by means
of a linear change of coordinates. ⊓*

Proof of the Nullstellensatz, Weak Version. If I ⊂ k[x1, . . . , xn] is an
ideal containing 1, its locus of zeros in An is clearly empty.

For the converse, suppose that the result is true for polynomials in n − 1
variables, and let I ⊂ k[x1, . . . , xn] be an ideal such that 1 /∈ I. We have to
show that V(I) ⊂ An is nonempty. This is clear if I = ⟨0⟩. If I is nonzero, pick
a nonconstant polynomial f ∈ I. In suitable coordinates x1, x̃2, . . . x̃n, chosen
as in Lemma 3.1.3, f becomes a monic polynomial in x1 as required by the
extra hypothesis of the projection theorem (adjust the constant leading term
in x1, if necessary). Since 1 /∈ I, we have 1 /∈ I∩k[x̃2, . . . , x̃n] as well. It follows
from the induction hypothesis that V(I ∩ k[x̃2, . . . , x̃n]) ⊂ An−1 contains a
point. By the projection theorem, this point is the image of a point in V(I)
under the projection which maps (a1, a2, . . . , an) to (ã2, . . . , ãn). In particular,
V(I) is nonempty, and we are done by induction. ⊓*

Remark 3.1.6. Let I ⊂ k[x1, . . . , xn] be an ideal such that 1 /∈ I.

1. Successively carrying out the induction step in the proof above, applying
Lemma 3.1.3 at each stage, we may suppose that the coordinates are cho-
sen such that each nonzero elimination ideal Ik−1 = I ∩ k[xk, xk+1, . . . , xn]
contains a monic polynomial of type

fk = xdk
k + c(k)

1 (xk+1, . . . , xn)xdk−1
k + . . . + c(k)

dk
(xk+1, . . . , xn)

∈ k[xk+1, . . . , xn][xk].
(3.1)

Then, if 0 ≤ c ≤ n is minimal with Ic = ⟨0⟩, each projection map

πk : V(Ik−1) → V(Ik), (ak, ak+1, . . . , an) '→ (ak+1, . . . , an),

1 ≤ k ≤ c, is surjective. Hence, the composite map

π = πc ◦ · · · ◦ π1 : V(I) → An−c.

is surjective as well. Furthermore, the πk and, thus, π have finite fibers: if a
point (ak+1, . . . , an) ∈ V(Ik) can be extended to a point (ak, ak+1, . . . , an) ∈
V(Ik−1), then ak must be among the finitely many roots of the univariate
polynomial fk(xk, ak+1, . . . , an) ∈ K[xk].
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2. In practical terms, combining the above with univariate root finding, we
get the following recipe for finding explicit points of V(I).
Compute a lexicographic Gröbner basis G for I. Then G contains lexicographic
Gröbner bases for the whole flag of elimination ideals Ik−1, k = 1, . . . , n.
Moreover, the extra hypothesis of the projection theorem is fulfilled for each
Ik−1 ̸= ⟨0⟩ iff polynomials fk of type (3.1) are among the Gröbner basis
elements (up to nonzero scalar factors).

In this case, every point (ac+1, . . . , an) ∈ An−c can be extended to a point
(a1, . . . , ac, ac+1, . . . , an) ∈ V(I) by building up one coordinate at a time: If
(ak+1, . . . , ac+1, . . . , an) ∈ V(Ik) ⊂ An−k has already been chosen, consider
the map

Φk : k[xk, xk+1, . . . , xn] → K[xk], xk+1 '→ ak+1, . . . , xn '→ an.

The image Φk(Ik−1) is a principal ideal generated by the greatest common
divisor of the images of the elements of G ∩ k[xk, xk+1, . . . , xn]. Pick ak to be
a root of that generator.

If one monic polynomial is missing, start over again in new coordinates. ⊓*
We will explore the full strength and the algebraic background of the obser-
vations made in the remark above in Sections 3.2 and 3.3.
Example 3.1.7. Consider the curve C = V(f1, f2) ⊂ A3(C), where

f1 = y3z − 2y2z − z3 + x2 + z,
f2 = xy3z − 2xy2z − xz3 + x3 + y3 − 2y2 + xz − z2 + y.

Computing the reduced lexicographic Gröbner basis for the ideal ⟨f1, f2⟩, with
variables ordered as x > y > z, we get the two polynomials below:

x2 − yz + z, y3 − 2y2 + y − z2.

The first Gröbner basis element is monic in x of degree 2. Thus, projection
of C to the yz-plane is 2 : 1 and onto the curve C1 defined by the second
Gröbner basis element. In turn, C1 is projected 3 : 1 onto the z-axis. In sum,
C is projected 6 : 1 onto the z-axis.

The real picture below shows both curves C and C1. Only the blue part of
C1 has real preimage points on C. The red part has complex preimage points.
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If we reorder the variables as y > z > x, the reduced lexicographic Gröbner
basis for ⟨f1, f2⟩ consists of five polynomials:

y3 − 2y2 + y − z2, y2x2 − yx2 − z3, yz − z − x2,
yx4 − z4, z5 − zx4 − x6.

The image C2 of C under projection to the zx-plane is defined by the last
Gröbner basis element. Inspecting the other Gröbner basis elements, we see
that every point p ∈ C2 except the origin has a unique preimage point on C
which is real iff p is real.

The following picture simultaneously shows C2 and C1:

⊓*

Typically, in the situation of Remark 3.1.6, each of the successive projections
except the last one is one-to-one over a Zariski dense part of the image (see
?? in Chapter 6 for a precise statement). In this sense, the projection to the
zx-plane in our example above is more typical.

Exercise 3.1.8. Check that the polynomials

f1 = x3 − xz, f2 = yx2 − yz ∈ k[x, y, z]

form a lexicographic Gröbner basis. Conclude that V(f1, f2) ⊂ A3 projects
onto the yz-plane. Determine the points of the yz-plane with 1,2, and 3 preim-
age points, respectively. ⊓*

Exercise 3.1.9. Consider the ideal

I = ⟨yz + 1, x(y + z)− 1⟩ ⊂ R[x, y, z].

Determine coordinates in which all nonzero elimination ideals of I satisfy
the extra hypothesis of the projection theorem. Compare the pictures of the
corresponding algebraic sets in the given and new coordinates. ⊓*

3.2 Integral Ring Extensions

In the situation of the projection theorem, if π1 : V(I) → V(I1) is projection
onto the last n−1 components, the extra hypothesis of the theorem guarantees
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that π1 is surjective with finite fibers. This fact has a ring theoretic analogue,
the lying over theorem, which is the first major result presented in this section.
We begin by establishing the relevant terminology.

If R is a subring of a ring S, we say that R ⊂ S is a ring extension.
More generally, if R ↪→ S is any ring monomorphism, we identify R with its
image in S and consider, thus, R ⊂ S as a ring extension. With this notation,
the algebraic counterpart of the map π1 is the ring extension

R = k[x2, . . . , xn]/I1 ⊂ S = k[x1, . . . , xn]/I

which is induced by the inclusion k[x2, , . . . , xn] ⊂ k[x1, . . . , xn]. We may,
then, rephrase the extra hypothesis of the projection theorem by saying that
the element x1 = x1 + I ∈ S is integral over R in the following sense:

Definition 3.2.1. Let R ⊂ S be a ring extension. An element s ∈ S is said
to be integral over R if it satisfies a monic polynomial equation

sd + r1s
d−1 + . . . + rd = 0, with all ri ∈ R.

The equation is, then, called an integral equation for s over R. If, in addi-
tion, all the coefficients ri are contained in some ideal I of R, we say that s
is integral over I, and call the equation an integral equation for s over I. If
every element s ∈ S is integral over R, we say that S is integral over R, or
that R ⊂ S is an integral extension. ⊓*

Integral extensions are for rings what algebraic extensions are for fields. As in
the special case of fields, we have two different notions of finiteness.

Definition 3.2.2. Let R ⊂ S be a ring extension.

1. We say that the extension is finite, or that S is finite over R, if S is
finitely generated as an R-module. That is, the R-module S is the epimor-
phic image of a free R-module Rk.

2. We say that the extension is of finite type, or that S is of finite type
over R, if S is finitely generated as an R-algebra. That is, the R-algebra
S is the epimorphic image of a polynomial algebra R[y1, . . . , ym]. ⊓*

Clearly, every finite extension is of finite type. Our next result shows that
actually

finite type + integral = finite:

Proposition 3.2.3. Let R ⊂ S be a ring extension, let s ∈ S (and let I ⊂ R
be an ideal). Then the following are equivalent:

1. s is integral over R (over I).
2. R[s] is finite over R (and s ∈ rad (IR[s])).
3. R[s] is contained in a subring S′ of S which is finite over R (and s ∈

rad (IS′)).
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In particular, if s1, . . . , sm ∈ S are integral over R, then R[s1, . . . , sm] is finite
over R.

Proof. 1 =⇒ 2: Let f ∈ R[x] be a monic polynomial of degree d such that
f(s) = 0. Division with remainder by f in R[x] yields for every polynomial
g ∈ R[x] a representation g = qf + r such that deg r < d. Plugging in s,
we get g(s) = r(s). Hence, 1, s, . . . , sd−1 generate R[s] as an R-module. If all
coefficients of f are contained in I, it follows from the monic equation f(s) = 0
that sd ∈ IR[s] and, thus, that s ∈ rad (IR[s]).

2 =⇒ 3: Take S′ = R[s].
3 =⇒ 1: We argue as in Step 2 of the proof of the projection theorem.

Let m1, . . . , ml ∈ S′ be a finite set of generators for S′ as an R-module. If
s ∈ rad (IS′), then sk ∈ IS′ for some k. We use this to show that s is integral
over I (if no ideal I is distinguished, take I = R and k = 1 in what follows).
For each i, we write skmi as an R-linear combination of the mj :

skmi =
∑

j

rijmj , with all rij ∈ I.

In matrix notation,

(skEl −B)

⎛

⎜⎝
m1
...

ml

⎞

⎟⎠ = 0,

where B = (rij) and El is the l× l identity matrix. Multiplying by the matrix
of cofactors of (skEl −B), we get det(skEl −B) ·mi = 0 for every i. Since, in
particular, 1 ∈ S′ can be written as an R-linear combination of the mi, the
determinant must be zero. Expanding it, we get the desired integral equation
for s over I. ⊓*

Corollary 3.2.4 (Transitivity of Integral Extensions). If R ⊂ S ⊂ T is
a chain of ring extensions, and if T is integral over S, and S is integral over
R, then T is integral over R.

Proof. We apply Proposition 3.2.3. Let t ∈ T , and let td + s1td−1 + · · ·+ sd =
0 be an integral equation for t over S. Then R[s1, . . . , sd] and, thus, also
R[s1, . . . , sd, t] =

∑d−1
i=1 R[s1, . . . , sd]ti are finite over R since the si are integral

over R. In particular, t is integral over R. ⊓*

Corollary-Definition 3.2.5. If R ⊂ S is a ring extension, the set

{s ∈ S | s is integral over R}

is a subring of S containing R. It is called the integral closure of R in S.

Proof. We use, again, Proposition 3.2.3. If s1, s2 ∈ S are integral over R, then
R[s1, s2] is finite over R. In particular, s1 ± s2 and s1s2 are integral over R. ⊓*



114 3 Noether Normalization

In the situation of the projection theorem,

R = k[x2, . . . , xn]/I1 ⊂ S = k[x1, . . . , xn]/I = R[x1]

is a finite ring extension. Note that any extension of affine rings is of finite
type. Hence, in this case, the notions of integral and finite extensions coincide.

Exercise∗ 3.2.6 (Integrality Criterion for Affine Rings). Let I be an
ideal of k[x1, . . . , xn], and let f1 = f1 + I, . . . , fm = fm + I ∈ k[x1, . . . , xn]/I.
Consider a polynomial ring k[y1, . . . , ym], the homomorphism

φ : k[y1, . . . , ym] → S = k[x1, . . . , xn]/I, yi '→ f i,

and the ideal

J = I k[x, y] + ⟨f1 − y1, . . . , fm − ym⟩ ⊂ k[x, y].

Let > be an elimination order on k[x, y] with respect to x1, . . . , xn, and let G
be a Gröbner basis for J with respect to >. By Proposition 2.5.12, the elements
of G ∩k[y] generate kerφ. View R := k[y1, . . . , ym]/ kerφ as a subring of S by
means of φ. Show that R ⊂ S is integral iff for each i, 1 ≤ i ≤ n, there is an
element of G whose leading monomial is of type xαi

i for some αi ≥ 1. ⊓*

Example 3.2.7. Both ring extensions

k[y] ⊂ k[x, y]/⟨xy − 1⟩, y '→ y,

and
k[y] ⊂ k[x, y]/⟨xy⟩, y '→ y,

are not integral (apply, for instance, the criterion given in Exercise 3.2.6).

Geometrically, in contrast to the situation of the projection theorem, projec-
tion of V(xy−1) to the y-axis is not onto (there is no point lying over 0 ∈ A1),
whereas projection of V(xy) to the y-axis is onto, but the fiber over 0 is not
finite (there are infinitely many points lying over 0). ⊓*

In algebraic terms, lying over refers to maximal ideals instead of points. More
generally, the lying over theorem stated below is a result concerning prime
ideals. In this context, if R ⊂ S is a ring extension, and P is a prime ideal of
S, then p := P ∩ R is necessarily a prime ideal of R, and we say that P lies
over p.
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Theorem 3.2.8 (Lying Over). Let R ⊂ S be an integral ring extension,
and let p be a prime ideal of R. Then:

1. There exists a prime ideal P of S lying over p:
∃ P ⊂ S
...
p ⊂ R

2. There are no strict inclusions between prime ideals of S lying over p.
3. If P is a prime ideal of S lying over p, then P is maximal iff p is.
4. If S is Noetherian, only finitely many prime ideals of S lie over p. ⊓*

The proof of the theorem is based on the prime existence lemma of Krull
which we show next. We need the following notation:

Definition 3.2.9. A subset U of a ring R is multiplicatively closed if 1 ∈ U
and the product of any two elements of U is in U . ⊓*

Typical examples of multiplicatively closed sets are the subsets of type U =
{fk | k ≥ 0}, where f ∈ R, and the subsets of type U = R \ p, where p ⊂ R
is a prime ideal.

Lemma 3.2.10 (Krull’s Prime Existence Lemma). Let R be a ring, let
I ⊂ R be an ideal, and let U be a multiplicatively closed subset of R such that
I ∩ U = ∅. Then there is a prime ideal p of R containing I, and such that
p ∩ U = ∅.

Proof. If R is Noetherian, the proof is yet another application of Noetherian
induction. In the general case, we use Zorn’s lemma, considering the set

Γ = {J ⊂ R ideal | I ⊂ J and J ∩ U = ∅}.

This set is partially ordered by inclusion and nonempty since I ∈ Γ . Further-
more, if {Jλ} is a totally ordered subset of Γ , then J =

⋃
λ Jλ ∈ Γ is an upper

bound for this subset. By Zorn’s lemma, there is a maximal element p of Γ .
We show that p is a prime ideal. First of all, p is a proper ideal of R since

otherwise 1 ∈ p∩U = ∅, absurd. Let, now, r1, r2 be elements of R\p. Then, for
j = 1, 2, the ideal p+ ⟨rj⟩ is not contained in Γ due to our choice of p. Hence,
(p + ⟨rj⟩)∩U ̸= ∅, which means that we can find elements pj ∈ p and aj ∈ R
such that pj + ajrj ∈ U , j = 1, 2. Then (p1 + a1r1)(p2 + a2r2) ∈ U ⊂ R \ p,
so that a1a2r1r2 /∈ p. In particular, r1r2 /∈ p, as desired. ⊓*

At this point, we include two exercises with results needed in Chapter 4:

Exercise∗ 3.2.11. If R is a ring, show that its nilradical is the intersection
of all the prime ideals of R:

rad ⟨0⟩ =
⋂

p⊂R prime
p.

⊓*
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Exercise∗ 3.2.12. If R is a ring containing only finitely minimal primes, show
that these ideals contain zerodivisors only. ⊓*

Remark 3.2.13. Let R ⊂ S be a ring extension, and let I be an ideal of S.
Regard R/(I ∩ R) as a subring of S/I in the natural way, and suppose that
S is integral over R. Then S/I is integral over R/(I ∩ R) as well. Indeed, if
s = s + I ∈ S/I, an integral equation for s over R/(I ∩ R) is obtained from
an integral equation for s over R in the obvious way. ⊓*

Proof of the Lying Over Theorem. 1. Consider the ideal pS generated
by p in S and the multiplicatively closed subset U = R \ p ⊂ S. Using the
assumption that R ⊂ S is integral, we will verify that pS ∩ U = ∅. This will
allow us, then, to apply Krull’s prime existence lemma.

If s ∈ pS is any element, there is an expression s =
∑m

i=1 risi, with all
ri ∈ p and si ∈ S. Then s ∈ pR[s1, . . . , sm], so that s is integral over p by
Proposition 3.2.3. Consider an integral equation

sd + r1s
d−1 + . . . + rd = 0

such that all ri ∈ p. We have to show that s ̸∈ U . Suppose the contrary. Then,
in particular, s ∈ R, so that sd = −r1sd−1 − · · · − rd ∈ p. Since p is a prime
ideal, it follows that s ∈ p, a contradiction to s ∈ U = R \ p.

This shows that pS ∩ U = ∅. The prime existence lemma yields a prime
ideal P of S such that p ⊂ pS ⊂ P and P ∩ R ⊂ R \ U = p. Hence, P is a
prime ideal of S lying over p.

2. If P1 ⊂ P2 are two prime ideals of S lying over p, then R = R/p1 ⊂
S = S/P1 is an integral extension of integral domains such that (P2/P1) ∩
R = ⟨0⟩. We have to show that P1 is not properly contained in P2. Suppose
the contrary. Then there is a nonzero element s ∈ P2/P1, and we obtain a
contradiction by considering an integral equation sd +r1sd−1+ . . .+rd = 0 for
s over R of smallest possible degree d. Indeed, since rd ∈ (P2/P1) ∩ R = ⟨0⟩
is zero and S is an integral domain, we may divide the equation by s to obtain
an integral equation of smaller degree.

3. If p is maximal, then P is maximal as well by part 2. For the converse,
consider the integral extension R/p ⊂ S/P. If S/P is a field, its only maximal
ideal is ⟨0⟩. Then, in turn, ⟨0⟩ is the only maximal ideal of R/p by part 1, so
that R/p is a field, too.

4. If P is a prime ideal of S lying over p, then pS ⊂ P. By part 2, P
is a minimal prime of pS. Since, by assumption, S is Noetherian, we may,
then, apply Proposition 1.8.11 to conclude that P is one of the finitely many
minimal associated primes of pS. ⊓*

The following examples illustrate the lying over theorem and its proof.

Example 3.2.14. The ring extension

R = Z ⊂ S = Z[
√
−5] ∼= Z[x]/⟨x2 + 5⟩
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is integral, and the ideal p generated by 2 in Z is maximal. The ideal generated
by 2 in Z[

√
−5], however, is not even prime. Indeed, (1 +

√
−5) · (1−

√
−5) =

3 · 2 ∈ p. Using that Z[
√
−5]/⟨2⟩ ∼= F2[x]/⟨x2 + 1⟩ = F2[x]/⟨(x + 1)2⟩, we see

that P = ⟨2, 1 +
√
−5⟩ ⊂ Z[

√
−5] is the unique maximal ideal lying over p. ⊓*

Example 3.2.15. The extension of polynomial rings

R = R[e2, e3] ⊂ T = R[t1, t2]

defined by e2 = t1t2 + t1(−t1 − t2) + t2(−t1 − t2) and e3 = t1t2(t1 + t2) is
integral by Proposition 3.2.3 since both t1 and t2 are roots of the equation
x3 + e2x + e3 = 0 (the third root is −t1 − t2). Viewing

S = R[t1, e2, e3] ∼= R[x, e2, e3]/⟨x3 + e2x + e3⟩

as an intermediate ring in the natural way, we get a chain of integral ring
extensions R ⊂ S ⊂ T .

–1

0

1x –2
–1

0

a

–2

0

2

R, S and T , and branch loci.

Let p = ⟨e2 − a2, e3 − a3⟩ ⊂ R be the maximal ideal corresponding to a point
(a2, a3) ∈ A2(R). The proof of part 4 of the lying over theorem shows that
the maximal ideals of S and T lying over p arise from primary decompositions
of pS and pT . On the other hand, the polynomial t31 + a2t1 + a3 has at least
one real root, say b1. Then p1 = ⟨t1 − b1, e2 − a2, e3 − a3⟩ ⊂ S is a prime
ideal lying over p, and with residue field S/p1

∼= R. If the other two roots
of t31 + a2t1 + a3 are nonreal (they are, then, conjugate complex roots), the
polynomial t21 + b1t1 − a3/b1 is an irreducible factor of t31 + a2t1 + a3 over R,
so that p2 = ⟨t21 + b1t1−a3/b1, e2−a2, e3−a3⟩ ⊂ S is a prime ideal lying over
p, and with residue field S/p2

∼= C. It turns out that the number of real roots
of t31 + a2t1 + a3 depends on the sign of the discriminant D = −4e3

2 − 27e2
3

evaluated at (a2, a3). If D(a2, a3) < 0, then pS = p1 ∩ p2 decomposes into
two maximal ideals such that, say, S/p1

∼= R and S/p2
∼= C. Furthermore, pT

decomposes into three maximal ideals, all with residue field C. If D(a2, a3) >
0, then pS = p1∩p2∩p3 decomposes into 3 maximal ideals with residue fields
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S/pi
∼= R. Moreover, pT decomposes into six maximal ideals, all with residue

field R. ⊓*

Exercise 3.2.16. Check all the statements made in Example 3.2.15. ⊓*

An important property of an integral ring extension R ⊂ S is that nested
pairs of prime ideals of R and of S are closely related. This is the content of
two major results of Cohen-Seidenberg whose treatment is next. In Section
3.4, it will turn out that these results are fundamental to dimension theory.

Corollary 3.2.17 (Going Up Theorem of Cohen-Seidenberg). Let
R ⊂ S be an integral ring extension. If p1 ⊂ p2 are prime ideals of R, and P1

is a prime ideal of S lying over p1, there exists a prime ideal P2 of S lying
over p2 such that P1 ⊂ P2:

P1 ⊂ ∃ P2
...

p1 ⊂ p2

Proof. Applying the lying over theorem to the integral extension R = R/p1 ⊂
S = S/P1, we get a prime ideal P2 of S lying over p2/p1. The preimage P2

of P2 in S has the desired properties. ⊓*

Though we arrived at the algebraic results presented so far in this section by
revisiting the projection theorem and its proof, there is, as we show next, no
need to restrict ourselves to projections if we want to view the results in the
geometric context again. We use the following terminology:

Remark-Definition 3.2.18. Let A ⊂ An and B ⊂ Am be algebraic sets,
and let ϕ : A → B be a morphism. If ϕ(A) is Zariski dense in B, the induced
homomorphism ϕ∗ : R = K[B] → S = K[A] is injective (see Lemma 2.6.21
and its proof). We regard, then, R as a subring of S by means of ϕ∗, and call
ϕ a finite morphism if R ⊂ S is an integral (hence finite) ring extension. ⊓*

Recall that a map between topological spaces is said to be closed if it sends
closed sets to closed sets.

Corollary 3.2.19 (Properties of Finite Morphisms). Let ϕ : A → B be
a finite morphism of affine algebraic sets. Then:

1. If W is a subvariety of B, there is a subvariety V of A such that ϕ(V ) =
W . There are at most finitely many such varieties V . In particular, ϕ is
surjective and has finite fibers.

2. The image of every algebraic subset of A under ϕ is an algebraic subset
of B. That is, ϕ is closed with regard to the respective Zariski topologies.

3. If W1 ⊃ W2 is a nested pair of subvarieties of B, and V1 is a subvariety
of A such that ϕ(V1) = W1, there is a subvariety V2 of V1 such that
ϕ(V2) = W2:
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V1 ⊃ ∃ V2
...

W1 ⊃ W2

Proof. The assumption on ϕ means that ϕ∗ constitutes an integral ring ex-
tension

R = K[B] ⊂ S = K[A].

1. Let p = IB(W ) be the vanishing ideal of W in R. By lying over, there is a
prime ideal P ⊂ S such that P ∩ R = p. Then V = VA(P) is a subvariety of
A such that ϕ(V ) ⊂ W .

To show equality, let p be a point of W , and let m be its vanishing ideal
in R. Then p ⊂ m. Going up yields a prime ideal M of S lying over m and
containing P:

P ⊂ ∃ M
...

p ⊂ m

In fact, M is a maximal ideal by part 3 of the lying over theorem. The Null-
stellensatz implies that VA(M) consists of a single point q ∈ V . Necessarily,
p = ϕ(q) ∈ ϕ(V ), so that ϕ(V ) = W .

That only finitely many subvarieties of A are mapped onto W is clear since
only finitely many prime ideals of S are lying over p.

2. Decomposing into irreducible components, we reduce to the case of
a subvariety V of A. Then V = VA(P) for some prime ideal P of S, and
W = VB(P∩R) is a subvariety of B such that ϕ(V ) ⊂ W . As in the proof of
part 1, going up yields equality.

3. Again, apply the going up theorem as in the proof of part 1, replacing
p ⊂ m by IA(W1) ⊂ IA(W2) and P by I(V1). ⊓*

Example 3.2.20. The algebraic subset V(xy2−y) of the xy-plane is the union
of a hyperbola and a line. Projecting it to the x-axis, we get a morphism which
is surjective and has finite fibers. However, this morphism is not finite. In fact,
it is not even closed. ⊓*

Note that “going up” refers to the algebraic version of the theorem which
gives a prime ideal P2 larger than P1. Remarkably enough, there is also a
going down theorem. We need, however, a stronger hypothesis.

Example 3.2.21. Consider the homomorphism of polynomial rings

φ : k[x, y, z] → k[s, t], x '→ s, y '→ t2 − 1, z '→ t(t2 − 1).

Computing the reduced lexicographic Gröbner basis for the ideal

J = ⟨s− x, t2 − 1 − y, t(t2 − 1)− z⟩,

we get the polynomials
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y3 + y2 − z2, tz − y2 − y, ty − z,
t2 − y − 1, s− x.

Inspecting the Gröbner basis elements, we find: The kernel of φ is the principal
ideal generated by the first Gröbner basis element z2 − y2(y + 1), and the
induced ring extension

R = k[x, y, z]/⟨z2 − y2(y + 1)⟩ ⊂ S = k[s, t]

is integral (apply the criterion given in Exercise 3.2.6). Geometrically, the map
A2 → A3 corresponding to the ring extension parametrizes V(z2 − y2(y +1)):

The ideal P1 = ⟨s − t⟩ is the unique prime ideal of S lying over the prime
ideal p1 = P1∩R = ⟨x2−1−y, x(x2−1)−z⟩ of R. The ideal p2 = ⟨x−1, y, z⟩
is a maximal ideal of R containing p1. There are precisely two maximal ideals
of S lying over p2, namely ⟨s − 1, t + 1⟩ and ⟨s − 1, t − 1⟩. Their geometric
counterparts are the two points in the plane which are distinguished in the
picture. If P2 is chosen to be P2 = ⟨s−1, t+1⟩, then P2 does not contain P1.
Geometrically, the point (1,−1) does not lie on the line s = t. Thus, ”going
down” does not hold in this example. ⊓*

Exercise∗ 3.2.22. Prove all the statements made in Example 3.2.21. ⊓*

Definition 3.2.23. Let R be an integral domain. The integral closure of R
in its quotient field Q(R),

R̃ := {s ∈ Q(R) | s is integral over R},

is called the normalization of R. If R = R̃, then R is said to be normal. ⊓*

Proposition 3.2.24. If R is a UFD, then R is normal.

Proof. Let s ∈ Q(R). Since R is a UFD, we may write s as a fraction s = p/q
such that p and q are coprime. Let

sd + r1s
d−1 + . . . + rd = 0

be an integral equation for s over R. Multiplying by qd, the equation becomes
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pd = −q(r1p
d−1 + . . . + rdq

d−1) ∈ R.

So p is divisible by q since R is a UFD. Since p and q are coprime, we conclude
that q is a unit, and that s = pq−1 ∈ R. ⊓*

Example 3.2.25. 1. The polynomial ring k[x1, . . . , xn] is factorial and,
thus, normal.

2. The ring R = k[x, y, z]/⟨z2 − y2(y + 1)⟩ in Example 3.2.21 is not normal
since t = z/y ∈ Q(R) \ R is integral over R. ⊓*

Exercise 3.2.26. Show that the following rings are integral domains, and
find their normalizations:

1. The coordinate ring of the plane curve V(y2 − x2k+1) ⊂ A2, where k ≥ 1.
2. The coordinate ring of the Whitney umbrella V(x2 − y2z) ⊂ A3. ⊓*

In the proof of the Going Down Theorem 3.2.28 presented below, we will use
the following result:

Lemma 3.2.27. Let R be a normal ring, let K = Q(R) be its quotient field,
let L ⊃ K be an extension field, and let p be a prime ideal of R. If s ∈ L is
integral over p, then s is algebraic over K, and if ps = xd + c1xd−1 + · · ·+ cd

is the minimal polynomial of s over K, all coefficients ci lie in p.

Proof. Clearly, s is algebraic over K. Let K be the algebraic closure of K,
and let s = s1, . . . , sd ∈ K be the roots of ps. Then, for each j, there is an
automorphism of K fixing K and mapping s to sj . Thus, if f(s) = 0 is an
integral equation for s, where f ∈ R[x] has coefficients in p, then also f(sj) = 0
for each j. We conclude that the sj are integral over p. Since the coefficients
ci of ps are polynomial expressions in the sj , it follows from Proposition 3.2.3
that the ci must lie in rad (pR̃), where R̃ ⊂ K is the normalization of R. Since
R = R̃ and rad p = p by our assumptions on R and p, the ci actually lie in p,
as desired. ⊓*

Theorem 3.2.28 (Going Down Theorem of Cohen-Seidenberg). Let
R ⊂ S be an integral extension of integral domains, with R normal. If p1 ⊂ p2

are prime ideals of R, and P2 is a prime ideal of S lying over p2, there exists
a prime ideal P1 of S lying over p1 such that P1 ⊂ P2:

∃ P1 ⊂ P2
...
p1 ⊂ p2

Proof. We consider three multiplicatively closed subsets of S:

U1 := R \ p1, U2 := S \ P2, and U := U1 · U2 = {r · s | r ∈ U1, s ∈ U2}.

As a first step of the proof, we show that p1S ∩U = ∅. Then we apply Krull’s
prime existence lemma to obtain the result.
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Step 1. Suppose there is an element s ∈ p1S ∩ U .
Then s is is integral over p1 since s ∈ p1S (argue as in the proof of

the first part of the lying over theorem). Applying Lemma 3.2.27, we see
that the minimal polynomial of s ∈ L = Q(S) over K = Q(R) is of type
ps = xd + c1xd−1 + · · · + cd, with coefficients ci ∈ p1 ⊂ R.

Since s ∈ U , we may write s as a product s = r · s̃, with r ∈ U1 and s̃ ∈ U2.
Then

pes = xd +
c1

r
xd−1 + · · · + cd

rd

is the minimal polynomial of s̃ over K. Applying, again, Lemma 3.2.27, we
see that the coefficients ci/ri of pes must be contained in R since s̃ is integral
over R. In fact, the ci/ri are contained in p1 since ci ∈ p1 and ri /∈ p1 for
each i. It follows that s̃ is even integral over p1. So s̃ ∈ rad (p1S) ⊂ P2 by
Proposition 3.2.3, a contradiction to s̃ ∈ U2.

Step 2. Krull’s prime existence lemma yields a prime ideal P1 of S such
that p1S ⊂ P1 and P1 ∩ U = ∅. In particular, P1 ∩ U1 = ∅, so that P1 is
lying over p1, and P1 ∩ U2 = ∅, so that P1 ⊂ P2. ⊓*

Remark 3.2.29. Even if R is a Noetherian integral domain, its normalization
R̃ need not be Noetherian. In particular, the extension R ⊂ R̃ need not be
finite (see Nagata (1962), Appendix A1. Examples of bad Noetherian rings).
It is finite, however, if R is an affine domain. In this case, R̃ is again an affine
domain. The proof of this important finiteness result of Emmy Noether makes
use of Noether normalization and Galois theory (see, for instance, Eisenbud
(1995), Corollary 13.13). We refer to de Jong (1998) for an algorithm which
computes the normalization of affine domains. ⊓*

3.3 Noether Normalization

In the previous section, we proved results which reflect the projection theorem
from an algebraic point of view. In this section, we will revisit our original
application of the projection theorem, namely the proof of the Nullstellensatz.
As pointed out in Remark 3.1.6, this proof yields a composition of projections

π = πc ◦ · · · ◦ π1 : A = V(I) → An−c

which is surjective and has finite fibers (see Figure 3.1 for an illustration).
Intuitively, the number d = n− c should be the dimension of A. To make this
a formal definition, it is convenient to work on the level of rings. We will use:

Theorem-Definition 3.3.1. If S is an affine k-algebra, there are elements
y1, . . . , yd ∈ S such that:

1. y1, . . . , yd are algebraically independent over k.
2. k[y1, . . . , yd] ⊂ S is an integral (hence finite) ring extension.
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A3

↓

A2

Fig. 3.1. We project a surface which is called the swallowtail. Its equation
is −4z3y2 − 27y4 + 16z4x − 128x2z2 + 144xzy2 + 256x3=0.

If y1, . . . , yd satisfy conditions 1 and 2, the inclusion

k[y1, . . . , yd] ⊂ S

is called a Noether normalization for S.

Proof. We rewrite the proof of the Nullstellensatz in algebraic terms. Let
S = k[x1, . . . , xn]/I for some ideal I of some polynomial ring k[x1, . . . , xn].
As in Remark 3.1.6, we suppose that the coordinates are chosen such that
each nonzero elimination ideal Ik−1 = I ∩k[xk, . . . , xn] contains a polynomial
which is monic in xk. Then, if c is the smallest integer such that Ic = ⟨0⟩, we
have a sequence of integral ring extensions

k[xc+1, . . . , xn] ⊂ k[xc, . . . , xn]/Ic−1 ⊂ · · · ⊂ S

whose composite is a Noether normalization for S, with d = n− c. ⊓*

Remark 3.3.2. If k is infinite, and finitely many generators for S over k are
given, the yi may be chosen to be k-linear combinations of the generators. ⊓*

In practical terms, Remark 3.1.6 shows one way of finding a Noether normal-
ization for k[x1, . . . , xn]/I. To begin with, compute a lexicographic Gröbner
basis G for I. Let c be defined as in the proof above. For each 0 ≤ k ≤ c − 1,
check whether G contains a polynomial in xk, . . . , xn which is monic in xk (up
to a nonzero scalar factor). If so, the composition

R = k[xc+1, . . . , xn] ⊂ k[x1, . . . , xn] → S = k[x1, . . . , xn]/I

is a Noether normalization. If one of the monic polynomials is missing, start
over again in new coordinates.

Since >lex is an expensive monomial order, a Gröbner basis computation
with respect to >drlex may detect a Noether normalization faster – provided
the sufficient conditions given below are satisfied:
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Proposition 3.3.3. Let I ! k[x1, . . . , xn] be an ideal, and let > be a global
monomial order on k[x1, . . . , xn]. Suppose that, for some c, the following two
conditions hold:

1. L(I) ∩ k[xc+1, . . . , xn] = ⟨0⟩.
2. L(I) ⊃ ⟨x1, . . . , xc⟩m for some m.

Then the composition

R = k[xc+1, . . . , xn] ⊂ k[x1, . . . , xn] → S = k[x1, . . . , xn]/I

is a Noether normalization. For the lexicographic order, the conditions are
also necessary.

Proof. The residue classes xc+1, . . . , xn ∈ S are algebraically independent
over k iff the map R → S is a ring inclusion iff I ∩ k[xc+1, . . . , xn] = ⟨0⟩. This
condition is obviously satisfied if condition 1 holds. For >lex, also the converse
is true due to the key property of >lex (see Section 2.5).

On the other hand, by Macaulay’s Theorem 2.3.5, the R-module S is
finitely generated iff there are only finitely many monomials in k[x1, . . . , xc]
which are not contained in L(I). This, in turn, is equivalent to condition 2. ⊓*

Example 3.3.4. Let C ⊂ A3 be the twisted cubic curve. By Exercise 2.5.6,
the reduced Gröbner basis for I(C) with respect to >drlex consists of the three
polynomials

f1 = x2 − y, f2 = xy − z, f3 = y2 − xz.

Hence, L(I(C)) = ⟨x2, xy, y2⟩ = ⟨x, y⟩2, and it follows from Proposition 3.3.3
that

k[z] ⊂ k[x, y, z]/I(C)

is a Noether normalization. ⊓*

If the conditions of Proposition 3.3.3 are not satisfied, start over again in
new coordinates, and hope for the best. In some cases, the conditions can be
achieved by just permuting the variables. In contrast to a general change of
coordinates, a permutation of variables does not destroy sparseness.

Now, we come to the definition of dimension:

Definition 3.3.5. Let ∅ ̸= A ⊂ An be an algebraic set. If k is a field of
definition of A, if I ⊂ k[x1, . . . , xn] is an ideal such that A = V(I), and if

k[y1, . . . , yd] ⊂ k[x1, . . . , xn]/I

is a Noether normalization, we define d to be the dimension of A, written

dimA = d.

By convention, the dimension of the empty subset of An is −1. ⊓*



3.3 Noether Normalization 125

To show that dimA is well defined, we characterize the number d above in
field theoretic terms:

Theorem 3.3.6 (Dimension Theorem). Definition 3.3.5 is independent of
the choices made. Furthermore, we have:

1. The dimension of an algebraic subset of An is the maximum dimension of
its irreducible components.

2. If V ⊂ An is a variety, and K(V ) is its rational function field, then

dimV = trdeg K K(V ).

Proof. Using the notation of Definition 3.3.5, we proceed in four steps. In Steps
1 and 2, we show that it is enough to consider the case where k[x1, . . . , xn]/I
is the coordinate ring of A. In Step 3, we reduce to the case of a variety which,
in turn, is dealt with in Step 4. The last two steps show at the same time that
dimension can be characterized as in statements 1 and 2.

Step 1. Whether elements y1, . . . , yd ∈ k[x1, . . . , xn]/I satisfy the two con-
ditions in Theorem 3.3.1 can be checked using Gröbner bases (see Proposition
2.5.12 and Exercise 3.2.6). Taking Remark 2.7.1 on Buchberger’s algorithm
and field extensions into account, we find that k[y1, . . . , yd] ⊂ k[x1, . . . , xn]/I
is a Noether normalization iff

K[y1, . . . , yd] ⊂ K[x1, . . . , xn]/I K[x1, . . . , xn]

is a Noether normalization.
Step 2. Let k[y1, . . . , yd] ⊂ k[x1, . . . , xn]/I be a Noether normalization.

Then the composition

φ : k[y1, . . . , yd] ⊂ k[x1, . . . , xn]/I → k[x1, . . . , xn]/(rad I)

is injective and, thus, a Noether normalization as well. Indeed, otherwise,
we could find a nonzero element f ∈ kerφ. According to the definition of
the radical, a suitable power of f would, then, define a nontrivial k-algebra
relation on y1, . . . , yd ∈ k[x1, . . . , xn]/I.

Step 3. Let
K[y1, . . . , yd] ⊂ K[A]

be a Noether normalization, and let A = V1 ∪ · · · ∪ Vs be the decomposition
of A into its irreducible components. For each i, consider the composition

φi : K[y1, . . . , yd] ⊂ K[A] → K[Vi].

There are two possiblities. Either, φi is injective and, thus, a Noether normal-
ization. Or, the composition of the induced map K[y1, . . . , yd]/ kerφi → K[Vi]
with a Noether normalization K[z1, . . . , ze] → K[y1, . . . , yd]/ kerφ is a Noether
normalization such that e < d. But φi is injective for at least one i. Indeed,
otherwise, we could find a nonzero element fi ∈ kerφi for each i, and the prod-
uct of the fi would define a nontrivial K-algebra relation on y1, . . . , yd ∈ K[A].
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Step 4. If V ⊂ An is a variety, and K[y1, . . . , yd] ⊂ K[V ] is a Noether
normalization of its coordinate ring, then K(y1, . . . , yd) ⊂ K(V ) is an algebraic
field extension. Hence,

d = trdeg K K(y1, . . . , yd) = trdeg K K(V ). ⊓*

With notation as in Definition 3.3.5, let V be an irreducible component of
V(I) of maximal dimension d = trdeg K K(V ) = dim V(I). Since K(V ) =
K(x1, . . . , xn) is generated by the coordinate functions on V , there is an alge-
braically independent set of these of cardinality d. In other words, there is a
subset of variables u ⊂ {x1, . . . , xn} of cardinality d such that I(V ) ∩ K[u] =
⟨0⟩. In particular, I ∩ k[u] = ⟨0⟩. Together with the argument given in the
proof of Theorem 3.3.8 below, this shows that d is the maximum cardinality
of a subset u ⊂ {x1, . . . , xn} such that I ∩ k[u] = ⟨0⟩.

Example 3.3.7. The monomial ideal I = ⟨xz, yz⟩ defines the union of the xy-
plane and the z-axis in A2. Since I∩k[x, y] = ⟨0⟩, we must have dim V(I) = 2.
On the other hand, I ∩ k[z] is zero, too, but {z} cannot be enlarged to a set
of variables u of cardinality 2 such that I ∩ k[u] = ⟨0⟩. ⊓*

One way of finding the dimension of an algebraic set is to compute a Noether
normalization for its coordinate ring as discussed earlier in this section. This
may require that we apply a sufficiently general change of coordinates which
usually makes subsequent computations expensive. The characterization of
dimension in terms of elimination ideals given above is, at least for arbitrary
ideals, even less practical since it requires the computation of quite a number
of Gröbner bases with respect to different elimination orders. In the case of
a monomial ideal, however, the computation of the elimination ideals is com-
paratively cheap. Thus, the following result is the key to computing dimension
in the case of arbitrary ideals:

Theorem 3.3.8. Let I ! k[x1, . . . , xn] be an ideal, let V(I) be its locus of
zeros in An, and let > be a global monomial order on k[x1, . . . , xn]. Then

dim V(I) = d,

where d is the maximum cardinality of a subset of variables u ⊂ {x1, . . . , xn}
such that

L(I) ∩ k[u] = ⟨0⟩.

Proof. Applying, again, Remark 2.7.1 on Buchberger’s algorithm and field
extensions, we see that any set of monomial generators for L(I) also generates
L(I K[x1, . . . , xn]). We may, hence, suppose that k = K is algebraically closed.

To show that dim V(I) ≥ d, consider an integer k > dim V(I), and let
V(I) = V1 ∪ · · ·∪Vs be the decomposition of V(I) into its irreducible compo-
nents. Then, for every set of variables u = {xi1 , . . . , xik} and every component
Vj , the coordinate functions xi1 , . . . , xik ∈ k(Vj) are algebraically dependent
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over k by Theorem 3.3.6. This means that, for each j, there is a nonzero
polynomial fj ∈ k[u] vanishing on Vj . By Hilbert’s Nullstellensatz, a suitable
power of the product f1 · · · fs lies in I. In particular, I ∩ k[u] ̸= ⟨0⟩, so that
also L(I) ∩ k[u] ̸= ⟨0⟩.

To show that dim V(I) is exactly d, we need Hilbert functions of algebraic
sets in weighted projective spaces. These will be introduced in Chapter 6. We
will complete the proof of the theorem in Exercise 6.4.52. ⊓*

Example 3.3.9. We already know from Exercise 3.3.4 that the dimension of
the twisted cubic curve is 1. Applying Theorem 3.3.8, this can be seen as
follows: Considering, again, the reduced Gröbner basis

f1 = x2 − y, f2 = xy − z, f3 = y2 − xz

for I(C) with respect to >drlex, we find that u = {z} is a set of variables of
maximal cardinality such that

⟨x2, xy, y2⟩ ∩ k[u] = ⟨0⟩. ⊓*

By Theorem 3.3.6, the dimension of an algebraic set A is the maximum di-
mension of its irreducible components. If all the components have the same
dimension d, we say that A is equidimensional of dimension d. The words
curve, surface, and volume (or threefold) refer to an equidimensional al-
gebraic set of dimension 1,2, and 3, respectively.

Exercise∗ 3.3.10. Let A ⊂ An be an algebraic set. Show that A is a hyper-
surface iff it is equidimensional of dimension n − 1. ⊓*

In arbitrary dimension, we get sufficient conditions for equidimensionality
by strengthening condition 1 in Proposition 3.3.3. This is the content of the
following two results.

Proposition 3.3.11. Let I be a proper ideal of k[x1, . . . , xn], and let > be a
global monomial order on k[x1, . . . , xn]. Suppose that, for some c, the following
two conditions hold:

1’. L(I) is generated by monomials in k[x1, . . . , xc].
2. L(I) ⊃ ⟨x1, . . . , xc⟩m for some m.

Then the composition

R = k[xc+1, . . . , xn] ⊂ k[x1, . . . , xn] → S = k[x1, . . . , xn]/I

is a Noether normalization such that S is a free R-module (of finite rank).

Proof. Condition 1’ implies condition 1 of Proposition 3.3.3. Thus, if condi-
tions 1’ and 2 hold, it is clear from Proposition 3.3.3 and its proof that there
are only finitely many monomials m1, . . . , mk in k[x1, . . . , xc] which are not
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contained in L(I), that the mi = mi + I generate S as an R-module, and that
R → S is a Noether normalization.

We show that the mi are R-linearly independent. For this, let
∑k

i=1 fimi =
0 ∈ S be an R-relation which is zero. Then f :=

∑k
i=1 fimi ∈ I, so that L(f) ∈

L(I). But L(f) is of type L(f) = mmj , for some term m ∈ R = k[xc+1, . . . , xn]
and some j. Since mj ̸∈ L(I), condition 1’ implies that L(f) = 0 and, thus,
that f = 0. Then all the fi must be zero, as desired. ⊓*

Theorem-Definition 3.3.12 (Unmixedness Theorem). Let I be a proper
ideal of k[x1, . . . , xn]. Suppose that, for some c, the composition

R = k[xc+1, . . . , xn] ⊂ k[x1, . . . , xn] → S = k[x1, . . . , xn]/I

is a Noether normalization such that S is a free R-module (of finite rank).
Then, for every associated prime p of I, the dimension of V(p) ⊂ An is n− c.
In particular:

1. I is unmixed, that is, I has no embedded components.
2. V(I) ⊂ An is equidimensional of dimension n− c.

Proof. Let p be an associated prime of I. Then, by composing the natural
map S = k[x1, . . . , xn]/I → k[x1, . . . , xn]/p with the Noether normalization
R → S, we get a homomorphism

φ : R = k[xc+1, . . . , xn] → T = k[x1, . . . , xn]/p

which exhibits T as a finitely generated R-module. To show that φ is injective
(and, thus, that φ constitutes a Noether normalization), suppose the contrary.
Then there is a nonzero polynomial g ∈ p∩k[xc+1, . . . , xn]. Since p = I : f for
some polynomial f ∈ k[x1, . . . , xn]\I by the 1st Uniqueness Theorem 1.8.7 for
primary decomposition, it follows that gf ≡ 0 mod I, contradicting the fact
that S = k[x1, . . . , xn]/I is free over R. We conclude that dim V(p) = n− c.

For statement 1, let p1 ⊂ p2 be two associated primes of I, and let p1 and
p2 be their images in S = k[x1, . . . , xn]/I. Then, by the argument above, p1

and p2 are both lying over the zero ideal of R = k[xc+1, . . . , xn]. By part 2 of
the lying over theorem, p1 cannot be strictly contained in p2. Hence, I has no
embedded components.

Statement 2 is clear in the case where k = K is algebraically closed since,
then, the irreducible components of V(I) ⊂ An are precisely the vanishing
loci of the associated primes of I (there are only isolated components by
statement 1). The result in the general case follows, once more, from Re-
mark 2.7.1 on Buchberger’s algorithm and field extensions: First, we may use
Proposition 3.3.3 to check whether R → S is a Noether normalization (fix
>lex on k[x1, . . . , xn]). If this is true, it is clear from Proposition 3.3.3 and its
proof that there are only finitely many monomials m1, . . . , mk in k[x1, . . . , xc]
which are not contained in L(I), and that the mi = mi + I generate S as
an R-module. The check whether the mi are R-linearly independent amounts
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to computing that the elimination ideal ⟨m1, . . . , mk⟩ ∩ I ∩ k[xc+1, . . . , xn] is
zero, a task which can be dealt with using Gröbner bases. ⊓*

Remark 3.3.13. The importance of the unmixedness theorem is usually em-
phasized by calling an affine k-algebra S Cohen-Macaulay if it admits a
Noether normalization

R = k[y1, . . . , yd] ⊂ S

such that S is a free R-module. We should point out that if S is free over R
for one Noether normalization R ⊂ S, then the same is true for every Noether
normalization of S. Moreover, the general definition of a Cohen-Macaulay
ring given in other textbooks coincides in the case of affine rings with the
definition given here. The key ingredient of the proof of these nontrivial facts
is the theorem of Quillen and Suslin which, settling a conjecture of Serre
(see Kunz (1985)), asserts that all finitely generated projective modules over
k[x1, . . . , xn] are free.

We refer to Bruns and Herzog (1993), Matsumura (1986), and Eisenbud
(1995) for some historical remarks on the name Cohen-Macaulay and for fur-
ther reading on the topic of Cohen-Macaulay rings. In our book, the general
definition of a Macaulay ring will be given in Definition 4.6.23, but we will
not discuss this topic any further. ⊓*

Example 3.3.14. If I is the monomial ideal

I = ⟨x2
1, x

2
2, x1x2x3⟩ ⊂ k[x1, x2, x3],

then R = k[x3] → S = k[x1, x2, x3]/I is a Noether normalization by Proposi-
tion 3.3.3. In fact, S is generated over R by the residue classes 1, x1, x2, x1x2.
Hence, S is not a free R-module since x3 · (x1x2) = 0 ∈ S. Accordingly,
condition 1’ of Theorem 3.3.11 is not fulfilled. ⊓*

Example 3.3.15. Considering, once more, the twisted cubic curve C ⊂ A3

and the reduced Gröbner basis

f1 = x2 − y, f2 = xy − z, f3 = y2 − xz

for I(C) with respect to >drlex, we see that

k[z] ⊂ k[x, y, z]/I(C) = k[C]

is a Noether normalization such that k[C] is a free k[z]-module of rank 3
(1, x, y form a basis). In particular, C is indeed a curve in the sense that it is
equidimensional of dimension 1. ⊓*

3.4 Krull Dimension

If V1 ! V2 ⊂ An are varieties, that is, if I(V2) ! I(V1) are prime ideals, then
dimV1 < dimV2 by lying over (argue as in the proof of statement 1 of the
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Unmixedness Theorem 3.3.12). Taking our cue from this observation, we will
be lead to yet another characterization of dimension.

We use the following notation. If R is a ring, a sequence

p0 ! p1 ! . . . ! pd

of prime ideals of R with strict inclusions is called a chain of prime ideals
of R. The number d of inclusions is called the length of the chain. The chain
is said to be maximal if it cannot be extended to a chain of greater length
by inserting an extra prime ideal.

Definition 3.4.1. Let R be a ring. The Krull dimension (or simply the
dimension) of R, written dim R, is the supremum of the lengths of chains
of prime ideals of R. If I is a proper ideal of R, the dimension of I, written
dim I, is defined to be the dimension of R/I. ⊓*

By lying over and going up, we get:

Proposition 3.4.2. If R ⊂ S is an integral ring extension, then

dim R = dimS. ⊓*

In what follows, we show that the dimension of an ideal I ! k[x1, . . . , xn]
coincides with the dimension of its locus of zeros V(I) ⊂ An. Considering a
Noether normalization for k[x1, . . . , xn]/I, and taking Proposition 3.4.2 above
into account, this amounts to showing that the Krull dimension of a polyno-
mial ring over k equals the number of its variables.

That the dimension of k[x1, . . . , xn] is at least n is clear since

⟨0⟩ ! ⟨x1⟩ ! ⟨x1, x2⟩ ! . . . ! ⟨x1, . . . , xn⟩

is a chain of prime ideals of length n. To show that there is no chain of greater
length, we will proceed by induction on the number of variables, relying on
the following result:

Theorem 3.4.3 (Noether Normalization, Refined Version). Let S be
an affine k-algebra, and let I ! S be an ideal. There exist integers δ ≤ d and
a Noether normalization

k[y1, . . . , yd] ⊂ S

such that
I ∩ k[y1, . . . , yd] = ⟨y1, . . . , yδ⟩.

Proof. Let k[x1, . . . , xd] ⊂ S be any Noether normalization. Since the compo-
sition of two finite ring extensions is again finite, it is enough to find a Noether
normalization k[y1, . . . , yd] ⊂ k[x1, . . . , xd] such that I ∩ k[y1, . . . , yd] =
⟨y1, . . . , yδ⟩ for some δ ≤ d. We may, thus, suppose that S = k[x1, . . . , xd]
is a polynomial ring.
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In this case, if I = ⟨0⟩, there is nothing to show. If I is nonzero, by Lemma
3.1.3, we may choose the coordinates such that I contains a monic polynomial
f = xk

1 + c1x
k−1
1 + . . . + ck, with all ci ∈ k[x2, . . . , xd]. Let y1 := f . Then

k[y1, x2, . . . , xd] ⊂ k[x1, . . . , xd]

is a finite ring extension since

xk
1 + c1x

k−1
1 + . . . + ck − y1 = 0

is an integral equation for x1 over k[y1, x2, . . . , xd]. On the other hand,
by induction on d, we may suppose that there is a Noether normalization
k[y2, . . . , yd] ⊂ k[x2, . . . , xd] such that I ∩ k[y2, . . . , yd] = ⟨y2, . . . , yδ⟩ for some
δ ≤ d. Then the composition

k[y1, . . . , yd] ⊂ k[y1, x2, . . . , xd] ⊂ k[x1, x2, . . . , xd]

is a finite ring extension as well. Moreover, y1, . . . , yd are algebraically inde-
pendent over k since, otherwise, the transcendence degree of k(x1, . . . , xd) over
k would be smaller than d, contradicting the algebraic independence of the xi.
Finally, since every polynomial f ∈ I ∩ k[y1, . . . , yd] can be written as a sum
f = gy1 + h, where g ∈ k[y1, . . . , yd] and h ∈ I ∩ k[y2, . . . , yd] = ⟨y2, . . . , yδ⟩,
we conclude that I ∩ k[y1, . . . , yd] = ⟨y1, . . . , yδ⟩. This shows that the desired
Noether normalization exists. ⊓*

The geometric interpretation of the theorem is as follows: Given an algebraic
set A ⊂ An together with a subvariety B ⊂ A, there is a surjective map
π : A → Ad with finite fibers which maps B onto a linear subspace of Ad.

Exercise 3.4.4. Let I ⊂ S = k[x1, . . . , x4] be the ideal which is generated by
the 2 × 2 minors of the matrix

(
x1 x2 x3

x2 x3 x4

)
.

Find a Noether normalization as in Theorem 3.4.3. ⊓*

Exercise 3.4.5. Formulate and prove a refined version of Noether normaliza-
tion involving chains of ideals I1 ⊂ · · · ⊂ Im ⊂ S.
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⊓*

Theorem 3.4.6. The polynomial ring k[x1, . . . , xn] has Krull dimension n.
In fact, every maximal chain of prime ideals of k[x1, . . . , xn] has length n.

Proof. Since every chain of prime ideals of the Noetherian ring k[x1, . . . , xn]
can be extended to a maximal chain of prime ideals, it suffices to prove the
second assertion. That is, given a maximal chain

P0 ! P1 ! . . . ! Pm (3.2)

of prime ideals of k[x1, . . . , xn], we must show that m = n. We proceed in
three steps.

Step 1. To begin, P0 = ⟨0⟩ since k[x1, . . . , xn] is an integral domain.
Furthermore, Pm is a maximal ideal. n particular, m ≥ 1. Applying Theorem
3.4.3 to P1, we get a Noether normalization k[y1, . . . , yn] ⊂ k[x1, . . . , xn] such
that P1 ∩ k[y1, . . . , yn] = ⟨y1, . . . , yδ⟩ for some δ ≤ n. Then δ = 1 since,
otherwise, going-down would yield a prime ideal Q ⊂ k[x1, . . . , xn] lying over
⟨y1, . . . , yδ−1⟩, and such that P0 = ⟨0⟩ ! Q ! P1.

Writing pi = Pi ∩ k[y1, . . . , yn] for all i, we get a chain

⟨0⟩ = p0 ! p1 ! · · · ! pm (3.3)

of prime ideals of k[y1, . . . , yn] (all inclusions are strict by part 2 of the lying
over theorem). We show that this chain is maximal. Suppose, to the con-
trary, that there is a prime ideal q ⊂ k[y1, . . . , yn] with strict inclusions
pi ! q ! pi+1 for some i. Then 1 ≤ i ≤ m − 1 since p0 = ⟨0⟩, and since
pm is maximal by part 3 of the lying over theorem. Applying Theorem 3.4.3
to pi, we get a Noether normalization k[z1, . . . , zn] ⊂ k[y1, . . . , yn] such that
pi ∩ k[z1, . . . , zn] = ⟨z1, . . . , zδ′⟩ for some δ′ ≤ n. The composition

k[zδ′+1, . . . , zn] ⊂ k[y1, . . . , yn] → k[y1, . . . , yn]/pi

is a Noether normalization as well, and we have strict inclusions

⟨0⟩ ! (q/pi) ∩ k[zδ′+1, . . . , zn] ! (pi+1/pi) ∩ k[zδ′+1, . . . , zn].

Since k[zδ′+1, . . . , zn] ⊂ k[x1, . . . , xn]/Pi is also a Noether normalization, we
see by going down that we may insert a prime ideal between ⟨0⟩ and Pi+1/Pi

in k[x1, . . . , xn]/Pi and, thus, also between Pi and Pi+1 in k[x1, . . . , xn]. This
contradicts the maximality of (3.2). We conclude that (3.3) is maximal, too.

Step 3. The maximal chain (3.3) corresponds to a maximal chain of prime
ideals of k[y1, . . . , yn]/p1 = k[y1, . . . , yn]/⟨y1⟩ ∼= k[y2, . . . , yn] of length m − 1.
Thus, we are done by induction on the number of variables. ⊓*

Corollary 3.4.7. If R is an affine domain over k, then

dimR = trdeg k Q(R).

This is the common length of all maximal chains of prime ideals of R.
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Proof. Let k[y1, . . . , yd] ⊂ R be a Noether normalization. Then dimR =
dim k[y1, . . . , yd] = d by Proposition 3.4.2 and Theorem 3.4.6. Since also
trdeg k Q(R) = trdeg k k(y1, . . . , yd) = d, we must have dim R = trdeg k Q(R).

Write, now, R as the quotient of a polynomial ring k[x1, . . . , xn] by a prime
ideal q, and fix a chain q0 = ⟨0⟩ ! · · · ! qc = q of prime ideals which cannot
be extended to a longer chain of prime ideals with largest ideal q. The fixed
chain and the preimage of any given maximal chain of prime ideals of R fit
together to a maximal chain of prime ideals of k[x1, . . . , xn] which necessarily
has length n by Theorem 3.4.6. From this, the result follows. ⊓*

Definition 3.4.8. Let R be a ring, and let I ! R be an ideal. The codimen-
sion of I, written codim I, is defined as follows. If I = p is a prime ideal, its
codimension is the supremum of the lengths of all chains of prime ideals of R
with largest prime ideal p. If I is arbitrary, its codimension is the minimum
of the codimensions of the prime ideals containing I. ⊓*

Corollary 3.4.9. If R is an affine domain over k, and I ! R is an ideal,
then

dim I + codim I = dimR.

Proof. The assertion is a consequence of the preceeding corollary since dim I
can be expressed in terms of a maximal chain of prime ideals of R which
includes a prime ideal p ⊃ I such that codim I = codim p. ⊓*

From the proof, we see that if I is a proper ideal of an arbitrary ring R, then

dim I + codim I ≤ dimR.

The following example shows, however, that in rings other than affine domains,
equality does not necessarily hold:

Example 3.4.10. Let R = k[x, y, z]/⟨xz, yz⟩ be the coordinate ring of the
union of the xy-plane and the z-axis, and let P = ⟨x, y, z−1⟩ be the maximal
ideal of R corresponding to the point p = (0, 0, 1) on the z-axis. Then

codimP + dim P = 1 + 0 ̸= 2 = dim R.

Observe that R contains maximal chains of prime ideals of different length. ⊓*
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The notion of codimension originates from the geometric setting. If ∅ ̸=
A ⊂ An is an algebraic set, and B ⊂ A is an algebraic subset, the codi-
mension of B in A, written codimA B, is defined as follows. If B is
nonempty, rewrite Definition 3.4.8 in terms of subvarieties of A. Equivalently,
codimA B = codim IA(B). If B is the empty subset of A, by convention,
codimA B = ∞. The analogue of Corollary 3.4.9 holds accordingly. In the
situation of Example 3.4.10, the codimension of a point q ∈ V(xz, yz) is 1 if
q lies on the z-axis, and 2, otherwise.

Remark 3.4.11. The notion of Krull dimension extends the concept of di-
mension from affine algebraic sets, that is, from affine rings, to arbitrary rings
(commutative, and with a multiplicative identity). For instance, we can, thus,
assign a dimension to the ring of integers:

dim Z = 1.

Indeed, each nonzero prime ideal of Z is a principal ideal generated by a
prime number and, thus, a maximal ideal. More generally, every principal
ideal domain which is not a field has Krull dimension 1. ⊓*

In developing some intuitive understanding of Krull dimension, the beginner
may face a couple of surprises. For example, it turns out that even Noetherian
rings may have infinite dimension (see Nagata (1962), Appendix A1. Examples
of bad Noetherian rings).

3.5 Reduction to Hypersurfaces

Our goal in this section is to show that every affine variety is birationally
equivalent to a hypersurface in some affine space. In fact, we prove a some-
what stronger result which is based on a field theoretic version of Noether
normalization.

Proposition 3.5.1 (Noether Normalization and Separability). Let S
be an affine domain over the algebraically closed field K, and let L be the
quotient field of S. Then there are y1, . . . , yd ∈ S such that:

1. K[y1, . . . , yd] ⊂ S is a Noether normalization.
2. K(y1, . . . , yd) ⊂ L is a separable field extension.

Proof. In characteristic zero, every field extension is separable. We suppose,
therefore, that char K = p > 0.

Let S = K[x1, . . . , xn]/p for some prime ideal p of some polynomial ring
K[x1, . . . , xn]. If p = ⟨0⟩, there is nothing to prove. If p is nonzero, it contains
an irreducible polynomial f . For each i, considering f as a polynomial in
xi, with coefficients in K(x1, . . . , xi−1, xi+1, . . . , xn), we either have that f is
separable in xi or that the formal derivative of f with respect to xi is zero.
In the latter case, f ∈ K[x1, . . . , x

p
i , . . . , xn] by Exercise 1.1.3.
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Suppose that f is inseparable in each xi. Then f ∈ K[xp
1, . . . , x

p
n]. Since K

is algebraically closed, it contains a pth root of every coefficient of f . Using
the characteristic p identity (a + b)p = ap + bp, we see that f has a pth root
in K[x1, . . . , xn]. That is, there is a polynomial g ∈ k[x1, . . . , xn] such that
gp = f :

f =
∑

aαx
pα1
1 · · ·xpαn

n = (
∑

bαx
α)p, where bp

α = aα.

This contradicts the irreducibility of f .
So f is separable in at least one of the xi, say in x1. Choosing a2, . . . , an ∈

K sufficiently general as in the proof of Lemma 3.1.3, and expanding f(x1, x̃2+
a2x1, . . . , x̃n + anx1), we get a polynomial

axe
1 + c1(x̃2, . . . , x̃n)xe−1

1 + . . . + ce(x̃2, . . . , x̃n)

which provides both an integral equation for x1 ∈ S over K[x̃2, . . . , x̃n] and
a separable equation for x1 ∈ L over K(x̃2, . . . , x̃n). The result follows as in
the proof of Theorem 3.3.1 since the composition of any sequence of separable
field extensions is separable. ⊓*

Theorem 3.5.2 (Reduction to Hypersurfaces). For any affine variety V
of dimension d, there exists a finite morphism V → W onto a hypersurface
W ⊂ Ad+1 which is a birational equivalence of V with W .

Proof. Let x1, . . . , xn be generators for S = K[V ] as a K-algebra, and choose
y1, . . . , yd ∈ K[V ] as in Proposition 3.5.1 above. Then K[V ] is a finite
K[y1, . . . , yd]-algebra, and L = K(V ) is a finite separable field extension of
K(y1, . . . , yd) which is generated by x1, . . . , xn. By the primitive element the-
orem from Galois theory (see, for instance, Dummit and Foote (2003), Section
14.4), we can find a K(y1, . . . , yd)-linear combination yd+1 of the xi such that
K(V ) is generated by yd+1 over K(y1, . . . , yd). Clearing denominators, yd+1

can be taken as a K[y1, . . . , yd]-linear combination of the xi and, thus, as an
element of K[V ].

If f(y1, . . . , yd, yd+1) = 0 is an integral equation for yd+1 over k[y1, . . . , yd]
of minimal degree, then f is an irreducible polynomial in d + 1 variables
which, considered as a univariate polynomial with coefficients in K[y1, . . . , yd],
is the minimal polynomial of K(V ) over k(y1, . . . , yd). Hence, f defines an ir-
reducible hypersurface W ⊂ Ad+1, and the finite ring inclusion φ : k[W ] =
K[y1, . . . .yd, yd+1] → K[V ] extends to an isomorphism K(W ) → k(V ) of ra-
tional function fields. It follows, that the morphism V → W induced by φ is
both finite and a birational equivalence of V with W . ⊓*

If k is a field of definition of V , the arguments given in the two proofs above
actually show that in characteristic zero, W and the morphism V → W can
be chosen to be defined over k, too. In positive characteristic, we might need
a finite field extension.
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3.6 Additional exercises



Chapter 4

Local Properties

In the preceeding chapters, we developed the geometry-algebra dictionary
from a global point of view, focusing on geometric questions which concern
a given algebraic set A as a whole. Accordingly, we studied functions defined
on all of A, the polynomial functions on A, and used the ring k[A] formed by
these functions to express geometric properties of A in ring theoretic terms.
Algorithmically, we computed Gröbner bases with respect to what we called
global monomial orders.

In this chapter, we will be interested in geometric properties which are
local in the sense that they reflect the behavior of A near a given point p ∈ A.
In defining the basic local property, which is smoothness, we will rely on the
concept of the tangent space. Intuitively, p is a smooth point of A if the
tangent space TpA approximates A near p (otherwise, we will say that p is
a singular point of A). Here, we will define TpA over any field in a purely
algebraic way (no limiting process as in calculus is needed). We will show
that the singular points form an algebraic subset of A, and we will prove the
Jacobian criterion which, in many cases of interest, allows one to compute the
equations of this subset, and to check whether the given polynomials defining
A actually generate a radical ideal.

We will, then, describe the construction of the local ring OA,p whose ele-
ments are germs of functions defined on Zariski open neighborhoods of p in A.
It will turn out that A is smooth at p iff OA,p is a regular local ring. Focusing
on the general and purely algebraic nature of the construction of OA,p, we
will be lead to the concept of localization which plays an important role in
commutative algebra. In fact, localization often allows one to reduce problems
concerning arbitrary rings to problems concerning local rings which are much
easier. One reason why local rings are easier to handle than arbitrary rings is
Nakayama’s lemma. As a typical application of this lemma, we prove a special
case of Krull’s intersection theorem.

Returning to more geometric questions, we will use the local ring OA2,p

to define the intersection multiplicity of two plane curves at a point p ∈ A2.
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Making, thus, preperations for the treatment of Bezout’s theorem in Chapter
5, we will verify a number of properties of intersection multiplicities.

Algorithmically, the computation of the multiplicities is based on a version
of Buchberger’s algorithm for computing Gröbner bases with respect to what
we will call local monomial orders.

Motivated by rationality problems which may arise in such computations,
we will give an alternative definition of the multiplicities using the notion of
modules of finite length. Discussing this notion, we will show that a ring R has
finite length iff it is Artinian, that is, R satisfies the descending chain condition.
Applying this fact in a localized situation (which will allow us to benefit from
Nakayama’a lemma), we will prove Krull’s principal ideal theorem.

In the final section, we will treat the completion ÔA,p of OA,p. This will
help us to overcome a drawback of OA,p which is due to the fact that Zariski
open sets are rather large. Since OA,p consists of (germs of) functions defined
on such sets, it carries information on too much of A. In contrast, the larger
ring ÔA,p carries far more local information. Another topic, which we will
treat briefly, is the tangent cone TCpA which approximates A near p even if
p is a singular point of A.

4.1 Smoothness

We will define smoothness such that in case K = C, an algebraic set A ⊂ An is
smooth at a point p ∈ A iff A is a complex submanifold of An in an Euclidean
neighborhood of p. Equivalently, we will require that the hypothesis of the
implicit function theorem is fulfilled. In making this precise, we will first study
the hypersurface case, which is intuitively easy to understand, and where
important consequences of the definition are easy to prove.

We fix our ideas by illustrating the special case of a plane curve. Let
f ∈ C[x, y] be a nonconstant square-free polynomial, let C = V(f) ⊂ A2(C)
be the corresponding curve, and let p = (a, b) ∈ C be a point. In this situa-
tion, the complex variable version of the implicit function theorem asserts that
if the gradient

(∂f
∂x (p), ∂f

∂y (p)
)

is nonzero, then there is an Euclidean neigh-
borhood of p in which C can be exhibited as the graph of a holomorphic
function. Supposing, say, that ∂f

∂y (p) ̸= 0, the precise statement is that there
are open neighbourhoods U1 of a and U2 of b in the Euclidean topology and
a holomorphic function g : U1 → U2 such that g(a) = b and

C ∩ (U1 × U2) = {(x, g(x)) | x ∈ U1}.
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y

f(x, y) = 0

b

a x

Reflecting this fact, we get a well defined tangent line to C at p (the linear
approximation of C near p) by interpreting the existence of the differential
quotient of g at x = a geometrically – the tangent line is the limiting position
of secant lines to C passing through p:

y

a x

tangent

graph of g

g(x) − g(a)

secants

Since
g′(a) = −∂f

∂x
(p)/

∂f

∂y
(p)

by the chain rule, we may rewrite the equation y = b + g′(a)(x − a) of the
tangent line in terms of f :

∂f

∂x
(p)(x − a) +

∂f

∂y
(p)(y − b) = 0. (4.1)

There is no algebraic geometry analogue of the implicit function theorem:
Even though we are concerned with a polynomial f in our considerations,
it is usually not possible to choose the Ui as neighborhoods in the Zariski
topology and g as a polynomial function. From a topological point of view, as
illustrated by the example in the following picture, the Zariski open sets are
simply too big:
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On the other hand, using formal partial derivatives, equation (4.1) makes
sense even in case K ̸= C. We, therefore, define:

Remark-Definition 4.1.1. 1. If f ∈ K[x1, . . . , xn] is a polynomial, and
p = (a1, . . . , an) ∈ An is a point, the differential of f at p, written dpf , is
defined to be

dpf =
n∑

i=1

∂f

∂xi
(p)(xi − ai) ∈ K[x1, . . . , xn].

That is, dpf is the linear part of the Taylor expansion of f at p:

f = f(p) + dpf + terms of degree ≥ 2 in the xi − ai.

2. Let A ⊂ An be a hypersurface, let p ∈ A be a point, and let f ∈
K[x1, . . . , xn] be a generator for I(A). Then the tangent space to A at
p, denoted TpA, is the linear subvariety

TpA = V(dpf) ⊂ An.

We say that p is a smooth (or a nonsingular) point of A if TpA is a
hyperplane, that is, if dpf is nonzero.

Otherwise, TpA = An, and we call p a singular point of A. ⊓*

Example 4.1.2. The origin o = (0, 0) ∈ A2(C) is a singular point of each
cubic curve shown below:
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y2 = x3 + x2 y2 = x3 y2 = xy + x2y − x3 ⊓*

The tangent space TpA is the union of all lines meeting A with multiplicity
at least 2 at p:

Proposition 4.1.3. Let A ⊂ An be a hypersurface, and let I(A) = ⟨f⟩.

1. Let p = (a1, . . . , an) ∈ A be a point, and let L ⊂ An be a line through
p, given by the parametric equations xi = ai + tvi, i = 1, . . . , n, where
v = (v1, . . . , vn) ∈ An is a direction vector of L. Then L ⊂ TpA iff the
polynomial F (t) := f(p + tv) ∈ K[t] vanishes with multiplicity ≥ 2 at 0.

2. The set Asing of singular points of A is a proper algebraic subset of A:

Asing = V(f,
∂f

∂x1
, . . . ,

∂f

∂xn
) ! A.

Proof. 1. The result follows from the chain rule: ∂F
∂t (0) =

∑n
i=1 vi

∂f
∂xi

(p).
2. That Asing = V(f, ∂f

∂x1
, . . . , ∂f

∂xn
) is clear from our definitions. In partic-

ular, Asing is an algebraic subset of A. To show that Asing is properly contained
in A, suppose the contrary. Then, for all i, the partial derivative ∂f

∂xi
is con-

tained in ⟨f⟩, so that ∂f
∂xi

= 0 by degree reasoning. If char K = 0, this implies
that f is constant, contradicting our assumption that A is a hypersurface. If
char K = p > 0, we must have f ∈ K[xp

1, . . . , x
p
n] (see Exercise 1.1.3). As in the

proof of Proposition 3.5.1, we conclude that f has a pth root in K[x1, . . . , xn].
This contradicts the fact that I(A) = ⟨f⟩ is a radical ideal. ⊓*

Example 4.1.4. The set of singular points of the Whitney umbrella

V(x2 − y2z) ⊂ A3(C)

is the z-axis
V(x2 − y2z, 2x,−2yz,−y2) = V(x, y).

We show a real picture:
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⊓*

Exercise 4.1.5. 1. Find all singular points of the curve

V(x2 − 2x3 + x4 + y2 − 2y3 + y4 − 3
2
x2y2) ⊂ A2(C).

Draw a picture of the real points of this curve.
2. Find all singular points of the curve V(f) ⊂ A2(C), where f is the degree-7

polynomial considered in Example 1.2.4, part 3.

0

0

1

!1

1!1 2

2

x

y

⊓*

We, now, turn from hypersurfaces to arbitary algebraic sets:

Definition 4.1.6. Let A ⊂ An be an algebraic set, and let p ∈ A be a point.
The tangent space to A at p, denoted TpA, is the linear subvariety

TpA = V(dpf | f ∈ I(A)) ⊂ An. ⊓*
As in Proposition 4.1.3, a line L = {p + tv | t ∈ K} is contained in TpA iff all
polynomials f(p + tv) ∈ K[t], f ∈ I(A), vanish with multiplicity ≥ 2 at 0.

Remark 4.1.7. 1. In defining the tangent space, it suffices to consider a set
of generators for the vanishing ideal of A: if I(A) = ⟨f1, . . . , fr⟩, then

TpA = V(dpfi | i = 1, . . . , r) ⊂ An.

In particular,

dimK TpA = n− rank
(
∂fi

∂xj
(p)
)

.
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2. The function
A → N, p '→ dimTpA,

is upper semicontinous in the Zariski topology on A. That is, for any integer
k, the subset

{p ∈ A | dimK TpA ≥ k} ⊂ A

is Zariski closed. Indeed, this subset is the intersection of A with the locus of
zeros of the (n− k + 1)× (n− k + 1) minors of the Jacobian matrix

(
∂fi

∂xj

)
.
⊓*

Example 4.1.8. Let A = V(xz, yz) = V(x, y) ∪ V(z) =: L ∪ P ⊂ A3 be the
union of the z-axis and the xy-plane:

If o = (0, 0, 0) ∈ A3 is the origin, and p ∈ A is any point, then dimTpA = 1 if
p ∈ L \ {o}, dimTpA = 2 if p ∈ P \ {o}, and dim TpA = 3 if p = o. ⊓*
According to our definition, a hypersurface A ⊂ An is smooth at a point
p ∈ A if the dimension of A equals the dimension of the tangent space TpA.
In extending this definition to an arbitrary algebraic set A, we have to take
into account that, in contrast to the hypersurface case, A may have irreducible
components of different dimension. On the other hand, the behavior of A near
p ∈ A is only effected by those components passing through p.

Definition 4.1.9. Let A ⊂ An be an algebraic set, and let p ∈ A be a point.
The local dimension of A at p, written dimp A, is the maximum dimension
of an irreducible component of A containing p. ⊓*
We always have

dimK TpA ≥ dimp A. (4.2)
In contrast to the hypersurface case, however, the result for arbitrary alge-
braic sets is not immediately clear from the definitions. We will prove it in a
more general algebraic setting in Corollary 4.6.20 as a consequence of Krull’s
principal ideal theorem.

Definition 4.1.10. Let A ⊂ An be algebraic.

1. We say that A ⊂ An is smooth (or nonsingular) at p ∈ A if

dimK TpA = dimp A.

We, then, refer to p as a smooth (or a nonsingular) point of A. Otherwise,
we say that A is singular at p, that p is a singular point of A, or that p is
a singularity of A.
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2. The set Asing of singular points of A is called the singular locus of A.
If Asing is empty, that is, if A is smooth at each of its points, then A is called
smooth. ⊓*

Remark 4.1.11. Let A ⊂ An be an algebraic set.

1. If A is smooth at p, then p is contained in a single component of A. In fact,
if A = V1 ∪ · · ·∪Vs is the decomposition of A into its irreducible components,
then

Asing =
⋃

i̸=j

(Vi ∩ Vj) ∪
⋃

i

(Vi)sing

(we will establish this in Corollary 4.6.26). In particular, Asing is an algebraic
subset of A since this is true in the case where A is irreducible. Indeed, in
this case, dimp A = dim A for all p ∈ A, and we may apply part 2 of Remark
4.1.7, with k = dimA + 1.
2. The singular locus Asing and A have no irreducible component in common.

That is, for any irreducible component Vi of A, we have Asing∩Vi ! Vi. Using
Theorem 3.5.2 and the formula in part 1 above, we will deduce this fact in
Corollary 4.2.16 from the hypersurface case. ⊓*

If generators f1, . . . , fr for the vanishing ideal I(A) are given, and the local
dimension dimp A is known to us, we can decide whether A is smooth at p

by computing dimK TpA = n − rank
(
∂fi

∂xj
(p)
)
, and comparing this number

with dimp A. The Jacobian criterion, which we treat next, often allows one to
test smoothness without having to check a priori that the given polynomials
f1, . . . , fr defining A actually generate I(A). In fact, under the assumptions of
the corollary to the Jacobian criterion stated below, this will follow a poste-
riori. In this way, the corollary gives a powerful method for establishing that
f1, . . . , fr generate a radical ideal.

Theorem 4.1.12 (Jacobian Criterion). Let A ⊂ An be an algebraic sub-
set, let p ∈ A a point, and let f1, . . . , fr ∈ I(A). Then

n− rank
(
∂fi

∂xj
(p)
)
≥ dimp A.

If equality holds, then A is smooth at p.

Proof. This follows from the chain of inequalities

n − rank
(
∂fi

∂xj
(p)
)
≥ dimK TpA ≥ dimp A.

⊓*

Corollary 4.1.13. Let I = ⟨f1, . . . , fr⟩ ⊂ k[x1, . . . , xn] be an ideal such that
A = V(I) ⊂ An is equidimensional of dimension d, and let In−d

(
∂fi

∂xj

)
denote

the ideal generated by the (n− d)× (n− d) minors of the Jacobian matrix of
the fi. If In−d

(
∂fi

∂xj

)
+ I = ⟨1⟩, then A is smooth and I K[x1, . . . xn] = I(A).

In particular, I is a radical ideal.
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Proof. The subset V(In−d

(
∂fi

∂xj

)
+ I) = {p ∈ A | n− rank

(
∂fi

∂xj
(p)
)

> d} ⊂ A

is empty by the assumption on In−d

(
∂fi

∂xj

)
+ I and Hilbert’s Nullstellensatz.

Since each irreducible component of A has dimension d, the Jacobian crite-
rion implies that A is smooth. That I K[x1, . . . xn] = I(A) will be established
towards the end of Section 4.6. ⊓*

Under a stronger assumption, the Jacobian criterion can also be applied if
1 ̸∈ In−d

(
∂fi

∂xj

)
+ I:

Corollary 4.1.14. Let I = ⟨f1, . . . , fr⟩ ⊂ k[x1, . . . , xn] be an ideal of di-
mension d, and let A = V(I) ⊂ An. Suppose that k[x1, . . . , xn]/I is Cohen-
Macaulay (by the Unmixedness Theorem 3.3.12, this implies that A is equidi-
mensional of dimension d). With notation as in Corollary 4.1.13, if

dim V(In−d

(
∂fi

∂xj

)
+ I) < dim V(I) = d,

then I K[x1, . . . xn] = I(A) and V(In−d

(
∂fi

∂xj

)
+ I) = Asing. In particular, I is

a radical ideal.

Proof. This will also be established towards the end of Section 4.6. ⊓*

The following example shows that the assumption of equidimensionality in
Corollary 4.1.13 is really needed:

Example 4.1.15. Let I = ⟨f1, f2⟩ ⊂ k[x1, x2, x3] be the ideal generated by
f1 = x2

1 − x1 and f2 = x1x2x3. Buchberger’s criterion shows that f1, f2 form
a lexicographic Gröbner basis for I. By Proposition 3.3.3, the composition
k[x2, x3] ⊂ k[x1, x2, x3] → k[x1, x2, x3]/I is a Noether normalization, so that

d = dim k[x1, x2, x3]/I = 2.

Though 1 = (2x1 − 1) ∂f1
∂x1

− 4f1 ∈ I1( ∂fi

∂xj
)+ I, however, A = V(I) ⊂ A3 is not

smooth. In fact, A = V(x1) ∪ V(x1 − 1, x2x3) is the union of a plane and a
pair of lines intersecting in a point which is necessarily a singular point of A.

⊓*

Exercise 4.1.16. Consider the matrix
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D =

⎛

⎝
x1 x2 x2

3 − 1
x2 x3 x1x2 + x3 + 1

x2
3 − 1 x1x2 + x3 + 1 0

⎞

⎠

and the ideal I = ⟨f1, f2⟩ ⊂ k[x1, x2, x3] generated by f1 = det D and the
“first” 2× 2 minor f2 = x1x3 − x2

2 of D. Verify by computation:

1. The algebraic set A = V(I) ⊂ A3 is equidimensional of dimension d = 1.
2. The zero locus of the ideal J = I2( ∂fi

∂xj
)+ I coincides with that of I. That

is, V(J) = V(I) = A.
3. The vanishing ideal I(A) = (I : J) K[x1, x2, x3].
4. A is smooth.

The geometric interpretation of this is that the two hypersurfaces V(f1) and
V(f2) touch each other along A.

Fig. 4.1. The cone V (f2) (dark surface) together with V (f1) (bright sur-
face) and their intersection (white curve).

⊓*

Definition 4.1.6 treats the tangent space TpA externally, that is, as a subspace
of the ambient space An. Hence, it is not obvious that under an isomorphism
ϕ : A → B the tangent spaces at p and ϕ(p) are isomorphic. To prove this,
we give an intrinsic description of TpA which only depends on the coordinate
ring K[A].

We consider TpAn = An as an abstract vector space with origin p and
coordinates Xi = xi−ai, i = 1, . . . , n. Then TpA = V(dpf | f ∈ I(A)) ⊂ TpAn

is a linear subspace. Indeed, for each f ∈ K[x1, . . . , xn], the differential dpf is
linear in the xi − ai. Moreover, the restriction of dpf to TpA depends only on
the residue class f = f + I(A) of f in K[A]. We, thus, obtain a well-defined
linear map

dp : K[A] → T ∗
p A, f '→ dpf |TpA,

where T ∗
p A = Hom(TpA, K) is the dual vector space of TpA. The map dp is

surjective since the dpXi form a basis for the dual vector space of TpAn and
every linear form on TpA is induced by a linear form on TpAn. To describe
T ∗

p A and, thus, TpA = (T ∗
p A)∗ in terms of K[A], we need to identify the kernel
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of dp. Since dpc = 0 for each constant c ∈ K, the map dp is determined by its
values on the maximal ideal

IA(p) := IA({p}) = {f ∈ K[A] | f(p) = 0} ⊂ K[A]

corresponding to p. We may, thus, as well study the restricted map

dp : IA(p) → T ∗
p A, f '→ dpf |TpA.

This map vanishes on the second power of IA(p) (the terms of degree ≥ 2 in
the Taylor expansion of f at p do not contribute to dpf). In fact, we have
the following result (the final version of this result, proved in Section 4.2, will
lead us to the definition of the Zariski tangent space):

Theorem 4.1.17 (Zariski Tangent Space, Preliminary Version). Let
A ⊂ An be an algebraic set, and let p ∈ A be a point. The K[A]-module
IA(p)/I2A(p) is naturally a K-vector space. Moreover, the map dp defines an
isomorphism

IA(p)/I2A(p) ∼= T ∗
p A

of K-vector spaces.

Proof. Since the K[A]-module IA(p)/I2A(p) is annihilated by IA(p), it is natu-
rally a K[A]/IA(p)-module. The first assertion follows since K[A]/IA(p) ∼= K,
where the isomorphism is defined by evaluating polynomial functions at p. To
prove the theorem, it remains to show that ker dp ⊂ I2A(p). Let f ∈ ker dp.
That is, f ∈ IA(p) and dpf |TpA = 0. Then, if f1, . . . , fr are generators for
I(A), the differential dpf is a K-linear combination of the dpfi:

dpf =
r∑

i=1

λidpfi.

Set g = f −
∑r

i=1 λifi. Then g(p) = 0 and dpg = 0. We conclude that
g ∈ I2(p) ⊂ K[x1, . . . , xn], so that f = g ∈ I2A(p) ⊂ K[A]. ⊓*

Let, now, ϕ : A → B be a morphism of affine algebraic sets, let ϕ∗ : K[B] →
K[A] be the induced map, let p ∈ A be a point, and let q = ϕ(p). Then

ϕ∗(IB(q)) ⊂ IA(p) and ϕ∗(I2B(q)) ⊂ I2A(p).

Thus, ϕ defines a map ϕ∗ : IB(q)/I2B(q) → IA(p)/I2A(p). The dual map

dpϕ : TpA ∼= (IA(p)/I2A(p))∗ → (IB(q)/I2B(q))∗ ∼= TqB

is called the differential of ϕ at p. Note that if ψ : B → C is another
morphism of affine algebraic sets, then

dp(ψ ◦ ϕ) = dϕ(p) ψ ◦ dpϕ.



148 4 Local Properties

Furthermore,
dp(idA) = id TpA.

These observations show that the tangent space is invariant under isomor-
phims:

Corollary 4.1.18. If ϕ : A → B is an isomorphism of affine algebraic sets
and p ∈ A is a point, then

dpϕ : TpA → Tϕ(p)B

is an isomorphism of K-vector spaces. ⊓*

4.2 Local Rings

In this section, given an algebraic set A and a point p ∈ A, we will describe
the construction of the local ring OA,p. This ring is the basic invariant of A
at p. We will use it to express smoothness in algebraic terms.

The elements of OA,p are functions defined on A “near” p. More precisely,
the functions are defined on Zariski open neighborhoods of p in A, and two
such functions will be identified if they coincide on a sufficiently small neigh-
borhood of p on which both functions are defined. In this sense, the elements
of OA,p are actually germs of functions.

What functions are allowed in the construction of OA,p? Since every Zariski
neighborhood of p in A contains an open neighborhood of type DA(f) =
A \ VA(f), where f ∈ K[A] is not vanishing at p, we can restrict ourselves
to describe the admissible functions on a neighborhood of this type. Now,
note that on DA(f), the function f and, thus, its powers fm are invertible.
It is therefore natural to associate to DA(f) the K-algebra K[A]f of functions
on DA(f) obtained by adjoining 1/f to K[A]. The elements of DA(f) are,
then, fractions of type g/fm, where g ∈ K[A] and m ≥ 0. Two such fractions
g/fm and g′/fm′

define the same function on DA(f) iff gfm′ − g′fm = 0 as
functions on DA(f). Equivalently, f(gfm′ − g′fm) = 0 on all of A. That is,
f(gfm′ − g′fm) = 0 ∈ K[A].

The desired local ring OA,p is obtained by inverting all the functions in
K[A] not vanishing at p. Its elements are fractions of type g/h, where g, h ∈
K[A], with h(p) ̸= 0. Here, two such fractions g/h and g′/h′ will be identified
if gh′ − g′h = 0 on some neighborhood of p contained in DA(h) ∩ DA(h′). As
pointed out above, we may choose this neighborhood to be of type DA(f),
where f ∈ K[A] is not vanishing at p. Thus, g/h and g′/h′ will be identified
if f(gh′ − g′h) = 0 ∈ K[A] for some f ∈ K[A] with f(p) ̸= 0.

The construction of both rings K[A]f and OA,p follows the same alge-
braic principle: we invert elements of a multiplicative closed subset U of a
ring R (it is natural to invert elements from multiplicatively closed subsets
since the product of two inverted elements is an inverse for the product).
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The principle is familiar to us from Section 2.6 where we studied the quo-
tient field of an integral domain R. In that case, U = R \ {0}. In the more
general setting considered here, however, U may contain zerodivisors (such as
x or y in K[x, z]/⟨xy⟩). Thus, we cannot conclude from an equation of type
f(gh′ − g′h) = 0 that gh′ − g′h = 0.

Taking our cue from these considerations, we arrive at the following purely
algebraic definition:

Remark-Definition 4.2.1. Let R be a ring, and let U ⊂ R be a multiplica-
tively closed subset. The relation ∼ on R × U defined by

(r, u) ∼ (r′, u′) ⇐⇒ v(ru′ − ur′) = 0 for some v ∈ U

is an equivalence relation (check this; observe that if we just had ru′−ur′ = 0
in the definition of∼, the transitivity law would fail if U contains zerodivisors).
We write r/u for the equivalence class of (r, u) and

R[U−1] = U−1R = { r

u
| r ∈ R, u ∈ U}

for the set of all equivalence classes. We make R[U−1] into a ring by defining

r

u
+

r′

u′ =
ur′ + u′r

uu′ and
r

u
· r′

u′ =
rr′

uu′

(check that these definitions are independent of the choice of representatives).
This ring is called the localization of R at U .

We have the natural ring homomorphism

ι : R → R[U−1], r '→ r

1
,

which sends every element of U to a unit in R[U−1], and maps an element
r ∈ R to zero iff r is annihilated by an element of U . In particular, ι is injective
iff U does not contain a zerodivisor, and R[U−1] is zero iff 0 ∈ U . ⊓*

Exercise∗ 4.2.2 (Universal Property of Localization). Let R be a ring,
and let U ⊂ R be a multiplicatively closed subset. Show that if φ : R → S is a
homomorphism of rings which maps the elements of U to units, there exists a
uniquely determined homomorphism Φ : R[U−1] → S such that the diagram

R

ι
**((

((
((

((
(

φ !! S++

Φ)
)

)
)

)

R[U−1]

commutes. ⊓*
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Exercise∗ 4.2.3 (Localization Commutes with Passing to Quotients
by Ideals). Let R and U be as above, let I ⊂ R be an ideal, and let U be
the image of U in R/I. Then show that the natural map

R → R[U−1] → R[U−1]/I R[U−1]

induces an isomorphism

(R/I)[U−1] ∼= R[U−1]/I R[U−1]. ⊓*

Basic examples of localized rings are obtained by considering the multiplica-
tive closed sets introduced earlier in this book:

Remark-Definition 4.2.4. Let R be a ring.

1. If R is an integral domain, and U = R \ {0}, then R[U−1] is the quotient
field Q(R) of R, and any localization of R can be regarded as a subring of
Q(R), with quotient field Q(R) (apply the universal property). If R is arbi-
trary, we may consider the multiplicatively closed set U of all nonzerodivisors
of R. We, again, write Q(R) = R[U−1], and call Q(R) the total quotient
ring of R. Since U does not contain a zerodivisor, the natural ring homomor-
phism ι : R → Q(R) is injective, and we may consider R as a subring of Q(R)
by means of ι.
2. If f is an element of R, then U = {fm | m ≥ 0} is multiplicatively closed.

We write Rf = R[1/f ] = R[U−1] in this case.
3. If p is a prime ideal of R, then U = R \ p is multiplicatively closed. We

write Rp = R[U−1] in this case, and call Rp the localization of R at p. ⊓*

Example 4.2.5. By inverting all elements in U = Z\ {0}, we obtain the field
Q of rational numbers. Inverting fewer elements, we get subrings of Q. For
instance, if n ∈ Z is any number, we get the subring

Z[1/n] = {a/b ∈ Q | b = nk for some k ∈ N}.

Or, if p ∈ Z is any prime number, we get the subring

Z⟨p⟩ = {a/b ∈ Q | p does not divide b}.

If p does not divide n, we have ring inclusions

Z ⊂ Z[1/n] ⊂ Z⟨p⟩ ⊂ Q. ⊓*

Remark 4.2.6. If p is a prime ideal of a ring R, the nonunits of the ring Rp

form the ideal
pRp = {r/u | r ∈ p, u ∈ R \ p}.

Taking Remark 1.3.8 into account, we find that (Rp, pRp) is a local ring in
the sense of Definition 1.3.7. By Exercise 4.2.3, the residue field is

Rp/pRp
∼= Q(R/p). ⊓*
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Generalizing what we observed in the remark, our next result shows that the
ideal theory of a localized ring is always a simplified version of the ideal theory
of the original ring. This result is the main reason for the importance of rings
of fractions in commutative algebra.

Theorem 4.2.7. Let R be a ring, let U ⊂ R be a multiplicative closed subset,
and let ι : R → R[U−1], r '→ r/1, be the natural homomorphism.

1. If I ⊂ R is an ideal, then

ι−1(IR[U−1]) = {a ∈ R | ua ∈ I for some u ∈ U}.

2. If J ⊂ R[U−1] is an ideal, then

ι−1(J)R[U−1] = J.

We, thus, get an injectice map of the set of ideals of R[U−1] into the set
of ideals of R by sending J to ι−1(J).

3. If R is Noetherian, then so is R[U−1].
4. The injection J '→ ι−1(J) restricts to a bijection between the set of prime

ideals of R[U−1] and the set of prime ideals of R not meeting U .

Proof. For part 1, observe that if a ∈ R, then a ∈ ι−1(IR[U−1]) ⇐⇒ a/1 ∈
IR[U−1] ⇐⇒ ua ∈ I for some u ∈ U . For part 2, let b/u ∈ R[U−1], where
b ∈ R and u ∈ U . Then b/u ∈ J ⇐⇒ b/1 ∈ J ⇐⇒ b ∈ ι−1(J) ⇐⇒ b/u ∈
ι−1(J)R[U−1]. Part 3 follows from part 2 (for instance, use the ascending
chain condition). For part 4, notice that if q is a prime ideal of R[U−1], then
p = ι−1(q) is a prime ideal of R. Moreover, p∩U = ∅ since q does not contain
units. Conversely, let p be a prime ideal of R such that p∩U = ∅. If a/u ·b/v ∈
pR[U−1], with u, v ∈ U , then wab ∈ p for some w ∈ U . Since w /∈ p, we must
have a ∈ p or b ∈ p and, thus, a/u ∈ pR[U−1] or b/v ∈ pR[U−1]. Moreover,
1 /∈ pR[U−1], so pR[U−1] is a prime ideal of R[U−1]. The result follows from
part 1 since ι−1(pR[U−1]) = {a ∈ R | ua ∈ p for some u ∈ U} = p. ⊓*

Exercise∗ 4.2.8 (Localization Commutes with Forming Radicals). If
I ⊂ R is an ideal, then show that rad (IR[U−1]) = (rad I)R[U−1]. Conclude
that the injection J '→ ι−1(J) restricts to a bijection between the set of
primary ideals of R[U−1] and the set of primary ideals of R not meeting U . ⊓*

In the geometric setting, given an algebraic set A, we apply the constructions
discussed in Example 4.2.4 to the coordinate ring K[A].

To begin with, the total quotient ring K(A) := Q(K[A]) is the ring of
rational functions on A. Here, the terminology introduced in Section 2.6
for rational functions on varieties carries over to rational functions on arbitrary
algebraic sets. In particular, we define the domain of definition dom(f) of
a rational function f ∈ K(A) as in Section 2.6, and view f as a function
on dom(f). Note that dom(f) is open and, by Exercise 1.11.9, dense in the
Zariski topology on A.
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If f ∈ K[A], the localization K[A]f is the K-algebra of functions on DA(f)
considered in the introduction to this section.

Similarly, if p ∈ A is a point, the local ring OA,p is formally defined as the
localization of K[A] at the maximal ideal of K[A] corresponding to p:

Remark-Definition 4.2.9. Let A ⊂ An be an algebraic set, and let p ∈ A
be a point. The local ring of A at p, written OA,p, is defined to be the
localization

OA,p = K[A]m,

where m = IA(p) ⊂ K[A] is the maximal ideal corresponding to p. Taking
Remark 4.2.6 and part 3 of Proposition 4.2.7 into account, we find that OA,p

is a local Noetherian ring with maximal ideal

mA,p := {f/g ∈ OA,p | f(p) = 0}.

Furthermore, by Exercise 4.2.3,

OA,p = OAn,p/ I(A)OAn,p. ⊓*

Exercise 4.2.10. Let B1, B2 ⊂ An be algebraic sets, let A = B1 ∪ B2, and
let p ∈ A be a point not lying on B2. Then show that OA,p

∼= OB1,p. ⊓*

Remark 4.2.11. If V is an affine variety, the local rings OV,p, p ∈ V , are
subrings of K(V ) containing K[V ]. In fact, by Proposition 2.6.15,

K[V ] =
⋂

p∈V

OV,p ⊂ K(V ).
⊓*

Remark 4.2.12. Instead of just considering local rings at points, it makes
also sense to consider the local ring of A along a subvariety W of A. This
ring, written OA,W , is the localization of K[A] at the prime ideal p = IA(W ).
If A = V is a variety, then OV,W is a subring of K(V ), namely the subring
consisting of all rational functions on V that are defined at some point of W
(and, hence, defined on a dense open subset of W ). ⊓*

We postpone the further development of the general theory of localization to
Section 4.5. Our next goal in this section is to characterize the smoothness of
an algebraic set A at a point p ∈ A in terms of the local ring OA,p. To begin
with, we characterize the local dimension dimp A in terms of OA,p:

Proposition 4.2.13. If R is a ring, and p is a prime ideal of R, then

dimRp = codim p.

In particular, if A ⊂ An is an algebraic set, and p ∈ A is a point, then

dimOA,p = dimp A.
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Proof. By Proposition 4.2.7, there is a one-to-one correspondence between
maximal chains of prime ideals of Rp and maximal chains of prime ideals of
R with largest ideal p:

p0 ! p1 ! . . . ! pd = p.

This shows the first assertion. For the second assertion, note that if R = K[A],
and p = IA(p) ⊂ R is the maximal ideal corresponding to p, then a chain as
above corresponds to a chain of subvarieties Wi := VA(pi) ⊂ A containing p.
The variety W0 is actually an irreducible component of A since otherwise we
could insert a prime ideal strictly contained in p0. Moreover,

⟨0⟩ ! p1/p0 ! . . . ! pd/p0

is a maximal chain of prime ideals of K[W0] ∼= K[A]/p0. Every such chain has
length dim W0 by Corollary 3.4.9. Conversely, if p0 ⊂ K[A] is a prime ideal
such that VA(p0) is an irreducible component of A passing through p, then p0

fits as smallest ideal into a maximal chain of prime ideals of K[A] with largest
ideal p = IA(p). ⊓*

Next, in the final version of Theorem 4.1.17, we describe the tangent space
TpA in terms of OA,p. For this, note that if (R, m) is a local ring with residue
field R/m, then m/m2 is naturally an R/m-module. That is, m/m2 is an R/m-
vector space.

Theorem-Definition 4.2.14 (Zariski Tangent Space, Final Version).
If A ⊂ An is an algebraic set, and p ∈ A is a point, there is a natural
isomorphism of K-vector spaces

(mA,p/m2
A,p)

∗ ∼= TpA.

We call (mA,p/m2
A,p)∗ the Zariski tangent space to A at p.

Proof. Let f = g/h ∈ K(x1, . . . , xn) be a rational function such that h(p) ̸= 0.
In extending what we did for polynomials, we define the differential dpf of
f at p by formally writing down the quotient rule:

dpf :=
h(p)dpg − g(p)dph

h2(p)

(this is independent of the choice of representation for f as a fraction). Argu-
ing, now, as in the proof of Theorem 4.1.17, we get a map

dp : mA,p → T ∗
p A, f = g/h '→ dpf |TpA

whose kernel is m2
A,p. ⊓*

Combining Proposition 4.2.13 and Theorem 4.2.14, we get:
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Corollary 4.2.15. Let A ⊂ An be an algebraic set, and let p ∈ A be a point.
Then A is smooth at p iff

dimK mA,p/m2
A,p = dimOA,p. ⊓*

Corollary 4.2.16. If A ⊂ An is an algebraic set, then Asing and A have no
irreducible component in common.

Proof. As already pointed out in Remark 4.1.11, we will show in Corollary
4.6.26 that a point of A is singular iff it lies on the intersection of two ir-
reducible components of A or is a singular point of one of the components.
For our purposes here, it is, hence, enough to show that if V is such a com-
ponent, then V contains Vsing properly. By Proposition 4.1.3, this is true in
the hypersurface case. To reduce to this case, we apply Theorem 3.5.2: let
φ : V → W be a finite morphism onto a hypersurface W ⊂ Ad+1 admit-
ting a rational inverse ψ : W !!" V . Then, since Wsing is a proper algebraic
subset of W , the set U := dom(ψ) ∩ (W \ Wsing) is Zariski dense in W . In
particular, U is nonempty. But if q = φ(p) is a point of U , the isomorphism
φ∗ : K(W ) → K(V ) restricts to an isomorphism OW,q

∼= OV,p. Hence, we are
done by Corollary 4.2.15. ⊓*

The inequality
dimR/m m/m2 ≥ dim R (4.3)

holds for any local Noetherian ring (R, m) (this is the. general algebraic form
of inequality (4.1) on Page 143 which we will be prove in Corollary 4.6.20).
The importance of Corollary 4.2.15 is emphasized by the following definition:

Definition 4.2.17 (Krull). A local Noetherian ring (R, m) is called regular
if dimR/m m/m2 = dimR. ⊓*

Using this notion, we can restate Corollary 4.2.15 as follows:

Corollary 4.2.18. Let A ⊂ An be an algebraic set, and let p ∈ A be a point.
Then A is smooth at p iff OA,p is a regular local ring . ⊓*

In most textbooks on commutative algebra, the definition of a regular local
ring involves a characterization of dimR/m m/m2 in terms of generators for m.
This is obtained as an application of the following fundamental result:

Theorem 4.2.19 (Lemma of Nakayama). Let (R, m) be a local ring, let
M be a finitely generated R-module, and let N ⊂ M be a submodule. Then

N + mM = M iff N = M.

Proof. Replacing M by M/N , we reduce to the case N = 0. That is, it suffices
to show that mM = M implies M = 0 (the converse implication is clear). Let
m1, . . . , mr be a finite set of generators for M . If mM = M , we may write
each mi as an m-linear combination of the mj :
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mi =
∑

rijmj , with all rij ∈ m.

In matrix notation,

(Er −B)

⎛

⎜⎝
m1
...

mr

⎞

⎟⎠ = 0,

where B = (rij) and Er is the r × r identity matrix. Arguing once more as
in the proof of the Projection Theorem 3.1.2, we multiply with the matrix of
cofactors of (Er −B), and obtain that h = det(Er −B) annihilates each mi.
This implies that the mi and, thus, M are zero. Indeed, h is a unit in R since
h ≡ 1 mod m. ⊓*

Starting from well-known facts on vector spaces, Nakayama’s lemma allows
us to deduce information on modules over local rings. In making this explicit,
we use the following notation: If R is any ring, and M is any R-module, a set
of generators for M is minimal if no proper subset generates M .

Corollary 4.2.20. Let (R, m) and M be as in Nakayama’s Lemma 4.2.19.
Then m1, . . . , mr ∈ M generate M as an R-module iff the residue classes
mi = mi + mM generate M/mM as an R/m-vector space. In particular, any
minimal set of generators for M corresponds to an R/m-basis for M/mM ,
and any two such sets have the same number of elements.

Proof. Let N = ⟨m1, . . . , mr⟩ ⊂ M . Then m1, . . . , mr generate M iff N +
mM = M iff span(m1, . . . , mr) = M/mM . ⊓*

Corollary 4.2.21. A local Noetherian ring (R, m) is regular iff m can be
generated by dim R elements. ⊓*

The first part of the exercise below shows that the conclusion of Corollary
4.2.20 may be wrong over arbitrary rings:

Exercise 4.2.22. 1. Find an ideal of k[x1, . . . , xn] which admits minimal
sets of generators differing in their number of elements.

2. Let OA2,o be the local ring of A2 at the origin o = (0, 0). For each n ∈ N,
find an ideal of OA2,o which is minimally generated by n elements. ⊓*

Another application of Nakayama’s lemma, which we present for later use, is
a special case of Krull’s intersection theorem (see Eisenbud (1995), Corollary
5.4 for the general case):

Theorem 4.2.23 (Krull’s Intersection Theorem). Let (R, m) be a local
Noetherian ring. Then

∞⋂

k=0

mk = ⟨0⟩.
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Proof. In the polynomial ring R[t], consider the subalgebra

S = R[mt] = R ⊕mt⊕m2t2 ⊕ . . . ⊂ R[t].

Since R is Noetherian, m is a finitely generated ideal of R. It follows that
S is a finitely generated R-algebra and, thus, that S is Noetherian, too. In
particular, if J =

⋂∞
k=0 mk, the ideal

J ⊕ Jt⊕ Jt2 ⊕ . . . ⊂ S

is generated by finitely many homogeneous polynomials in R[t] (take the ho-
mogeneous components of any finite set of generators). If r is the maximum
degree in of the generators, then mtJtr = Jtr+1. That is,

m
∞⋂

k=0

mk =
∞⋂

k=0

mk ⊂ R.

The result follows from Nakayama’s lemma. ⊓*

Example 4.2.24. The conclusion of the intersection theorem may not hold if
R is not Noetherian. For instance, let R be the ring of germs of C∞ functions
defined on arbitrarily small ϵ-neighborhoods of the origin 0 ∈ R (that is, the
elements of R are obtained by identifying two functions if they coincide on
a sufficiently small neighborhood of 0). Then R is local with maximal ideal
m = ⟨x⟩, where x is (the germ of) the coordinate function. On the other hand,
the function

g(x) =

{
e−1/x2

if x ̸= 0,

0 if x = 0

defines a (nontrivial) element of
⋂∞

k=0 mk: indeed, g(x)/xk is C∞ for every k.
In particular, R cannot be Noetherian by Krull’s intersection theorem. ⊓*

We end this section as we have started it, namely by considering admissible
functions. So far, given an algebraic set A ⊂ An, we have described the func-
tions allowed on distinguished open subsets of A. Now, taking our cue from
Proposition 2.6.15, we deal with arbitrary open subsets:

Remark-Definition 4.2.25. Let A ⊂ An be an algebraic set, and let U ⊂ A
be an open subset. A function f : U → K is called regular at a point p ∈ U
if there are g, h ∈ K[A] such that h(q) ̸= 0 and f(q) = g(q)/h(q) for all q ∈ U .
We say that f is regular on U if it is regular at every point of U . The set
O(U) of all regular functions on U becomes a ring, with pointwise defined
algebraic operations. That is, we add and multiply values in K.

On distinguished open subsets, we get the functions already familiar to us:

Proposition 4.2.26. Let A ⊂ An be an algebraic set. If 0 ̸= h ∈ K[A],
then for each regular function f on DA(h), there exist g ∈ K[A] and m ≥ 1
such that f(p) = g(p)/h(p)m for all p ∈ DA(h). That is, we may identify
O(DA(h)) = K[A]h. In particular, taking h = 1, we get O(A) = K[A]. That
is, the regular functions on A are precisely the polynomial functions.
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Proof. Let f be a regular function on DA(h). Since the Zariski topology is
quasicompact, we can find a finite family of pairs of functions gi, hi ∈ K[A],
say i = 1, . . . , N , such that DA(h) =

⋃N
i=1 DA(hi), and such that f = gi/hi

as functions on DA(hi), for all i. Then, for all i, j, we have gihj − gjhi = 0
on DA(hi)∩DA(hj) = DA(hihj) and, thus, hihj(gihj − gghi) = 0 on all of A.
Replacing gi by gihi and hi by h2

i for all i, we may suppose that gihj = gjhi

on A for all i, j.
Since DA(h) =

⋃N
i=1 DA(hi), we have VA(h) = VA(h1, . . . , hN ). The

Nullstellensatz implies that hm ∈ ⟨h1, . . . , hN ⟩ for some m ≥ 1, say hm =∑N
i=1 aihi, with a1, . . . , aN ∈ K[A]. Let g =

∑N
i=1 aigi. Then for all j,

hmgj =
N∑

i=1

aihigj =
N∑

i=1

aigihj = ghj

and, thus, f = gj/hj = g/hm as functions on DA(hj). The result follows since
DA(h) =

⋃N
i=1 DA(hi). ⊓*

Exercise 4.2.27. Show that regular functions are continous when K is iden-
tified with A1 in its Zariski topology.
Hint: The property that a subset Y of a topological space X is closed is a
local property in the sense that Y is closed if it can be covered by open
subsets U of X such that Y ∩ U is closed in Y for all U . ⊓*

Exercise 4.2.28 (Characterization of Rational Functions). Let A be
an algebraic set. Let Σ be the set of pairs (U, f), where U is a Zariski dense
open subset of A, and where f ∈ O(U). Show that the relation ∼ on Σ defined
by

(U, f) ∼ (U ′, f ′) ⇐⇒ f |U ∩ U ′ = f ′|U ∩ U ′

is an equivalence relation. Show that the set of all equivalence classes is a
ring which is naturally isomorphic to K(A) (the sum and product of two
classes represented by pairs (U, f) and (U ′, f ′) are obtained by adding and
multiplying f and f ′ on U∩U ′, respectively). Conclude that if A = V1∪· · ·∪Vs

is the decomposition of A into its irreducible components, then

K(A) ∼= K(V1) × · · ·× K(Vs). ⊓*

4.3 Intersection Multiplicities of Plane Curves

In Section 5, we will prove Bezout’s Theorem which says that if C, D are two
plane curves of degrees d, e without a common component, then C and D
intersect in precisely d · e points – provided we work in the right setting, and
provided we count the intersection points with appropriate multiplicities. The
right setting will be created in Section 5.1 by adding points at infinity. How
to define the multiplicities will be explained now. We begin by fixing some
terminology for dealing with singularities of plane curves.
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Example 4.3.1. The following picture shows plane curves with different
types of singularities:

node triple point tacnode cusps
⊓*

Plane curves correspond to nonconstant square-free polynomials f ∈ k[x, y],
where f is determined up to multiplication by a nonzero scalar. For reasons
which will become clear later in this section, however, it is convenient to allow
f to have multiple factors in the following definitions.

Definition 4.3.2. Let f ∈ k[x, y] be a nonconstant polynomial, and let p =
(a, b) ∈ A2 be a point. Let

f = f0 + f1 + f2 + . . . + fd ∈ K[x, y]

be the Taylor expansion of f at p, where, for each i, the polynomial fi collects
the degree-i terms of f in x−a and x−b. The multiplicity of f at p, written
mult(f, p), is defined to be the least m such that fm ̸= 0. By convention,
mult(0, p) = ∞.

If f is square-free, and C = V(f) ⊂ A2 is the corresponding curve, we
write mult(C, p) = mult(f, p), and call this number the multiplicity of C
at p. ⊓*

Note that p ∈ V(f) iff mult(f, p) ≥ 1. If f is square-free, and C = V(f), then
mult(C, p) = 1 iff p is a smooth point of C. We speak of a double point if
the multiplicity m is 2, of a triple point, if m = 3, and a quadruple point,
if m = 4.

Example 4.3.3. The origin is a double point of each curve shown below:

y2 = x3 + x2 y2 = x3 y2 = xy + x2y − x3

⊓*

Different types of singularities of plane curves can often be distinguished by
considering the tangent lines at these points. To introduce tangent lines at
singular points, we remark that over the algebraically closed field K, every
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homogeneous polynomial in two variables can be written as a product of
linear factors. Indeed, if g = ysh ∈ K[x, y], where y does not divide h, the
dehomogenized polynomial g(x, 1) = h(x, 1) is univariate and decomposes,
hence, into linear factors: g(x, 1) = h(x, 1) =

∏r−1
i=1 (λix − µi)ei ∈ K[x, y].

Homogenizing the factors, we get g = ys
∏r−1

i=1 (λix − µiy)ei .

Definition 4.3.4. Let f ∈ k[x, y] be a nonconstant polynomial, and let p =
(a, b) ∈ A2 be a point. Let

f = fm + . . . + fd ∈ K[x, y]

be the Taylor expansion of f at p as in Definition 4.3.2, where m = mult(f, p).
Decompose fm over K into pairwise different linear factors in x− a and y− b:

fm =
r∏

i=1

(λi(x − a) − µi(y − b))ei ∈ K[x, y].

The tangent lines to f at p are defined to be the lines

Li = V(λi(x − a) − µi(y − b)) ⊂ A2,

and ei is the multiplicity of Li.
If f is square-free, and C = V(f) ⊂ A2 is the corresponding curve, the

tangent lines to f at p are also called the tangent lines to C at p. ⊓*

At a smooth point of C, the multiplicity m = 1, and the definition above
yields precisely the tangent line introduced in Section 4.1. If C has m ≥ 2
distinct tangent lines (of multiplicity 1) at p, we say that p is an ordinary
multiple point of C. An ordinary double point is called a node.

Example 4.3.5. In Example 4.3.3, the origin o is a node of V(y2 − x2 − x3),
with tangent lines V(x+y) and V(x−y). Similarly, o is a node of the reducible
curve C = V(y2 − xy − x2y + x3): the two different tangent lines are the line
V(x − y), which is one of the components of C, and the x-axis, which is the
tangent line at o to the other component V(y − x2) of C. In contrast, the
curve V(y2 − x3) has a tangent line of multiplicity 2 at o. ⊓*

Exercise 4.3.6. The curves in Example 4.3.1 are defined by the polynomials
below:

y2 = (1 − x2)3, y2 = x2 − x4, y3 − 3x2y = (x2 + y2)2, y2 = x4 − x6.

Which curve corresponds to which polynomial? ⊓*

Before turning to intersection multiplicities, we present a result which shows
that the ideals of local rings of plane curves at smooth points are easy to
handle. We need the following notation:
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Definition 4.3.7. A discrete valuation on a field K is a surjective map
v : K \ {0} → Z such that, for all a, b ∈ K \ {0},

1. v(ab) = v(a) + v(b), and
2. v(a + b) ≥ min(v(a), v(b)). ⊓*

Note that the first condition of the definition means that v : K \ {0}→ Z is a
group homomorphism. In particular, v(1) = 0. By convention, v(0) = ∞. The
set

R := {a ∈ K | v(a) ≥ 0}

is, then, a subring of K to which we refer as the valuation ring of v.

Definition 4.3.8. An integral domain R is called a discrete valuation ring
(DVR for short) if R is the valuation ring of a discrete valuation on its
quotient field. ⊓*

Example 4.3.9. The ring k[[x]] of formal power series f =
∑∞

i=0 aixi with
coefficients ai ∈ k is a DVR. Indeed, it is an integral domain with quotient
field k((x)), where

k((x)) = {
∞∑

i=n

aix
i | ai ∈ k for all i}

is the field of formal Laurent series with coefficients in k. The desired valuation
on k((x)) is obtained by setting v(f) = n if f =

∑∞
i=n aixi with an ̸= 0. Using

the same terminology as for convergent power and Laurent series in complex
analysis, we say that v(f) is the vanishing order of a formal power series
f ∈ k[[x]] and that a formal Laurent series f ∈ k((x)) \ k[[x]] has a pole of
order −v(f). ⊓*

If R is a DVR with quotient field K and corresponding discrete valuation v
on K, its set of nonunits, which is the set

m := {a ∈ K | v(a) ≥ 1},

is an ideal of R. Hence, (R, m) is a local ring. Furthermore, R is a PID: Since
v is surjective, there is an element t ∈ m such that v(p) = 1, and we claim
that every nonzero ideal I of R is of type I = ⟨tk⟩ = mk = {a ∈ R | v(a) ≥ k},
where k is minimal among all v(g), g ∈ I. Indeed, to see this, just note that if
a, b are two elements of R, then v(a) = v(b) iff v(ab−1) = 0 iff ab−1 is a unit
of R iff ⟨a⟩ = ⟨b⟩.

Exercise∗ 4.3.10. Let R be a local Noetherian integral domain with maximal
ideal m. Suppose that R contains a field L such that the composite map
L → R → R/m is an isomorphism. Then all quotients mk/mk+1 are L-vector
spaces. In this situation, show that R is a DVR iff the following two conditions
hold:
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1. dimL mk/mk+1 = 1 for all k ≥ 0;
2. dimL R/mk = k for all k ≥ 1. ⊓*

Proposition 4.3.11. Let R be a local ring. Then the following are equivalent:

1. R is a DVR.
2. R is regular of dimension 1.

Proof. 1 =⇒ 2: If R is a DVR with maximal ideal m, the only chain of prime
ideals of R is ⟨0⟩ ! m. So R has Krull dimension one. Moreover, as already
pointed out in the discussion preceeding Exercise 4.3.10 , m is generated by
just one element. So R is regular.

2 =⇒ 1: Conversely, suppose that R is regular of dimension one, and let
t be a generator for the maximal ideal m. To show that R is a DVR, we first
observe that tr ̸= 0 for all r. Indeed, otherwise, m = ⟨t⟩ would be the only
prime ideal of R, so that R would be zerodimensional. Let, now, 0 ̸= g ∈ R.
By Krull’s intersection theorem, g cannot be contained in all powers of m.
Let k = max{r | g ∈ mr}. Then g = utk for some element u ∈ R \ m, which
necessarily is a unit of R. Similarly, if 0 ̸= h is another element of R, write h
as a product vtℓ, for some unit v and some ℓ. Then gh = uvtk+ℓ is nonzero,
and we conclude that R is an integral domain. Furthermore, any element f
of the quotient field Q(R) has a unique representation of type f = wtm, for
some unit w and some m ∈ Z. Setting v(f) = m, we get the desired discrete
valuation on Q(R). ⊓*

Taking Corollary 4.2.18 into account, we get:

Corollary 4.3.12. An irreducible curve C ⊂ A2 is smooth at a point p ∈ C
iff OC,p is a discrete valuation ring. ⊓*

If C is smooth at p, we occasionally write vC,p for the corresponding discrete
valuation on K(C). Motivated by Example 4.3.9, we say that vC,p(f) is the
vanishing order of an element f ∈ OC,p, and that a rational function f ∈
K(C) \ OC,p has a pole of order −vC,p(f) at p.

We will, now, define intersection multiplicities. There are several ways of
doing this, some of which go back to Newton and his contemporaries (see
Fulton (1998), Chapter 7, Notes and References for some historical remarks).

Example 4.3.13. Consider the curves C = V(y) and D = V(y−xr) in A2(C).
Intuitively, we should count the origin o = (0, 0) as an intersection point of
multiplicity r. Indeed, if we perturb the equations defining C and D slightly,
we get r distinct intersection points near o:
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D

D

C

Dc

Dc

The case r = 3.

For a more precise statement, consider, for instance, a perturbation of the
defining equation f0 = y−xr for D, say fc = y−xr + c1xr−1 + . . .+ cr, where
c = (c1, . . . , cr) is a tuple of complex numbers, and let Dc = V(fc) ⊂ A2(C).
Given a sufficiently small ϵ > 0, there is, then, a number δ > 0 such that for
any sufficiently general c with |ci| < δ, the curve Dc intersects C in r distinct
points in the ϵ-neighborhood of the origin (we will prove this in the context
of Bertini’s theorem in Chapter 6). ⊓*

Example 4.3.14. Now, consider the pairs of curves y2 − x3 and x2 − y3,
respectively y2 − x3 and 2y2 − x3:

transversal cusps tangential cusps

In both cases, can you find the intersection multiplicity at the origin? ⊓*

It is not immediately clear that the dynamic point of view taken in the ex-
amples above gives well-defined intersection multiplicities. Furthermore, com-
puting intersection multiplicities in this way can be quite elaborate.

Following Macaulay (1916), we will work with a purely algebraic definition
of intersection multiplicities which is static in that we do not vary the given
equations. The definition is less intuitive, but turns out to be just right.

Definition 4.3.15. Let f, g ∈ k[x, y] be nonconstant polynomials, and let
p ∈ A2 be a point. The intersection multiplicity of f and g at p, written
i(f, g; p), is defined to be

i(f, g; p) = dimK OA2,p/⟨f, g⟩OA2,p.
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If f, g are square-free, and C = V(f), D = V(f) ⊂ A2 are the corresponding
curves, we write i(C, D; p) = i(f, g; p), and call this number the intersection
multiplicity of C and D at p. ⊓*
The calculations in Example 4.3.17 below rely on the following observation:
Remark 4.3.16. Let I ⊂ k[x1, . . . , xn] be an ideal such that V(I) ⊂ An

consists of a single k-rational point p = (a1, . . . , an). Then there is a natural
isomorphism of K-algebras

R := K[x1, . . . , xn]/I K[x1, . . . , xn] ∼= OAn,p/IOAn,p =: R′.

Indeed, R is a local ring with maximal ideal m = ⟨x1 − a1, . . . , xn − an⟩/I.
Hence, by the universal property of localization, R = Rm. But Rm

∼= R′ by
Exercise 4.2.3. ⊓*
Example 4.3.17. 1. In accordance with Example 4.3.13, we have

i(y, y − xr; o) = r.

Indeed, by Remark 4.3.16,

OA2,o/⟨y, y − xr⟩OA2,o
∼= C[x, y]/⟨y, y − xr⟩ ∼= C[x]/⟨xr⟩.

2. For the transversal cusps in Example 4.3.14, we get

i(y2 − x3, x2 − y3; o) = 4.

Indeed, since 1 − xy is a unit in OA2,o, we have

⟨y2 − x3, x2 − y3⟩ = ⟨y2 − x3, x2 − x3y⟩ = ⟨y2 − x3, x2⟩ = ⟨y2, x2⟩ ⊂ OA2,o,

and the result follows as above from Remark 4.3.16. Similarly, for the tangen-
tial cusps,

i(y2 − x3, 2y2 − x3; o) = 6
since

⟨y2 − x3, 2y2 − x3⟩ = ⟨y2, x3⟩ ⊂ OA2,o.

To see this from the dynamical point of view, consider perturbed equations
of type

y2 − (x − c)2(x + c) = x2 − (y − d)2(y + d) = 0
respectively

y2 − (x − c)2(x + c) = 2y2 − x2(x + d) = 0 :

4 intersection points 6 intersection points
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⊓*

Since we allow polynomials with multiple factors, it makes sense to extend
some of the terminology used when working with curves to the more general
case considered here. If f ∈ k[x, y] is a nonconstant polynomial, and p ∈ A2 is
a point, we say that f passes through p if p ∈ V(f). If g ∈ k[x, y] is another
nonconstant polynomial, we say that f and g intersect at p if p ∈ V(f)∩V(g)
(equivalently, both multiplicities mult(f, p) and mult(g, p) are ≥ 1). We say
that f and g intersect transversally at p if mult(f, p) = mult(g, p) = 1 and
the tangent line to f at p is different from the tangent line to g at p. Finally,
if

f =
r∏

i=1

fei
i ∈ K[x, y]

is the decomposition of f into pairwise different irreducible factors fi over
K, then each fi is a component of f , and ei is the multiplicity of the
component fi.

Theorem 4.3.18 (Properties of Intersection Multiplicities). Let f, g ∈
k[x, y] be nonconstant polynomials, and let p = (a, b) ∈ A2 be a point. Then:

1. i(f, g; p) = 0 iff f and g do not intersect at p.
2. i(f, g; p) = ∞ iff f and g have a common component passing through p.
3. i(f, g; p) ≥ mult(f, p) · mult(g, p), with equality occuring iff f and g have

no tangent line in common at p.
4. i(f, g; p) = 1 iff f and g intersect transversally at p.
5. i(f, g; p) = i(g, f ; p).
6. i(f, g + hf ; p) = i(f, g; p) for all h ∈ k[x, y].
7. If f is irreducible, and p is a smooth point of C = V(f) ⊂ A2, then

i(f, g; p) = vC,p(g), where g ∈ K[C] ⊂ OC,p is the residue class of g.
8. i(f, gh; p) = i(f, g; p) + i(f, h; p) for all f, g, h ∈ k[x, y].

Proof. Parts 5 and 6 immediately follow from the definition. To show the
remaining parts, we may suppose that all the components of f and g pass
through p. Indeed, the other components are units in OA2,p and do, hence, not
contribute to i(f, g; p). For simplicity, we write Op = OA2,p and mp = mA2,p.

1. According to our definition, i(f, g; p) = 0 iff ⟨f, g⟩Op = Op. This, in
turn, means that either f or g is a unit in Op and, thus, that p ̸∈ V(f)∩V(g).

2. If f and g have a common component h, then ⟨f, g⟩Op ⊂ ⟨h⟩Op ! Op.
Hence, i(f, g; p) ≥ dimK Op/⟨h⟩Op, and it suffices to show that the quotient
of Op modulo a proper principal ideal has infinite K-dimension. We postpone
the proof of this until we have formulated a version of Macaulay’s Theorem
2.3.5 which holds in the ring Op. See Remark 4.4.24 in the next section.

For the converse, suppose that f and g have no common component. Then
dimK K[x, y]/⟨f, g⟩ is finite by Exercises 1.7.13 and 1.6.5. In particular, there is
a unique ⟨x−a, y−b⟩-primary component of ⟨f, g⟩ ⊂ K[x, y], which we denote
by I. Then Op/⟨f, g⟩Op = Op/IOp (we will see this in Exercise 4.5.5, where
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we will study the behavior of primary decompositions under localization).
Since, in turn, Op/I Op

∼= K[x, y]/I by Remark 4.3.16, we conclude that
i(f, g; p) = dimK K[x, y]/I ≤ dimK K[x, y]/⟨f, g⟩ < ∞, as desired.

3. We will prove this part towards the end of the next section using
Gröbner bases in the local case.

4. This special case of part 3 is easy to do directly. Indeed, applying
Nakayama’s lemma as in the proof of Corollary 4.2.20, we get: i(f, g; p) =
1 ⇐⇒ ⟨f, g⟩ = mp ⇐⇒ ⟨f, g⟩+ m2

p = mp ⇐⇒ span(dpf + m2
p, dpg + m2

p⟩ =
mp/m2

p. Since mp/m2
p is a two dimensional K-vector space, i(f, g; p) = 1 iff

dpf and dpg are K-linearly independent, that is, iff C and D are smooth in p
with different tangent lines.

7. According to our assumptions in this part, OC,p is a DVR, with corre-
sponding discrete valuation vC,p on K(C). Hence,

Op/⟨f, g⟩Op
∼= OC,p/⟨ḡ⟩ ∼= OC,p/⟨tk⟩,

where k = vC,p(g). This shows the result since dimK OC,p/⟨tk⟩ = k by Exercise
4.3.10.

8. Since the assertion follows from part 2 otherwise, we may suppose that
f and gh have no common component. Consider, then, the sequence

0 → Op/⟨f, h⟩Op
φ→ Op/⟨f, gh⟩Op

ψ→ Op/⟨f, g⟩Op → 0, (4.4)

where φ is multiplication by g and ψ is induced by the identity on Op. By
Exercise 2.8.4 on the additive behavior of K-dimension, we are done if we
show that (4.4) is exact.

For this, note that the syzygies on f, g over Op are generated by the trivial
syzygy (g,−f)t ∈ O2

p. Indeed, given an Op-linear relation Af +Bg = 0, choose
a polynomial u ∈ K[x, y] with u(p) = 0, and such that a := uA ∈ K[x, y] and
b := uB ∈ K[x, y]. Then af + bg = 0 ∈ K[x, y]. Since K[x, y] is a UFD and
f and g have no common component, b must be a multiple of f , so that
−b = cf for some c ∈ K[x, y]. Then (a, b)t = c · (g,−f)t ∈ K[x, y]2 and, thus,
(A, B)t = C · (g,−f)t ∈ O2

p, where C = c/u.
It follows that φ is injective: if bg ∈ ⟨f, gh⟩Op, say bg = af + cgh with

a, c ∈ Op, then (a,−b + ch)t is a syzygy on f, g, so that b − ch ∈ fOp and,
thus, b ∈ ⟨f, h⟩Op. Since, furthermore, ψ is surjective by its very definition,
it remains to show that imφ = kerψ. This is completely straightforward and
we leave it to the reader. ⊓*

Note that it are properties 6 and 8 which force us to allow polynomials with
multiple factors in our definitions and statements. These properties are useful
in that they often enable us to simplify the computation of intersection num-
bers. Let us, for instance, rewrite the last computation in Example 4.3.17.
Property 6 (with the help of property 5) gives i(y2 − x3, 2y2 − x3; o) =
i(y2, x3; o). But i(y2, x3; o) = 6 by property 8. ⊓*
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Exercise∗ 4.3.19. Let f ∈ k[x, y] be a square-free polynomial, let C =
V(f) ⊂ A2 be the corresponding plane curve, and let p ∈ C be a point.

1. Suppose that p is a double point at which C has precisely one tangent
line L. Show that, then, i(C, L; p) ≥ 3. We say that p is a cusp of C if
i(C, L; p) = 3.

2. If p is the origin, and L is the x-axis, show that p is a cusp of C with
tangent line L iff f is of type f = ay2 + bx3 + other terms of degree ≥ 3,
where ab ̸= 0. ⊓*

4.4 Gröbner Bases in the Local Case

In this section, we will adjust the concept of Gröbner bases and Buchberger’s
algorithm to computations in the local ring of An at a given point of An. This
will, in particular, allow us to compute intersection multiplicities via Gröbner
bases.

For our purposes, it is enough to consider the case where the given point is
the origin o ∈ An. Indeed, if p = (a1, . . . , an) ∈ An is any point, we may trans-
late p to o (on the level of rings, we have the isomorphism OAn,p

∼= OAn,o which
extends the substitution homomorphism K[x1, . . . , xn] → K[x1, . . . , xn], xi '→
xi − ai). As usual, k ⊂ K will be the ground field over which the generators
of the ideals under consideration (and the originally given point p) are de-
fined. Taking into account that Remark 2.7.1 on field extensions applies to
the adjusted version of Buchberger’s algorithm, too, we will be concerned with
computations in the local ring

Oo = k[x1, . . . , xn]⟨x1,...,xn⟩.

Note that every ideal I of Oo can be generated by polynomials (choose any
finite set of generators and clear denominators). Starting from a set of poly-
nomial generators for I, the adjusted version of Buchberger’s algorithm will
compute a Gröbner basis for I consisting of polynomials, too. In fact, all
computations in Buchberger’s test will take place in the polynomial ring.

Reflecting the significance of the lowest degree terms of a polynomial f for
local studies (as indicated by our treatment of singular points in the preceeding
section), we will pick the leading term of f from among those terms. One way
of making this precise would be to choose a degree-compatible monomial order
such as the degree reverse lexicographic order, and pick the least term of f
as the leading term. Pursuing an alternative approach, we will make use of
monomial orders which are degree-anticompatible:

deg xα < deg xβ =⇒ xα > xβ .

Example 4.4.1. The local degree reverse lexicographic order >ldrlex

on k[x1, . . . , xn] is defined by setting
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xα >ldrlex xβ ⇐⇒ deg xα < deg xβ , or (deg xα = deg xβ and the
last nonzero entry of α− β ∈ Zn is negative). ⊓*

A degree-anticompatible monomial order such as >ldrlex is never global. It is,
in fact, local in the following sense:

Definition 4.4.2. A monomial order on k[x1, . . . , xn] is local if

xi < 1 for i = 1, . . . , n. ⊓*

Example 4.4.3. A weight order >w on k[x1, . . . , xn] is local iff the coefficients
of w are strictly negative. ⊓*

Remark 4.4.4. Given a local monomial order > on k[x1, . . . , xn], a polyno-
mial u ∈ k[x1, . . . , xn] is a unit in Oo iff its leading monomial is 1. ⊓*

A drawback of local monomial orders is that they are not Artinian. As a
consequence, the usual division process may not terminate. This is illustrated
by Example 2.2.9 which we revisit now:

Example 4.4.5. In the case of one variable x, there is precisely one local
monomial order:

1 > x > x2 > · · ·

Dividing g = x by f1 = x− x2 with respect to this order, we successively get
the expressions g = 1 · f1 + x2, x2 = x · f1 + x3, . . . . This may be interpreted
by saying that the result of the division process, computed in infinitely many
steps, is a standard expression whose quotient g1 is the formal power series∑∞

k=0 xk:

g = g1 · f1 + 0 ∈ k[[x]], where g1 =
∞∑

k=0

xk. (4.5)

On the other hand, expressing the fact that 1 − x is a multiplicative inverse
to
∑∞

k=0 xk in k[[x]], we have the formal geometric series expansion

1
1 − x

=
∞∑

k=0

xk.

We may, hence, rewrite (4.5) in a form which makes sense as an equation in
the ring we are actually interested in:

g =
1

1 − x
· f1 + 0 ∈ k[x]⟨x⟩.

Multiplying both sides above by the unit u = 1 − x ∈ k[x]⟨x⟩, we get the
expression

u · g = 1 · f1 + 0 ∈ k[x] (4.6)

which involves polynomials only. ⊓*
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In what follows, we will discuss a division algorithm, designed by Mora (1982),
which computes standard expressions such as (4.6). Based on this, we will
formulate a version of Buchberger’s criterion for Oo. To prove the criterion,
we will reduce to Buchberger’s criterion for the formal power series ring
k[[x1, . . . , xn]] (which, in turn, will be proved as in the polynomial case).
Setting the stage for the reduction, we treat, now, power series expansion in
general: given f ∈ Oo, write f as a fraction of type g/(1−h), with polynomials
g ∈ k[x1, . . . , xn] and h ∈ ⟨x1, . . . , xn⟩, and set

f =
g

1 − h
= g

∞∑

k=0

hk. (4.7)

The crucial point is that the right hand side of (4.7) makes sense as an element
of k[[x1, . . . , xn]]. To verify this, we use a bit of topology.

Remark-Definition 4.4.6. Given any ring R and any ideal m of R, it makes
sense to define the m-adic topology on R by taking the cosets f + mk

as a basis, where f ∈ R and k ≥ 0. The m-adic topology is Hausdorff iff⋂∞
k=0 mk = ⟨0⟩. Due to Krull’s intersection theorem, this condition is, in par-

ticular, fulfilled if R is a local Noetherian ring with maximal ideal m. ⊓*

If we endow a ring R with the m-adic topology for some ideal m ⊂ R, we say
that a sequence (fν) ⊂ R is a Cauchy sequence if for every k ≥ 0, there
exists a number ν0 such that fν − fµ ∈ mk for all ν, µ ≥ ν0. In the same
spirit, a sequence (fν) ⊂ R is called convergent, with limes f , if for every
k ≥ 0, there exists a number ν0 such that fν −f ∈ mk for all ν ≥ ν0. A series∑∞
ν=0 fν in R is convergent if the sequence formed by its partial sums is

convergent. If the m-adic topology is Hausdorff, every convergent sequence
(fν) has a unique limes, denoted limν→∞ fν . In particular, every convergent
series constitutes, then, an element of R.

Definition 4.4.7. Given a ring R and an ideal m of R, we say that R is
complete with respect to m if the m-adic topology is Hausdorff, and if
every Cauchy sequence converges. ⊓*

Proposition 4.4.8. Let m = ⟨x1, . . . , xn⟩ ⊂ k[[x1, . . . , xn]]. Then:

1. The m-adic topology on k[[x1, . . . , xn]] is Hausdorff:

∞⋂

k=0

mk = ⟨0⟩.

2. k[[x1, . . . , xn]] is complete with respect to m.
3. A series

∑∞
ν=0 fν in k[[x1, . . . , xn]] converges with respect to the m-adic

topology iff limν→∞ fν = 0.
4. k[[x1, . . . , xn]] is a local ring with maximal ideal m.
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5. There is a natural embedding of local rings Oo ⊂ k[[x1, . . . , xn]] defined by
power series expansion. The image of the maximal ideal of Oo under this
embedding is contained in the maimal ideal m.

Proof. 1. This is clear: if the power series f =
∑

aαxα is contained in mk,
then aα = 0 for all α with |α| < k.

2. Given a Cauchy sequence (fν) =
(∑

a(ν)
α xα

)
⊂ k[[x1, . . . , xn]], define

f =
∑

aαxα ∈ k[[x1, . . . , xn]] as follows: for each k ≥ 1, pick a number ν0
such that fν − fµ ∈ mk for all ν, µ ≥ ν0, and set aα = a(ν0)

α for all α with
|α| = k − 1. Then f = limν→∞ fν .

3. This follows from part 2: the sequence formed by the partial sums of∑∞
ν=0 fν is a Cauchy sequence iff limν→∞ fν = 0.
4. We have to show that each element f ∈ k[[x1, . . . , xn]] \ m is a unit in

k[[x1, . . . , xn]]. For this, write f = a0 − h, with 0 ̸= a0 ∈ k and h ∈ m, and
expand:

1
a0 − h

=
1
a0

∞∑

k=0

(
h

a0
)k.

Then, by part 3, the series on the right hand side converges and defines, thus,
a multiplicative inverse to f .

5. This follows similarly: it is, now, clear that the series on the right hand
side of (4.7) constitutes an element of k[[x1, . . . , xn]]. ⊓*

Exercise∗ 4.4.9. Let S be a ring which is complete with respect to some
ideal m. Given s1, . . . , sn ∈ m, show that there exists a unique homomorphism
Φ : k[[x1, . . . , xn]] → S such that Φ(xi) = si for all i. In fact, Φ is the map
which sends a a power series f to the series f(s1, . . . , sn) ∈ S. As in the
polynomial case, we refer to Φ as a substitution homomorphism. ⊓*

We, now, come to division with remainder and Gröbner bases in k[[x1, . . . , xn]].
This topic is of theoretical interest and was first considered by Hironaka
(1964) and, independently, Grauert (1972) who used the name standard
basis instead of Gröbner basis. Our terminology will be the same as in Chap-
ter 2. For instance, if 0 ̸= f =

∑
α∈Nn aαxα ∈ k[[x1, . . . , xn]], we call any

aαxα with aα ̸= 0 a term of f . And, given a local monomial order > on
k[x1, . . . , xn] ⊂ k[[x1, . . . , xn]], we define the leading term of f , written
L(f) = L>(f), to be the largest term of f . This makes sense since every
nonempty set X of monomials in k[x1, . . . , xn] has a largest element with
respect to the local order >. Indeed, arguing as in the proof of Proposition
2.2.10, we may take the largest element of a finite set of monomial generators
for the ideal ⟨X⟩ ⊂ k[x1, . . . , xn]. As usual, L>(0) = L(0) = 0.

Since a global monomial order > is Artinian, there is no sequence (mν)ν∈N
of monomials mν such that m1 > m2 > · · · . In the local case, we have instead:

Lemma 4.4.10. Let m = ⟨x1, . . . , xn⟩ be the maximal ideal of k[[x1, . . . , xn]],
and let > be a local monomial order on k[x1, . . . , xn] ⊂ k[[x1, . . . , xn]].
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1. If (mν)ν∈N is a sequence of monomials in k[x1, . . . , xn] such that m1 >
m2 > · · · , then limν→∞ mν = 0 with respect to the m-adic topology.

2. If > is a local weight order >w, and (fν)ν∈N is a sequence of formal power
series in k[[x1, . . . , xn]], then, with respect to the m-adic topology, we have:

lim
ν→∞

L>w(fν) = 0 =⇒ lim
ν→∞

fν = 0
⊓*

Proof. Given k, only finitely many of the monomials in k[x1, . . . , xn] are not
contained in mk. In particular, there is an integer ν0 such that mν ∈ mk for
all ν ≥ ν0. This shows part 1. For part 2, set

r = min{w(m) | m a monomial such that m ̸∈ mk}.

Then, if limν→∞ L>w (fν) = 0, there is a number ν1 such that w(L>w (fν)) < r
for all ν ≥ ν1 (indeed, the coefficients of w are strictly negative by assump-
tion). We conclude that fν ∈ mk for all ν ≥ ν1, as desired. ⊓*

Theorem 4.4.11 (Grauert’s Division Theorem). Let > be a local mono-
mial order on k[x1, . . . , xn], write R = k[[x1, . . . , xn]], and let f1, . . . , fr ∈
R \ {0}. For every g ∈ R, there exists a uniquely determined expression

g = g1f1 + . . . + grfr + h, with g1, . . . , gr, h ∈ R,

and such that:

(DD1) For i > j, no term of gi L(fi) is divisible by L(fj).
(DD2) For all i, no term of h is divisible by L(fi).

This expression is called a Grauert standard expression for g with re-
mainder h (in terms of the fi, with respect to >).

Proof. The uniqueness follows as in the polynomial case (see Theorem 2.2.12).
For the existence, we first note that as in the polynomial case, the result
clearly holds if f1, . . . , fr are terms. In the general case, we get, thus, a unique
expression

g(0) := g =
r∑

j=1

g(0)
j L(fj) + h(0)

satisfying conditions (DD1) and (DD2). Then either g(1) := g−
∑r

j=1 g(0)
j fj −

h(0) is zero, and we are done, or L(g(0)) > L(g(1)). Recursively, we are either
done in finitely many steps, or we get sequences (g(ν)), (g(ν)

j ), j = 0, . . . , r,
and (h(ν)) of formal power series such that, for all ν,

g(ν+1) = g −
r∑

j=1

ν∑

µ=1

g(µ)
j fj −

ν∑

µ=1

h(µ).



4.4 Gröbner Bases in the Local Case 171

In the latter case, the result will follow once we show that all our se-
quences converge to zero with respect to the ⟨x1, . . . , xn⟩-adic topology on
k[[x1, . . . , xn]]. For this, consider the monomial ideals Ij ⊂ k[x1, . . . , xn] gen-
erated by all terms of fj except the L(fj), j = 1, . . . , r. For each j, let Xj

consist of the minimal (monomial) generators for Ij together with L(fj). Then
X :=

⋃
Xj is a finite set of monomials. By Exercise 2.2.11, there exists a local

weight order >w on k[x1, . . . , xn] which coincides on X with the given local
order >. Due to our construction of X , we have L>w (fj) = L>(fj) for all j.
Hence, repeating the division process above with > replaced by >w, we get
the same sequences (g(ν)), (g(ν)

j ), and (h(ν)).
Since L(g(0)) > L(g(1)) > . . . , we have limν→∞ L(g(ν)) = 0 by part 1 of

Lemma 4.4.10. Then also limν→∞ L(g(ν)
j ) = 0 and limν→∞ L(h(ν)) = 0 since

L(g(ν)) ≥w L(g(ν)
j fj) = L(g(ν)

j )L(fj) and L(g(ν)) ≥w L(h(ν)) for all ν. We
are, thus, done by part 2 of Lemma 4.4.10. ⊓*

Leading ideals, standard monomials, and Gröbner bases for ideals in
k[[x1, . . . , xn]] are defined as for ideals in k[x1, . . . , xn]. Making use of Gordan’s
lemma as in the polynomial case is one way of showing that k[[x1, . . . , xn]]
is Noetherian. Furthermore, we have the following variant of Macaulay’s
Theorem 2.3.5:

Proposition 4.4.12. Let I ⊂ k[[x1, . . . , xn]] =: R be an ideal, and let > be a
local monomial order on k[x1, . . . , xn]. Then:

1. The standard monomials represent k-linearly independent elements of
R/I, and their residue classes generate a subspace of R/I which is dense
with respect to the mR/I-adic topology, where mR/I is the maximal ideal
of R/I.

2. If dimk R/I < ∞, the standard monomials represent a k-vector space basis
for R/I.

Proof. 1. Let

B := {m + I | m ∈ R a standard monomial} ⊂ R/I,

and let W be the subspace of R/I generated by the elements of B. Arguing
as in the proof of Macaulay’s Theorem 2.3.5, we find:

(a) The elements of B are k-linearly independent.
(b) Given a power series g ∈ R, there is a power series h =

∑
α bαxα ∈ R whose

terms involve only standard monomials, and such that g + I = h + I. In
fact, h is uniquely determined by g, I, and > as the remainder in a Grauert
standard expression g =

∑r
i=1 gifi + h, where f1, . . . , fr is any Gröbner

basis for I.

Statement (a) is precisely the first assertion of part 1 of the proposition. To
show that W is dense in R/I, we note that in the situation of (b), given an
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integer k ≥ 0, we have h −
∑

|α|<k bαxα ∈ mk, where m is the maximal ideal
of R. Hence, g ≡

∑
|α|<k bαxα mod I + mk

R/I , as desired.
If dimk R/I < ∞, there are only finitely many standard monomials by (a).

Hence, given g ∈ R, any power series h as in (b) is, in fact, a polynomial.
Together with (a), this shows part 2. ⊓*

Definition 4.4.13. As in the polynomial case, we call the remainder h in the
proof above the normal form of g mod I. ⊓*

Finally, we have a version of Buchberger’s criterion for k[[x1, . . . , xn]] whose
statement and proof read word for word identically to what we did in the
polynomial case (in particular, in the statement of the criterion, it is enough
to consider standard expressions in the weak sense of Remark 2.2.16). We
leave the details to the reader:

Exercise∗ 4.4.14. Let R = k[[x1, . . . , xn]].

1. Formulate and prove versions of Grauert’s division theorem and Buch-
berger’s criterion for free R-modules.

2. Show that Hilbert’s syzygy theorem holds for R: Every finitely generated
R-module M has a finite free resolution of length at most n, by finitely
generated free R-modules. ⊓*

As is already clear from Example 4.4.5, this does not give us an algorithm for
computing Gröbner bases in power series rings: even if we start with polyno-
mials, the remainder on Grauert division may be a power series, and it may
take infinitely many steps to compute this series.

Next, we turn from k[[x1, . . . , xn]] to Oo. To begin with, we show by ex-
ample that the strong condition (DD2) of Grauert’s division theorem cannot
always be achieved in Oo:

Example 4.4.15. Consider the polynomials f = x and f1 = x − x2 − y
in k[x, y] ⊂ k[[x, y]], and fix a local monomial order > on k[x, y] such that
L(f1) = x (for instance, take >ldrlex). Suppose there is a standard expression
x = g1f1 + h as in Grauert’s division theorem, with g1, h ∈ k[x, y]⟨x,y⟩. Then
no term of the remainder h is divisible by L(f1) = x. That is, h ∈ k[y]⟨y⟩.
This implies that x = L(x) = L(g1f1) = L(g1) · x and, thus, that g1 is a
unit in k[x, y]⟨x,y⟩ (that is, g(0, 0) ̸= 0). Furthermore, substituting h for x in
x = g1f1 + h, we get the equality

g1(h, y) · (h − h2 − y) = 0 ∈ k[y]⟨y⟩.

On the other hand, since f and f1 vanish at the origin, h cannot have a
constant term. It follows that g1(h, y) ̸= 0 since g(0, 0) ̸= 0. We conclude that

h − h2 − y = 0. (4.8)

This is impossible since regarding (4.8) as a quadratic equation in h and
solving it, we do not get a rational function: h = 1±

√
1−4y
2 . Arguing more
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formally (supposing that h does exist as a rational function), write h as a
fraction h = h1

1+h2
, with polynomials h1 ∈ k[y] and h2 ∈ ⟨y⟩ ⊂ k[y]. Then,

from (4.8), we obtain

(1 + h2) · h1 − h2
1 − y · (1 + h2)2 = 0 ∈ k[y]. (4.9)

A check on degrees gives a contradiction as follows: If deg h1 ≥ 1 + deg h2,
then deg h2

1 > 1 + deg(h2
2) = deg(y · (1 + h2

2)) and deg h2
1 > deg((1 + h2) · h1).

If deg h2 ≥ deg h1, then deg((1 + h2
2) · y) > deg((1 + h2) ·h1) ≥ deg h2

1. Hence,
in both cases, the degree of one of the three summands on the left hand side
of (4.9) is strictly larger than the degree of any other summand, absurd. ⊓*

Our discussion of division with remainder and Gröbner bases in Oo is mo-
tivated by what we did in Example 4.4.5. Taking additionally into account
that every ideal in Oo is generated by polynomials, our statements will be
formulated such that they involve polynomial data only.

Theorem 4.4.16 (Mora’s Division Theorem). Let > be a monomial
order on k[x1, . . . , xn], and let f1, . . . , fr ∈ k[x1, . . . , xn] \ {0}. For every
g ∈ k[x1, . . . , xn], there exists an expression

u · g = g1f1 + . . . + grfr + h,

where u, g1, . . . , gr, h ∈ k[x1, . . . , xn], with L(u) = 1, and such that:

(ID1) L(g) ≥ L(gifi) whenever both sides are nonzero.
(ID2) If h is nonzero, then L(h) is not divisible by any L(fi).

Every such expression is called a Mora standard expression for g with
remainder h (in terms of the fi, with respect to >). ⊓*

The proof of the theorem consists of an algorithm for computing Mora stan-
dard expressions. In comparison with the division algorithms discussed in
Chapter 2, the crucial new idea of Mora is to not only divide by f1, . . . , fr,
but also by some of the intermediate dividends. To decide whether an inter-
mediate dividend should be stored as a possible divisor for division steps still
to come, its ecart will be computed.

Definition 4.4.17. Let > be a monomial order on k[x1, . . . , xn]. Given a
nonzero polynomial f ∈ k[x1, . . . , xn], the ecart of f (with respect to >),
written ecart(f), is defined to be

ecart(f) = deg f − deg L(f). ⊓*

In stating Mora’s division algorithm, we focus on the computation of the
remainder h. How to compute the unit u and the quotients gi (this requires
some extra bookkeeping) will be described in the correctness argument given
in the proof below.
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Algorithm 4.4.18 (Mora’s Division Algorithm). Let > be a monomial
order on k[x1, . . . , xn]. Given nonzero polynomials g, f1, . . . , fr ∈ k[x1, . . . , xn],
compute a remainder h of g on Mora division by f1, . . . , fr.

1. Set h := g and D := {f1, . . . , fr}.
2. while

(
h ̸= 0 and D(h) := {f ∈ D | L(h) is divisible by L(f)} ̸= ∅

)

• choose f ∈ D(h) with ecart(f) minimal;
• if (ecart(f) > ecart(h)) then D := D ∪ {h};
• set h := h− L(h)

L(f)f .
3. return(h). ⊓*

Remark 4.4.19. 1. If we apply Mora’s algorithm to homogeneous polyno-
mials g, f1, . . . , fr, all polynomials computed in the resulting division process
are homogeneous, too. Hence, all ecart’s are zero, and Mora’s algorithm fol-
lows the steps of an indeterminate version of the usual division algorithm. In
fact, as shown by the correctness argument in the proof below, the algorithm
computes a standard expression of type g = g1f1 + . . . + grfr + h.
2. If > is a global monomial order, and L(h) is a multiple of L(f), then

L(h) ≥ L(f). Hence, even if added to D in the division process, h will not be
used in further division steps. Thus, we obtain again an indeterminate version
of the usual division algorithm, but in the nonhomogeneous case, the freedom
of choice is reduced. ⊓*

Proof (of termination and correctness). We write Dk and hk respectively for
the set of intermediate divisors and the intermediate dividend after the kth
iteration of the while loop, starting with D0 = D and h0 = g.

Termination. We proceed in two steps. In the first step, we show that
the set D of divisors will be enlarged in at most finitely many iterations of
the while loop. Then, taking our cue from the remark above, we homogenize
with respect to an extra variable x0 to reduce to the termination result for
the usual division algorithm.

After k iterations, the algorithm continues with the while loop iff 0 ̸=
L(hk) ∈ ⟨L(f) | f ∈ Dk⟩ ⊂ k[x1, . . . , xn]. In this case, hk is added to Dk iff
xecart(hk)

o L(hk) is not contained in the monomial ideal

Ik = ⟨xecart(f)
o L(f) | f ∈ Dk⟩ ⊂ k[x0, . . . , xn].

By Gordan’s lemma, the ascending chain I1 ⊂ I2 . . . is eventually stationary,
say IN = IN+1 = · · · for some N . Then also DN = DN+1 = · · · . Say,
DN = {f1, . . . , fr′}.

Termination will follow once we show that after finitely many further iter-
ations, either h = 0 or D(h) = ∅. For this, homogenize hN+1 and the fi with
respect to x0: set

HN+1 = xdeg(hN+1)
0 hN+1(x1/x0, . . . xn/x0) and
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Fi = xdeg(fi)
0 fi(x1/x0, . . . xn/x0), i = 1, . . . , r′.

On k[x0, . . . , xn], consider the monomial order >g defined by setting

xc
ox
α >g xd

ox
β ⇐⇒ deg xc

ox
α > deg xd

oxβ , or
(deg xc

ox
α = deg xd

ox
β and xα > xβ).

This order is global, and we have L>g (Fi) = xecart(fi)
o L>(fi). Thus, if we

divide hN+1 by the fi, Mora’s algorithm follows the steps of an indeterminate
version of the division algorithm, as desired.

Correctness. Recursively, starting with u0 = 1 and g(0)
i = 0, i = 1, . . . , r,

suppose that, due to the first k − 1 iterations of the while loop, we already
have expressions of type

uℓ · g = g(ℓ)
1 f1 + . . . + g(ℓ)

r fr + hℓ, with L(uℓ) = 1,

ℓ = 0, . . . , k − 1. Then, if the test condition for the k-th iteration of the while
loop is fulfilled, choose a polynomial f = f (k) as in the statement of the
algorithm, and set hk = hk−1 − mkf (k), where mk = L(hk−1)

L(f(k))
. There are two

possibilities: either,

(a) f (k) is one of f1, . . . , fr, or
(b) f (k) is one of h0, . . . , hk−1.

Accordingly, substituting hk + mkf (k) for hk−1 in the expression for uk−1 · g,
we get an expression of type

uk · g = g(k)
1 f1 + . . . + g(k)

r fr + hk,

where either,

(a) uk = uk−1, or
(b) uk = uk−1 −mkuℓ, for some ℓ.

In any case, L(uk) = L(uk−1) = 1 (in case (b), note that L(hl) > L(hk−1) =
L(mk ·hℓ) = mk ·L(hℓ), so that L(uk−1) = 1 > mk = L(mk ·uℓ)). We conclude
that, upon termination, the algorithm outputs a Mora standard expression as
desired (that the conditions (ID1) and (ID2) are fulfilled is clear). ⊓*

Example 4.4.20. Dividing g = x by f1 = x − x2 with respect to the unique
local monomial order on k[x], we successively get:

h0 = x, D0 = {x − x2}, 1 · g = 0 · f1 + x,

f (1) = x − x2, D1 = {x − x2, x}, h1 = x2, 1 · g = 1 · f1 + x2,

and
f (2) = x, h1 = 0, (1 − x) · g = 1 · f1 + 0. ⊓*
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Exercise 4.4.21. Consider >ldrlex on k[x, y, z] and compute a Mora standard
expression for g = x3y + x5 + x2y2z2 + z6 in terms of f1 = x2 + x2y, f2 =
y3 + xyz, f3 = x3y2 + z4. ⊓*

We, now, come to Gröbner bases in Oo. Let > be a local monomial order
on k[x1, . . . , xn]. Considering the embedding Oo ⊂ k[[x1, . . . , xn]], we define
the leading term of an element f ∈ Oo, written L(f) = L>(f), to be the
leading term of its power series expansion. Given an ideal I ⊂ Oo, the leading
ideal of I is the monomial ideal L(I) = L>(I) ⊂ k[x1, . . . , xn] generated by
the leading terms of the elements of I. Standard monomials and Gröbner
bases for ideals in Oo are defined as in the polynomial case. In fact, we ask that
the Gröbner basis elements are polynomials (otherwise, clear denominators).
Based on Mora Division with remainder, we get the Oo analog of Buchberger’s
Criterion 2.3.9:

Theorem 4.4.22 (Buchberger’s Criterion for Oo). Let > be a local
monomial order on k[x1, . . . , xn], and let f1, . . . , fr ∈ k[x1, . . . , xn] \ {0}. For
every i = 2, . . . , r and every minimal monomial generator xα for

Mi = ⟨L(f1), . . . ,L(fi−1)⟩ : L(fi) ⊂ k[x1, . . . , xn],

choose an S-polynomial S(fi, fj) as in Buchberger’s Criterion 2.3.9. Then
f1, . . . , fr form a Gröbner basis iff any such S(fi, fj) has a Mora standard
expression with remainder zero.

Proof. The condition on the remainders is clearly necessary. It is also suffi-
cient. Indeed, considering the syzygies arising from the Mora standard expres-
sions with remainder zero and arguing as in the proof of Buchberger’s criterion
2.3.9, we find for every nonzero g ∈ I = ⟨f1, . . . , fr⟩ ⊂ Oo ⊂ k[[x1, . . . , xn]] a
Grauert standard expression in terms of the fk with remainder zero. Hence,
L(g) is divisible by one of the L(fk). ⊓*

The Oo analog of Macaulay’s Theorem 2.3.5 is part 2 below:

Proposition 4.4.23. Let > be a local monomial order on k[x1, . . . , xn]. Then:

1. Let I be an ideal of Oo, and let f1, . . . , fr ∈ I be polynomials. Then the fk

form a Gröbner basis for I iff they form a Gröbner basis for the extended
ideal I k[[x1, . . . , xn]].

2. Proposition 4.4.12 on standard monomials remains true if k[[x1, . . . , xn]]
is replaced by Oo.

Proof. Let Ie = I k[[x1, . . . , xn]].
1. The implication from right to left is clear: Since I ⊂ Ie, we also have

L(I) ⊂ L(Ie).
Conversely, suppose that the fk form a Gröbner basis for I. Then f1, . . . , fr

generate I and, hence, also Ie. It is, thus, enough to show that the fk form a
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Gröbner basis in k[[x1, . . . , xn]]. By assumption, the fk satisfy Buchberger’s
criterion for Oo. That is, we have Mora standard expressions of type

u · S(fi, fj) =
∑

gkfk,

where u is a unit in Oo. Multiplying both sides by the power series expansion
of the inverse of u, we get a standard expression (in the weak sense of Remark
2.2.16) for S(fi, fj) in k[[x1, . . . , xn]] with remainder zero. Hence, Buchberger’s
criterion is satisfied in the power series ring as well.

2. Let I be an ideal of Oo. Given an element g ∈ Oo ⊂ k[[x1, . . . , xn]],
we consider the remainder h =

∑
α bαxα in a Grauert standard expression

g =
∑r

i=1 gifi +h, where f1, . . . , fr is any Gröbner basis for I (and, thus, also
for Ie by part 1). Then, if mo denotes the maximal ideal of Oo, and k is an
integer ≥ 0, we can replace h modulo I + mk

o by the polynomial
∑

|α|<k bαxα.
Arguing as in the proof of Proposition 4.4.12, we are done. ⊓*

The result on standard monomials gives us in particular:

Remark 4.4.24. If n > 1, and ⟨f⟩ ! Oo is a proper principal ideal, then
dimk Oo/⟨f⟩ = ∞ since there are infinitely many standard monomials for ⟨f⟩.
This concludes the proof of part 2 of Theorem 4.3.18. ⊓*

As in Chapter 2, Buchberger’s criterion gives us Buchberger’s test and
Buchberger’s algorithm for computing Gröbner bases (being able to com-
pute remainders, the termination of the algorithm only relies on the ascending
chain condition for monomial ideals, but not on the fact that the given order
is Artinian; see Corollary 2.3.11).

Exercise 4.4.25. Consider k[x, y] with >ldrlex. Compute Gröbner bases for
the following ideals:

I = ⟨x3 − y3, x2y2⟩, J = ⟨x3 − y3, x2y2 + xy3⟩, and K = ⟨x3 − y4, x2y2⟩.

Hint: You should get

{x3−y3, x2y2, y5}, {x3−y3, x2y2+xy3, xy4−y5, y6}, and {x3−y4, x2y2, y6}.

In the proof below, we will make use of the ideals I, J , and K to illustrate
the main arguments by examples. ⊓*

Proof of Theorem 4.3.18, Part 3. Let f, g ∈ R = k[x, y] be nonconstant
polynomials, let m = mult(f, o) and n = mult(f, o) be their multiplicities at
the origin o, and let fm and gn be the homogeneous components of f and g
of degrees m and n, respectively. We have to show that i(f, g; o) ≥ m ·n, with
equality occuring iff f and g have no tangent line in common at o. This is
clear if i(f, g; o) = ∞. Writing Io = ⟨f, g⟩Oo, we may, therefore, assume that

i(f, g; o) = dimk Oo/Io < ∞. (4.10)
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By part 2 of Theorem 4.3.18, the geometric meaning of this is that f and g
do not have a common component passing through o.

Given any local monomial order on k[x, y], it follows from (4.10) and part 2
of Proposition 4.4.23 that i(f, g; p) is precisely the number of standard mono-
mials for Io. To compute this number, we fix the local degree reverse lexico-
graphic order >ldrlex. Then, since >ldrlex is degree-anticompatible, the leading
terms L(f) and L(g) are among the terms of fm and gn, respectively. We may,
hence, choose the coordinates such that L(f) = xm and, then, suppose that
L(g) is of type L(g) = xβ1yβ2 , where m > β1 and β1 + β2 = n (subtract
a multiple of f from g and adjust constants, if necessary). To proceed, we
distinguish two cases.

Case 1: Suppose f and g are homogeneous. That is, f = fm and g = gn.
Then f and g have no common tangent line at o (every such line would be
a common component of f and g at o). Hence, in this case, we have to show
that the number of standard monomials for Io is m · n.

If β1 = 0, we are done right away: Since

S(g, f) ∈ ⟨x, y⟩d ⊂ ⟨L(f),L(g)⟩, (4.11)

where d is the degree of the “corner” LCM(L(g),L(f)) = xmyn, the remainder
of S(g, f) on Mora division by f, g is zero. Hence, f, g form a Gröbner basis
for Io, and the monomials xα1yα2 with 0 ≤ α1 ≤ m − 1 and 0 ≤ α2 ≤ n − 1
are precisely the standard monomials:
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2 Gröbner basis elements

If β1 > 0, however, then f, g do not form a Gröbner basis since this would im-
ply that there are infinitely many standard monomials. Hence, the remainder
of S(g, f) = x(m−β1)g − yβ2f on Mora division by f, g is nonzero and gives a
new (homogeneous) Gröbner basis element h3 for I whose leading term is a
scalar times a monomial of type xγ1yγ2 , with β1 > γ1 and γ1 + γ2 = m + β2.

Applying Buchberger’s criterion to f, g, h3, the only new S-polynomial to
be tested is S(h3, g) since xm−γ1 is divisible by xβ1−γ1 . If nonzero, we add



4.4 Gröbner Bases in the Local Case 179

the remainder arising from this test to the set of generators and continue in
this way. The resulting process yields (homogeneous) Gröbner basis elements
h1 = f, h2 = g, h3, . . . , where, at each stage of the process, only S(hk, hk−1)
needs to be tested, and where the degree of the new generator hk+1 coincides
with that of the “corner” LCM(L(hk),L(hk−1)).

Eventually, we will get an element hr such that L(hr) is a scalar times a
power of y. Then the remainder of S(hr, hr−1) on Mora division by the hk

is zero by reasons of degree (as in (4.11)). Hence, h1, . . . , hr form a Gröbner
basis for I0.

In visualizing the process just described, we may say that the leading
monomials of the hk determine a staircase which connects the x-axis with
the y-axis. An elementary inductive argument shows that the area under the
stairs has size m · n, as in the case where β1 = 0:
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3 Gröbner basis elements
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4 Gröbner basis elements

Case 2: Let, now, f and g be nonhomogeneous. As above, by computing a
Gröbner basis h1 = f, h2 = g, . . . , hr for Io, we get a staircase of leading terms
which connects the x-axis with the y-axis. Now, however, the Gröbner basis
elements are not necessarily homogeneous. Let h̃k+1 be the part of hk+1 of
degree deg LCM(L(hk),L(hk−1)), and let s be the least number k such that
h̃k+1 is zero. Then h̃1, . . . , h̃s form a Gröbner basis for ⟨fm, gn⟩Oo such that
L(hk) = L(h̃k) for all k ≤ s (recall that >ldrlex is degree-anticompatible). We,
hence, have two possibilities:

Case 2a: If f and g do not have a common tangent line at o, the L(h̃k)
must reach the y-axis as well, which means that the staircase arising from
fm, gn coincides with that arising from f, g. Then, again, there are precisely
m · n standard monomials for Io.

Case 2b: If, however, f and g do have a common tangent line at o, we
must have s < r. Then deg L(hs+1) > deg LCM(L(hs),L(hs−1)), so that for
the staircase arising from f, g, the area under the stairs has size > m · n:
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This concludes the proof of Theorem 4.3.18. ⊓*

Exercise∗ 4.4.26 (Multiplicities in Terms of the Local Ring). Let f ∈
k[x1, . . . , xn] be a nonconstant polynomial, let p ∈ An be a point, and let
R be the local ring R = OAn,p/⟨f⟩ OAn,p with its maximal ideal mR. The
multiplicity of f at p, written mult(f, p), is defined to be

mult(f, p) = min{k | dimK R/mk+1
R <

(
n + k

k

)
}.

Show that mult(f, p) ≥ 1 iff p ∈ V(f). If f is square-free, show that
mult(f, p) = 1 iff p is a smooth point of V(f). In case n = 1, show that
mult(f, p) is the usual multiplicity of p as a root of f . In the case of plane
curves, show that the definition of multiplicity given here coincides with the
one given in Definition 4.3.2. ⊓*

We conclude this section with some remarks on convergent power series. Recall
that in case k = C (or k = R), a power series f =

∑
α fαxα ∈ C[[x1, . . . , xn]]

is convergent if there exist a polyradius ρ = (ρ1, . . . , ρn) ∈ Rn
>0 such that the

series
||f ||ρ =

∑

α

|fα|ρα1
1 · · · ραn

n < ∞

In this case, f converges absolutely on the polydisc Dρ = {|x1| ≤ ρ1, . . . , |xn| ≤
ρn} and Rρ = {f | ||f ||ρ < ∞} is a Banach space.

The set of convergent power series is a ring which we denote by C{x1, . . . , xn}.
We, then, have a chain of ring inclusions

C[x1, . . . , xn] ⊂ OAn(C),o ⊂ C{x1, . . . , xn} ⊂ C[[x1, . . . , xn]].

Proposition 4.4.27. Let > be a local monomial order on C[x1, . . . , xn]. If
g, f1, . . . , fr are convergent power series, and g =

∑
gifi + h is the unique

exprssion satisfying the conditions (DD1) and (DD2) of Grauert’s division
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theorem, then the gi and h are convergent, too. In particular, the reduced
Gröbner basis of an ideal in C{x1, . . . , xn} generated by convergent power
series consists of convergent power series, too. ⊓*

Proof. Let >w be local weight order on C[x1, . . . , xn] given by Q-linear inde-
pendent negative weights such that Lw(fi) = L(fi). Without of generality we
assume that the fi are monique, say L(fj) = xα

j
. Consider tupels

K = {(g1, . . . , gr, h) ∈ C[[x1, . . . , xn]]r+1 | satisfying condition DD2}

and the subspace Kρ of tuples, which have finite norm

||(g1, . . . , gr, h)||ρ :=
∑

||gi||ρρα
j

+ ||h||ρ < ∞

Then the map

ψ : Kρ → Rρ, (g1, . . . , gr, h) '→
∑

gix
αi

+ h

is an isometrie of Banach spaces. We claim that for suitable ρ the pertubation

φ : Kρ → Rρ, (g1, . . . , gr, h) '→
∑

gifi + h

is still an isomorphism. For this we consider the weight order given by w and
a polyradius ρ(τ) = (τ−w1 , . . . , τ−wn) for 0 < τ << 1 such that g, f1, . . . , fr

converge in Dρ(τ) and q =
∑

i ||fi − iniw(fi)||ρ(τ)ρ(τ)−alphai
< 1. Then φ ◦

ψ−1 = idRρ(τ) + ϵ with operator norm ||ϵ||ρ(τ) ≤ q < 1. Hence
∑

k(−1)kϵk is
a convergent series of operators, which gives (idRrho(τ) + ϵ)−1.

Thus given g ∈ C{x1, . . . , xn} we can choose 0 < τ << 1 such that
additionally g ∈ Rρ(τ). Then g1, dots, gr and h converge in this polydisc as
well.

The rings k[[x1, . . . , xn]] and C{x1, . . . , xn}. As for the polynomial ring, the
proof uses induction and Gauss‘ Lemma., utilizing the Weierstrass Preparation
Theorem which frequently is also used to prove the Noetherian property of
these rings. We need the following notation: A power series f ∈ k[[x1, . . . , xn]]
is called xn-general if f(0, xn) ̸= 0 ∈ k[xn].

Exercise 4.4.28 (Weierstrass Preparation Theorem). If f ∈ k[[x1, . . . , xn]]
is a power series, show:

1. By a triangular change of coordinates, we can achieve that f is xn-general.
2. If f is xn-general, there exisits a local monomial order on k[x1, . . . , xn]

such that L(f) = L(f(0, xn).
3. If f is xn-general, then ⟨f⟩ is generated by a Weierstrass polynomial

p = xd
n+a1(x1, . . . , xn−1)xn−1

n +. . .+ad(x1, . . . , xn−1) ∈ k[[x1, . . . , xn−1]][xn] with p(0, xn) = xd
n,

that is there exists a unit u ∈ k[[x1, . . . , xn]] with f = up. Hint: Grauert
division gives an expression xd

n = uf + h satisfying conditions /DD1) and
(DD2). Set pn = xd

n − h and show that u is a unit. ⊓*
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Exercise 4.4.29. Complete the proof of the fact that k[[x1, . . . , xn]] is facto-
rial. ⊓*

Exercise 4.4.30. 1. Formal implicit mappimg theorem
2. Formal inverse function theorem

⊓*

4.5 The Local-Global Principle

The technique of localization often allows one to reduce the proof of a result in
commutative algebra to the local case, where the result is easier to establish
(for instance, since we can apply Nakayama’s lemma). We will see several
examples of how this works in the next section. Now, in preparing the ground
for some of the arguments, we extend localization from rings to modules, and
study properties of a module M over a ring R which are local in the sense
that M has the property iff Mp has the property for all prime ideals p of R.
Here, Mp = M [U−1] is the localization of M at U = R \ p in the following
sense:

Remark-Definition 4.5.1. Let R be a ring, let U ⊂ R be a multiplicatively
closed subset, and let M be an R-module. As in case M = R, the relation

(m, u) ∼ (m′, u′) ⇐⇒ v(mu′ − um′) = 0 for some v ∈ U

is an equivalence relation, and we write

M [U−1] = U−1M = {m

u
| m ∈ M, u ∈ U}

for the set of all equivalence classes. We consider M [U−1] as an R[U−1]-
module, with addition defined as for R[U−1], and with the action

r

u
· m

u′ =
rm

uu′ .

This module is called the localization of M at U .
If ϕ : M → N is an R-module homomorphism, there is an induced ho-

momorphism ϕ[U−1] : M [U−1] → N [U−1] of R[U−1]-modules taking m/u to
ϕ(m)/u. We have:

1. idM [U−1]) = idM [U−1].
2. If

M ′ ϕ−→ M
ψ−→ M ′′

are maps of R-modules, then

(ψ ◦ ϕ)[U−1] = ψ[U−1] ◦ ϕ[U−1].
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These properties are usually referred to by saying that U−1 is a functor from
the category of R-modules to the category of R[U−1]-modules.

Finally, note that if I ⊂ R is an ideal, then

IR[U−1] = I[U−1].

Indeed, this is clear since every element
∑

fi/ui with fi ∈ I and ui ∈ U for
all i can be brought to a common denominator. ⊓*
In what follows, let R and U be as above.

Exercise 4.5.2. If M is an R-module, show that

M [U−1] ∼= M ⊗R R[U−1]. ⊓*

Proposition 4.5.3. The functor U−1 is exact. That is, if a sequence of
R-modules

M ′ ϕ−→ M
ψ−→ M ′′

is exact at M , then the induced sequence of R[U−1]-modules

M ′[U−1]
ϕ[U−1]

!! M [U−1]
ψ[U−1]

!! M ′′[U−1]

is exact at M [U−1].

Proof. By assumption and since U−1 is a functor, 0 = (ψ◦ϕ)[U−1] = ψ[U−1]◦
ϕ[U−1]. Hence, imϕ[U−1] ⊂ kerψ[U−1]. To show the opposite inclusion, let
m/u ∈ kerψ[U−1]. That is, 0 = ψ[U−1](m/u) = ψ(m)/u. Then there is an
element v ∈ U such that 0 = vψ(m) = ψ(vm). Hence, vm ∈ kerψ = imϕ
and, thus, vm = ϕ(m′) for some m′ ∈ M ′. We conclude that

m/u = vm/vu = ϕ(m′)/vu = ϕ[U−1](m′/vu) ∈ imϕ[U−1]. ⊓*

The proposition implies, in particular, that if N is a submodule of M , then the
induced map N [U−1] → M [U−1] is injective. We may, thus, regard N [U−1]
as a submodule of M [U−1].

Exercise∗ 4.5.4. Show that localization commutes with forming sums and
intersections of submodules.That is, if N and N ′ are submodules of an R-
module M , then:

1. (N + N ′)[U−1] = N [U−1] + N ′[U−1].
2. (N ∩N ′)[U−1] = N [U−1] ∩N ′[U−1]. ⊓*

Proposition 4.5.5 (Primary Decomposition and Localization). Let R
be a Noetherian ring, let I ⊂ R be an ideal, let U ⊂ R be a multiplicatively
closed subset, and let ι : R → R[U−1] be the natural homomorphism. If I =⋂t

i=1 qi is a minimal primary decomposition, then

I[U−1] =
⋂

qi∩U=∅

qi[U−1] and ι−1(I[U−1]) =
⋂

qi∩U=∅

qi

are minimal primary decompositions as well.
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Proof. We write pi = rad qi.
If qi ∩ U ̸= ∅, then qi[U−1] = R[U−1] since the elements of U are sent to

units in R[U−1]. In contrast, if qi ∩ U = ∅, then qi[U−1] is pi[U−1]-primary
and ι−1(qi[U−1]) = qi (see Exercise 4.2.8). Taking Exercise 4.5.4 into account,
we find that

I[U−1] =
⋂

qi∩U=∅

qi[U−1]

and
ι−1(I[U−1]) =

⋂

qi∩U=∅

ι−1(qi[U−1]) =
⋂

qi∩U=∅

qi

are primary decompositions. These decompositions are minimal since the orig-
inal decomposition of I is minimal (apply Theorem 4.2.7 to see that the in-
volved prime ideals are distinct). ⊓*

Exercise∗ 4.5.6. Prove the 2nd Uniqueness Theorem 1.8.9 for primary de-
composition. ⊓*

Now, we give some examples of local properties:

Proposition 4.5.7. If M is an R-module, the following are equivalent:

1. M = 0.
2. Mp = 0 for all prime ideals p of R.
3. Mm = 0 for all maximal ideals m of R.

Proof. The only nontrivial part of the proof is to show that condition 3 implies
condition 1. For this, suppose that M ̸= 0, and let m ∈ M be a nonzero ele-
ment. Then the annihilator Ann(m) is a proper ideal of R which is necessarily
contained in a maximal ideal m ⊂ R. It follows that m/1 ∈ Mm cannot be zero
since otherwise vm = 0 for some v ∈ R \ m, a contradiction to Ann(m) ⊂ m.
In particular, Mm ̸= 0, as desired. ⊓*

In the proposition below, if p is a prime ideal of R and U = R \ p, we write
φp = φ[U−1].

Proposition 4.5.8. If φ : M → N is a homomorphism of R-modules, the
following are equivalent:

1. φ is injective.
2. φp : Mp → Np is injective for all prime ideals p of R.
3. φm : Mm → Nm is injective for all maximal ideals m of R.

The same holds if we replace “injective” by “surjective” in all statements.

Proof. 1 =⇒ 2: This follows by applying Proposition 4.5.3 to the exact
sequence

0 → M → N.

2 =⇒ 3: This is clear.



4.6 Artinian Rings and Krull’s Principal Ideal Theorem 185

3 =⇒ 1: Applying Proposition 4.5.3 to the exact sequence

0 → kerφ→ M → N,

we find that the localized sequences

0 → (kerφ)m → Mm → Nm

are exact for all maximal ideals m of R. Since all the (kerφ)m are zero by
assumption, also kerφ is zero by Proposition 4.5.7.

The surjectivity part follows in the same way. ⊓*

Exercise 4.5.9. Show that being normal is a local property of integral do-
mains. ⊓*

4.6 Artinian Rings and Krull’s Principal Ideal Theorem

In practical applications, we might wish to compute intersection numbers in
cases where the intersection points are not rational over the given field of
definition of our curves.

Example 4.6.1. In A2(C), consider the parabola C = V(y2 − x) and the
graph D = V(x3 − 6x2 + 2xy + 9x − 6y + 1) of the rational function which
sends x to x3−6x2+9x+1

6−2x .

Fig. 4.2. Three intersection points of multiplicity 2.
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Both curves are defined over Q. Plugging in y2 for x in the equation defining
D, we find that the y-coordinates of the intersection points satisfy the equation
(y3 − 3y + 1)2 = 0. Hence, we have three intersection points, say pi = (ai, bi),
i = 1, 2, 3. Since the polynomial y3 − 3y + 1 is irreducible over Q, the pi are
not defined over Q. They are, in fact, defined over the number field

Q(bi) ∼= Q[y]/⟨y3 − 3y + 1⟩

which is an extension field of Q of degree 3. Intuitively, considering Figure
4.2, each intersection point should be counted with multiplicity 2. Checking
this for pi using Definition 4.3.15, we would have to extend our ground field
from Q to Q(bi) and work in Q(bi)[x, y]⟨x−ai,y−bi⟩.

In what follows, we will describe an alternative way of defining intersection
multiplicities which, in the example here, compares the ring

R = Q[x, y]/⟨y2 − x, x3 − 6x2 + 2xy + 9x− 6y + 1⟩ ∼= Q[y]/⟨y3 − 3y + 1⟩2

with its quotient

R/⟨y3 − 3y + 1⟩ ∼= Q[y]/⟨y3 − 3y + 1⟩. ⊓*
In making the alternative definition of intersection multiplicities, we will rely
on the concept of length. This provides a measure for the size of a module and
constitutes, thus, one way of extending the concept of dimension from vector
spaces to modules. Here is the relevant terminology.

Let R be any ring, and let M be any R-module. A normal series of M
is a sequence

M = M0 # M1 # M2 # . . . # Mk = ⟨0⟩
of submodules of M with strict inclusions. The number k of inclusions is called
the length of the normal series. A composition series of M is a maximal
normal series, that is, a normal series which cannot be extended to a normal
series of greater length by inserting an extra submodule. Equivalently, each
factor Mi/Mi+1 is simple. Here, an R-module 0 ̸= M is called simple if it
has no submodules other than ⟨0⟩ and M itself. Note that simple modules
(over commutative rings) are fields:

Lemma 4.6.2. A module 0 ̸= M over a ring R is simple iff M can be written
as a quotient R/m, where m ⊂ R is a maximal ideal.

Proof. If M ∼= R/m is a field, then it is clearly simple. For the converse,
choose any element 0 ̸= m ∈ M . Then M = mR and, hence, M ∼= R/m,
where m = Ann(m). Necessarily, m is a maximal ideal since otherwise M
would contain a proper nonzero submodule. ⊓*

Definition 4.6.3. A module M over a ring R is said to be a module of
finite length if it has a composition series. In this case, the length of the
series is called the length of M , written ℓ(M). If no composition series
exists, set ℓ(M) = ∞. A ring R is of finite length if it is of finite length as
an R-module. ⊓*
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We show that ℓ(M) is well defined:

Theorem 4.6.4 (Jordan-Hölder). Let M be a module over a ring R. Sup-
pose that M has a composition series. Then any two such series have the same
length. Furthermore, any normal series of M can be extended to a composition
series.

Proof. Let M = M0 # M1 # M2 # . . . # Mℓ = ⟨0⟩ be any composition
series of M . Both statements of the theorem follow from the claim that every
normal series of M has length ≤ ℓ. Indeed, the first statement is obtained by
applying the claim to a composition series of minimum length. For the second
statement, given a normal series of M which is not maximal, note that the
process of inserting extra submodules must stop as soon as we reach length l.

To establish the claim, observe that the cases ℓ = 0 (that is, M = ⟨0⟩)
and ℓ = 1 (that is, M is simple) are trivial. We consider, therefore, the case
ℓ ≥ 2, and suppose inductively that the claim holds for all R-modules with a
composition series of length ≤ ℓ− 1.

Let M = N0 # N1 # N2 # . . . # Nk = ⟨0⟩ be any normal series of M . If
N1 ⊂ M1, the induction hypothesis applied to M1 yields k−1 ≤ ℓ−1 since M1

has a composition series of length ℓ−1. If N1 ̸⊂ M1, we must have N1 +M1 =
M since M/M1 is simple. Then N1/(M1 ∩ N1) ∼= (N1 + M1)/M1

∼= M/M1

is simple as well. On the other hand, applying, once more, the induction
hypothesis to M1, we find that all normal series of the proper submodule
M1∩N1 of M1 must have length ≤ ℓ−2. It follows that N1 has a composition
series of length ≤ ℓ− 2 + 1 = ℓ− 1 since N1/(M1 ∩ N1) is simple. As above,
we conclude that k − 1 ≤ ℓ− 1. ⊓*

Exercise∗ 4.6.5. Let R be a ring, let M be an R-module of finite length, and
let M = M0 # M1 # M2 # . . . # Mℓ = ⟨0⟩ be a composition series of M . If
m is a maximal ideal of R, show that the length of the Rm-module Mm is the
number of quotients Mi/Mi+1 isomorphic to R/m. ⊓*

Our next goal is to characterize modules of finite length in terms of chain
conditions. For this, we not only consider the ascending chain condition, but
also the descending chain condition:

Definition 4.6.6. A module M over a ring R is called Artinian if it satifies
the descending chain condition. That is, every chain

M = M0 ⊃ M1 ⊃ M2 ⊃ . . . Mk ⊃ . . .

of submodules of M is eventually stationary. A ring R is called Artinian
if it is Artinian as an R-module. That is, R satisfies the descending chain
condition on ideals. ⊓*

As in Exercise 1.4.5 one shows that M is Artinian iff the minimal condition
on submodules holds: Every nonempty set of ideals of R has a minimal element
with respect to inclusion.
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Proposition 4.6.7. Let M be a module over a ring R. Then the following
are equivalent:

1. M is of finite length.
2. M is Artinian and Noetherian.

Proof. 1 =⇒ 2: If ℓ(M) < ∞, the length of any normal series of M is
bounded by ℓ(M). Hence, both chain conditions hold.

2 =⇒ 1: Since M is Noetherian, it satisfies the maximal condition. In
particular, there is a maximal submodule M1 ! M = M0 which, necessarily,
is Noetherian as well. Applying the same argument to M1 and so forth, we
get a descending chain M = M0 # M1 # . . . which, since M is Artinian, is
eventually stationary. It is, hence, a composition series of M . ⊓*

Exercise∗ 4.6.8. Let R be a ring, and let

0 → M ′ → M → M ′′ → 0

be a short exact sequence of R-modules. Show:

1. M is Artinian (respectively Noetherian) iff both M ′ and M ′′ are Artinian
(respectively Noetherian).

2. M is of finite length iff both M ′ and M ′′ are of finite length. In this case,

ℓ(M) = ℓ(M ′) + ℓ(M ′′). ⊓*

The examples in the following exercise illustrate our definitions:

Exercise∗ 4.6.9. Show:

1. If M is a module over a field K, that is, M is a K-vector space, then M
is Noetherian iff M is Artinian iff M is of finite length iff dimK M < ∞.

2. If I is an ideal of a ring R, then R/I is of finite length as a ring iff it is of
finite length as an R-module.

3. An affine k-algebra k[x1, . . . , xn]/I is of finite length iff it has finite di-
mension as a k-vector space. Geometrically, this is the case where the
vanishing locus V(I) ⊂ An consists of finitely many points.

4. The k[x]-module M = k[x, x−1]/k[x] is Artinian, but not Noetherian. ⊓*

Definition 4.6.10. Let f, g ∈ k[x, y] be nonconstant polynomials, and let m
be a maximal ideal of k[x, y]. The intersection multiplicity of f and g at
m, written i(f, g; m), is defined to be

i(f, g; m) = ℓ(k[x, y]m/⟨f, g⟩k[x, y]m). ⊓*

As a consequence of the definition, the following facts are easy to prove:

Exercise 4.6.11 (Properties of Intersection Multiplicities). Let f, g ∈
k[x, y] be nonconstant polynomials, and let m ⊂ k[x, y] be a maximal ideal.
Then show:
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1. i(f, g; m) = 0 iff V(m) ̸⊂ V(f) ∩ V(g) ⊂ A2.
2. i(f, g; m) = ∞ iff f and g have a common factor contained in m.
3. If V(f) ∩V(g) ⊂ A2 is finite, then i(f, g; m) is the number of quotients in

a composition series of k[x, y]/⟨f, g⟩ which are isomorphic to k[x, y]/m.
4. If the field extension k[x, y]/m ⊃ k is separable, then V(m) ⊂ A2 consists

of [k[x, y]/m : k] points (which form an orbit under the natural action of
the Galois group of k over k). For each such point p,

i(f, g; p) = i(f, g; m).

5. If k[x, y]/m ⊃ k is inseparable, then V(m) consists of [k[x, y]/m : k]sep

points. For each such point p,

i(f, g; p) = i(f, g; m) · [k[x, y]/m : k]insep.

Here, the subscripts sep and insep refer to the separable and inseparable
degrees, respectively. ⊓*

Example 4.6.12. The affine Q-algebra

R = Q[x, y]/⟨y2 − x, x3 − 6x2 + 2xy + 9x− 6y + 1⟩ ∼= Q[y]/⟨y3 − 3y + 1⟩2

from Example 4.6.1 has finite length since it has finite dimension as a Q-vector
space. In fact, R # ⟨y3− 3y +1) # ⟨0⟩ is a composition series. Note that both
factors are isomorphic to Q[y]/⟨y3 − 3y + 1⟩. Taking parts 4, 3 of Exercise
4.6.11 into account, we find, as expected, that the curves C, D from Example
4.6.1 have three intersection points, each of which has multiplicity 2. ⊓*

Exercise 4.6.13. Let I ⊂ k[x1, . . . , xn] be an ideal such that V(I) ⊂ An is
finite, and let m ⊂ k[x1, . . . , xn] be a maximal ideal. Express

ℓ(k[x1, . . . , xn]m/I k[x1, . . . , xn]m)

in terms of the sequence dimk k[x1, . . . , xn]/Ik, k ≥ 0, where Ik is defined
inductively by I0 = I and Ik = Ik−1 : m. ⊓*

Exercise 4.6.14. Some examples for intersection number computations. ⊓*

Despite the formal symmetry between the ascending and the decending chain
condition, the notions of Noetherian and Artinian rings are quite different. In
fact, our next result shows that every Artinian ring is Noetherian, but of a
very special kind (so that most Notherian rings are not Artinian):

Theorem 4.6.15. For a ring R, the following are equivalent:

1. R is Noetherian and dim R = 0.
2. R has finite length.
3. R is Artinian.
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If these conditions are satisfied, then R has only finitely many maximal ideals.

Proof. 1 =⇒ 2: Suppose that R is Noetherian. If R is not of finite length,
the set

Γ := {I ⊂ R ideal | R/I is not of finite length}

is nonempty since ⟨0⟩ ∈ Γ . Hence, since R is Noetherian, Γ contains a maximal
element p. We show that p is a prime ideal. For this, let f, g ∈ R be elements
such that fg ∈ p, but f ̸∈ p. Consider the exact sequence

0 → R/(p : f) ·f→ R/p → R/(p + ⟨f⟩) → 0.

Since p + ⟨f⟩ # p, the module R/(p + ⟨f⟩) must have finite length by the
maximality of p as an element of Γ . If g would not be an element of p, then
p : f would contain p properly, and R/(p : f) would have finite length as well.
But, then, R/p would have finite length by Exercise 4.6.8, a contradiction to
our choice of p.

Now, suppose not only that R is Notherian, but also that dimR = 0. Then
all prime ideals of R are maximal. In particular, if R were not of finite length,
the prime ideal p just constructed would be a maximal ideal, so that R/p
would be a field. This contradicts, again, the fact that R/p is not of finite
length.

2 =⇒ 3: This is clear.
3 =⇒ 1: Now, suppose that R is Artinian. To show that R satifies

condition 1, we proceed in four steps.
Step 1. We show that dimR = 0. For this, consider a nested pair of

prime ideals p1 ⊂ p2 ⊂ R, and let f be any element of p2/p1 ⊂ R/p1. Since
R/p1 is Artinian as well, the descending chain condition yields a number m
such that ⟨fm⟩ = ⟨fm+1⟩. Then fm = gfm+1 for some g ∈ R/p1. That is,
(1 − gf)fm = 0. Since R/p1 is an integral domain and f ∈ p2/p1 ! R/p1 is
not a unit, we conclude that f = 0. It follows that p1 = p2 and, thus, that
dimR = 0, as claimed.

Step 2. The ring R has only finitely many maximal ideals since any in-
finite sequence m1, m2, m3, . . . of maximal ideals of R would yield an infinite
descending chain of ideals

m1 ⊃ m1 ∩ m2 ⊃ . . . ⊃ m1 ∩ m2 ∩ . . . ∩mk ⊃ . . .

with strict inclusions (by part 2 of Exercise 1.3.4). Writing m1, . . . , ms for the
distinct maximal ideals of R and taking into account that every prime ideal
of R is maximal by step 1, we conclude from Exercise 3.2.11 that

rad ⟨0⟩ = m1 ∩ . . . ∩ ms. (4.12)

Step 3. For any i, the descending chain of ideals mi ⊃ m2
i ⊃ m3

i ⊃ . . . is
eventually stationary. We may, hence, choose a number N such thst mN

i =
mN+1

i for all i. Consider the ideal



4.6 Artinian Rings and Krull’s Principal Ideal Theorem 191

I =
s∏

i=1

mN
i .

Then I2 = I. We use this to show that I = ⟨0⟩. Suppose the contrary. Then
the set

Γ := {J ! R | JI ̸= ⟨0⟩}
contains I since I2 = I ̸= ⟨0⟩. Hence, since R is Artinian, Γ contains a
minimal element J0. Let f be an element of J0 such that fI ̸= ⟨0⟩. Then
⟨f⟩ = J0 by the minimality of J0. The same argument gives fI = J0 = ⟨f⟩
since (fI)I = fI2 = fI ̸= 0. Choose an element g ∈ I such that fg = f .
Then f = fg = fg2 = . . . = fgm = 0 for some m ≥ 1 since every element of
I is nilpotent by (4.12). This contradiction proves that I = ⟨0⟩, as claimed.

Step 4. Each of the successive quotients in the descending chain of ideals

R ⊃ m1 ⊃ . . . ⊃ mN
1 ⊃ mN

1 m2 ⊃ . . . ⊃
s∏

i=1

mN
i = ⟨0⟩ (4.13)

is a vector space over some field R/mi. Hence, taking part 1 of Exercise 4.6.8
and part 1 of Exercise 4.6.9 into account, we get the following chain of eqi-
valences: R is Artinian ⇐⇒ each quotient in (4.13) is Artinian ⇐⇒ each
quotient in (4.13) is Noetherian ⇐⇒ R is Noetherian. This concludes the
proof. ⊓*

Next, we establish a structure result for Artinian rings. Then, following Krull,
we will apply Theorem 4.6.15 above to prove the principal ideal theorem which
is fundamental to the dimension theory of Noetherian rings.

Theorem 4.6.16 (Structure Theorem for Artinian Rings). Let R be an
Artinian ring, and let m1, . . . , ms be the distinct maximal ideals of R. Then

R ∼=
s∏

i=1

Rmi

is a finite direct product of local Artinian rings.

Proof. To begin with, we conclude from Theorem 4.2.7 that any localization
of an Artinian ring is again Artinian. Now, as in the preceeding proof, choose
a number N such that

∏s
i=1 mN

i = ⟨0⟩. Since the mi are pairwise coprime, the
mN

i are pairwise coprime as well (see part 4 of Exercise 1.5.12). Hence, the
natural map

R →
s∏

i=1

R/mN
i (4.14)

is an isomorphism by the Chinese remainder theorem (see Exercise 1.3.9).
To conclude the proof, we localize both sides of (4.14) and find that Rmi

∼=
(R/mN

i )mi
∼= R/mN

i (indeed, (R/mN
j )mi = 0 for j ̸= i and R/mN

i is a local
ring). ⊓*
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In the geometric context, the structure theorem extends Remark 4.3.16:

Corollary 4.6.17. Let I ⊂ k[x1, . . . , xn] be an ideal such that V(I) ⊂ An

is finite, say V(I) = {p1, . . . , ps}. Then there is a natural isomorphism of
K-algebras

K[x1, . . . , xn]/I K[x1, . . . , xn] ∼=
s∏

i=1

OAn,pi/IOAn,pi .

⊓*

Theorem 4.6.18 (Krull’s Principal Ideal Theorem, First Version).
Let R be a Noetherian ring, and let f ∈ R. Then every minimal prime p of
⟨f⟩ satisfies

codim p ≤ 1.

If f is not a zerodivisor of R, then equality holds.

Proof. To show the first statement of the theorem, we will localize and apply
Nakayama’s lemma. To begin with, recall from Proposition 4.2.13 that if p is
any prime ideal of any ring R, then codim p = dimRp. With our assumptions
here, we have, in addition, that pRp is a minimal prime of ⟨f⟩Rp. Replacing
R by Rp, we may, hence, assume that R is local ring with maximal ideal p.
The first statement of the theorem will follow once we show that codim q =
dimRq = 0 for every prime ideal q ! p.

For this, given q, consider the ideals

q(n) = {a ∈ R | ua ∈ qn for some u /∈ q}, n ≥ 1.

Then, by part 1 of Proposition 4.2.7, q(n) is the preimage of qnRq under the
localization map R → Rq. Since the maximal ideal p+⟨f⟩ of the quotient ring
R/⟨f⟩ is also minimal, this ring is zerodimensionial. Being also Noetherian, it
is Artinian by Theorem 4.6.15. Hence, the descending chain

q(1) + ⟨f⟩ ⊃ q(2) + ⟨f⟩ ⊃ . . .

is eventually stationary, say q(n) + ⟨f⟩ = q(n+1) + ⟨f⟩. As a consequence, any
element g ∈ q(n) can be written as a sum g = h + af with h ∈ q(n+1) and
a ∈ R. Then af ∈ q(n). Since p is a minimal prime of ⟨f⟩, we have f /∈ q and,
thus, a ∈ q(n) by the very definition of q(n). This shows that

q(n) = fq(n) + q(n+1).

Since f is contained in the maximal ideal p of R, Nakayama’s lemma yields
q(n) = q(n+1). Then qnRq = qn+1Rq by part 2 of Proposition 4.2.7. Apply-
ing Nakayama’s lemma in Rq, we, hence, get qnRq = ⟨0⟩. We conclude that
dimRq = 0, as desired.

The second statement of the theorem follows from the first one. Indeed,
the Noetherian ring R contains only finitely many minimal prime ideals, say
p1, . . . , pr. Thus, if f is a not a zerodivisor of R, it is not contained in any of
the pi by Exercise 3.2.12. This implies that codim p ≥ 1. ⊓*
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Theorem 4.6.19 (Krull’s Principal Ideal Theorem, General Version).
Let R be a Noetherian ring. If I = ⟨f1, . . . , fc⟩ ⊂ R is an ideal which is
generated by c elements, then every minimal prime p of I satisfies

codim p ≤ c.

Conversely, if p ⊂ R is a prime ideal such that codim p = c, there exist
elements y1, . . . , yc ∈ R such that p is a minimal prime of ⟨y1, . . . , yc⟩.

Proof. To show the first statement of the theorem, let p be a minimal prime
of I. As in the preceeding proof, we may assume that R is a local ring with
maximal ideal p. We do induction on c.

If c = 0, there is nothing to show. If c > 0, since R is Noetherian, we
may find a prime ideal q ! p such that no other prime ideal is between q
and p. Since p is a minimal prime of I = ⟨f1, . . . , fc⟩, at least one of the fi

is not contained in q, say fc /∈ q. Then the maximal ideal p + (q + ⟨fc⟩) of
the quotient ring R/(q+ ⟨fc⟩) is also minimal, so that this ring is an Artinian
local ring. In particular, all the fi are nilpotent mod q + ⟨fc⟩. Say,

fN
i = gi + aifc with gi ∈ q snd ai ∈ R, i = 1, . . . , c− 1.

Then p ⊃ ⟨g1, . . . , gc−1, fc⟩, and the image p of p in R/⟨g1, . . . , gc−1⟩ is a
minimal prime of the principal ideal ⟨f c⟩. Hence, p has codimension at most
1 by the first version of the principal ideal theorem. In R, this shows that q is
a minimal prime of ⟨g1, . . . , gc−1⟩. The induction hypothesis gives codim q ≤
c− 1 and, thus, codim p ≤ c.

For the converse statement, given p as in the statement, we choose the yi

one at a time. Inductively, with 0 ≤ k < c, suppose that y1, . . . , yk ∈ p have
already been chosen to generate an ideal of codimension k. Then, by prime
avoidance, it is possible to pick an element yk+1 ∈ p not contained in any of
the finitely many minimal primes of ⟨y1, . . . , yk⟩ (indeed, any such prime does
not contain p since its codimension is ≤ k < c by the first statement of the
theorem). Clearly, codim⟨y1, . . . , yk, yk+1⟩ = k + 1, and the result follows. ⊓*

We are, now, ready to prove inequality (4.1) in its general form (4.3):

Corollary 4.6.20. Let (R, m) be a local Noetherian ring. Then

dimR = min{d | there exists an m-primary ideal ⟨y1, . . . , yd⟩}. (4.15)

In particular,
dimR/m m/m2 ≥ dimR.

Proof. The last statement follows from the first one since m is generated by
dimR/m m/m2 elements (see Corollary 4.2.20 to Nakayama’s lemma).

For the first statement, let d = dimR = codim m, and let d′ be the mini-
mum on the right hand side of (4.15). Then d ≤ d′ respectively d′ ≤ d follow
from the first respectively second statement of the generalized principal ideal
theorem. ⊓*
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Its applications to geometry make Corollary 4.6.20 an important result of
commutative algebra, where, in the situation of the corollary, a sequence of
d = dimR elements y1, . . . , yd ∈ m is called a system of parameters for R if
it generates an m-primary ideal. If (R, m) is regular, that is, if dimR/m m/m2 =
d, then, by Corollary 4.2.20, every minimal set of generators for m is a system
of parameters consisting of d elements. Such a system is called a regular
system of parameters for R. A typical example is given below:

Corollary 4.6.21. The formal power series ring k[[x1, . . . , xn]] is regular of
dimension n. In fact, x1, . . . , xn form a regular system of parameters.

Proof. Since k[[x1, . . . , xn]] is an integral domain, dim k[[x1, . . . , xn]]/⟨xn⟩ =
dim k[[x1, . . . , xn]]− 1 by Krull’s principal ideal theorem. On the other hand,
k[[x1, . . . , xn]]/⟨xn⟩ ∼= k[[x1, . . . , xn−1]]. Hence, we conclude by induction on
n that dim k[[x1, . . . , xn]] = n. The result follows. ⊓*

Remark 4.6.22. We mention in passing that every regular local ring (R, m)
is an integral domain (to prove this, induct on dimR and use Nakayama’s
lemma). This, in turn, implies that if y1, . . . , yd is a regular system of pa-
rameters for R, then y1, . . . , yd is a regular sequence on R. That is, each
yi represents a nonzerodivisor of R/⟨y1, . . . , yi−1⟩, i = 1, . . . , d. See Eisenbud
(1995), Corollaries 10.14, 10.15 for details and further reading. ⊓*

At this point, the general definition of a Cohen-Macaulay ring deserves men-
tioning (though we will not need it in this book). According to this definition
and the remark above, every regular local ring is Cohen-Macaulay.

Definition 4.6.23. A local Noetherian ring (R, m) is called Cohen-Macau-
lay if it has a system of parameters which is at the same time a regular
sequence for R. An arbitrary Noetherian ring is called Cohen-Macaulay iff
its lcoalization Rp is Cohen-Macaulay for every prime ideal p of R. ⊓*

The first statement made in Remark 4.6.22 says, in particular, that the local
ring of an algebraic set at a smooth point is an integral domain. In the next
two propositions, we give a direct proof for this fact:

Proposition 4.6.24. Let p = (a1, . . . , an) ∈ An be a point, let f1, . . . , fr ∈
k[x1, . . . , xn] be polynomials vanishing at p, where 1 ≤ r ≤ n, and let R :=
OAn,p/⟨f1, . . . , fr⟩OAn,p. Suppose the matrix M =

(
∂fi

∂xj
(p)
)

1≤i,j≤r
has maxi-

mal rank r. Then R is isomorphic to a subring of K[[xr+1−ar+1, . . . , xn−an]].
In particular, R is an integral domain.

Proof. By translating p to the origin o, we may assume that p = o. We
write M−1 = (aki) and set gk =

∑r
i=1 akifi, k = 1, . . . r. Then each gk is of

type xk + terms of degree ≥ 2. In particular, by Buchberger’s criterion, the
gk form a Gröbner basis for the ideal generated by the fi in K[[x1, . . . , xn]]
(fix a degree-anticompatible monomial order on K[x1, . . . , xn]). Given any
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g ∈ OAn,o ⊂ K[[x1, . . . , xn]], the uniquely determined remainder h on Grauert
division of g by the gk is contained in K[[xr+1, . . . , xn]]. Sending g to h defines,
thus, a map OAn,o → K[[xr+1, . . . , xn]] whose kernel is ⟨f1, . . . , fr⟩OAn,o. The
result follows. ⊓*

Proposition 4.6.25. Let A ⊂ An be an algebraic set, let p ∈ A be a point,
and let d = dimp A. Suppose we can find polynomials f1, . . . , fn−d ∈ I(A)
such that the matrix M =

(
∂fi

∂xj
(p)
)

1≤i,j≤n−d
has maximal rank n − d. Then

OA,p
∼= OAn,p/⟨f1, . . . , fn−d⟩OAn,p, and this ring is a regular local ring.

Proof. Of course, up to renumbering the variables, the assumption just means
that p is a smooth point of A. To establish the result, we consider the natural
epimorphism of local rings

φ : R := OAn,p/⟨f1, . . . , fn−d⟩OAn,p → OA,p.

Corollary 4.6.20 gives us d = dimOA,p ≤ dimR ≤ dimR/m m/m2 = d, where
m is the maximal of R (for the latter equality, note that dpf1, . . . , dpfn−d are
K-linearly independent by virtue of the assumption on the matrix M). Since
R is an integral domain by the preceeding proposition, we conclude that kerφ
is zero (which completes the proof): if f ∈ kerφ were a nonzero element,
Krull’s principal ideal theorem would give us d = dimOA,p ≤ dimR/⟨f⟩ ≤
dimR − codim ⟨f⟩ = d− 1. ⊓*

We can, now, prove part 2 of Remark 4.1.11:

Corollary 4.6.26. Let A be an algebraic set. If A = V1 ∪ · · · ∪ Vs is the
decomposition of A into its irreducible components, then

Asing =
⋃

i̸=j

(Vi ∩ Vj) ∪
⋃

i

(Vi)sing.

Proof. Let p ∈ A be a smooth point of A. Then, since OA,p is an integral
domain by the preceeding propositions, p lies on a unique component Vi of
A. It is, then, a smooth point of Vi. We conclude that A \ Asing ⊂ (

⋃
i Vi \

(Vi)sing) \
⋃

i̸=j(Vi ∩ Vj). The converse inclusion is clear. ⊓*

Furthermore, we can show the corollaries to the Jacobian criterion. For this,
let I = ⟨f1, . . . , fr⟩ ⊂ k[x1, . . . , xn] be an ideal, let A = V(I) ⊂ An, and let
In−d

(
∂fi

∂xj

)
be the ideal generated by the (n − d) × (n − d) minors of the

Jacobian matrix of the fi. Moreover, let Ie = I K[x1, . . . , xn].

Proof of Corollary 4.1.13, conclusion. Supposing that A is equidimen-
sional of dimension d, we have to show: If

In−d

(
∂fi

∂xj

)
+ I = ⟨1⟩,
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then Ie = I(A).
Let m ⊂ K[x1, . . . , xn] be any maximal ideal, and let p ∈ An be the

corresponding point. Since Ie ⊂ I(A) ⊂ K[x1, . . . , xn], also Ie
m ⊂ I(A)m ⊂

OAn,p by the injectivity part of Proposition 4.5.8, and our claim will follow
from the surjectivity part of that proposition once we show that Ie

m = I(A)m.
For this, we distinguish two cases.

If p ∈ An \ A, there is a polynomial f ∈ Ie ⊂ I(A) which is not contained
in m. Then f is a unit in OAn,p, which implies that Ie

m = I(A)m = OAn,p.
If p ∈ A, then Ie ⊂ I(A) ⊂ m. By assumption, at least one (n − d) ×

(n − d) minor of
(
∂fi

∂xj
(p)
)

is nonzero, say det
(
∂fi

∂xj
(p)
)

1≤i,j≤n−d
̸= 0. Then

(⟨f1, . . . , fn−d⟩K[x1, . . . , xn])m = I(A)m by Proposition 4.6.25 and, thus, also
Ie
m = I(A)m. ⊓*

Proof of Corollary 4.1.14. Supposing that k[x1, . . . , xn]/I is Cohen-Macau-
lay of dimension d, we have to show: If

dim V(In−d

(
∂fi

∂xj

)
+ I) < dim V(I) = d,

then Ie = I(A) and V(In−d

(
∂fi

∂xj

)
+ I) = Asing.

Arguing as in the previous proof, we see that the equality Ie
m = I(A)m

holds for the maximal ideal m of any point p ∈ A which is not contained in
B := V(In−d( ∂fi

∂xj
) + I). On the other hand, by virtue of the Cohen-Macau-

lay assumption, we conclude from the Unmixedness Theorem 3.3.12 that Ie

has only isolated primary components, all of dimension d. In particular, by
the 2nd uniqueness theorem for primary decomposition, Ie admits a uniquely
determined minimal primary decomposition, say, Ie =

⋂t
i=1 qi. The radicals

pi = rad qi are the associated primes of I(A), and the vanishing loci Vi = V(qi)
are the irreducible components of A.

For each i, since dim Vi = d > dimB, there is a point pi ∈ Vi \ (B ∪⋃
j ̸=i Vj). Localize R = K[x1, . . . , xn] at the maximal ideal mi of pi, and let

ι : R → Rmi be the natural homomorphism. Then, by Proposition 4.5.5, we
have qi = ι−1(Ie

mi
) = ι−1(I(A)mi) = pi. This shows that Ie = I(A).

Replacing I by I(A) in the definition of B, we see that dim TpA > d iff
p ∈ B. Hence, B = Asing since A is equidimensional of dimension d. ⊓*

4.7 Analytic Type and Tangent Cone

So far, we have defined two invariants of an algebraic set A at a point p ∈
A, namely the local ring OA,p with its maximal ideal mA,p, and the Zariski
tangent space TpA ∼= (mA,p/m2

A,p)∗. In this section, motivated by the fact that
both invariants have their drawbacks at singular points, we will introduce two
further invariants of A at p.
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To begin, we note that the concept of the local ring is too fine at singular
points in that two rings OA,p and OB,q may differ although our intuition is
that locally, near p respectively q, the algebraic sets A and B look alike.

Example 4.7.1. For the plane curves

C = V(y2 − x2 − x3) ⊂ A2(C) and D = V(v2 − u2) ⊂ A2(C),

our intuitive understanding is that C and D look alike near the origin o:

y2 − x2 − x3 = 0 v2 − u2 = 0

Nevertheless, the local rings OC,o and OD,o are not isomorphic. In fact, since
C is irreducible, OC,o is a subring of the rational function field k(C) and, thus,
an integral domain. In contrast, reflecting the fact that o is contained in two
irreducible components of D, the ring OD,o contains zerodivisors: (v− u)(v +
u) = 0 mod ⟨v2 − u2⟩. ⊓*

From a geometric point of view, the problem in the example is that near the
origin, both curves consist of two different “branches”, but for the curve C,
the decomposition into branches does not happen in a Zariski neighborhood
of the origin. In terms of functions, the polynomial y2 − x2 − x3 cannot be
factored in OC.o. Naively, to overcome the problem, we should work with
smaller neighborhoods and, correspondingly, a larger class of functions. This
is easy to establish in case K = C where we may consider arbitraryly small
Euclidean neighborhoods and allow convergent power series as functions on
these:

y2 − x2 − x3 = (y + x
√

1 + x) · (y − x
√

1 + x),

where the Taylor series

√
1 + x =

∞∑

k=0

(
1/2
k

)
xk

is convergent for |x| < 1. Ring theoretically, this suggests to consider the local
ring

C{x1 − a1, . . . , xn − an}/I(A)C{x1 − a1, . . . , xn − an}

instead of the local ring

OA,p
∼= OAn(C),p/I(A)OAn(C),p.
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Over an arbitrary field K, there is no analogue to the Euclidean topology, and
it is not meaningful to speak of convergent power series. We, may, however,
consider the local ring

K[[x1 − a1, . . . , xn − an]]/I(A)K[[x1 − a1, . . . , xn − an]].

It turns out that this ring is naturally obtained from the local ring OA,p by
completing OA,p with respect to the mA,p-adic topology.

In what follows, we describe the construction of the completion in a general
algebraic context: Let R be any ring, and let m be any ideal of R. Consider-
ing the m-adic topology on R, we call two Cauchy sequences (fν), (gν) ⊂ R
equivalent if the sequence of differences (fν−gν) converges to zero. The set of
all equivalence classes of Cauchy sequences carries a natural ring structure: If
(fν), (gν) ⊂ R are Cauchy sequences, then so are (fν + gν) and (fν · gν), and
the classes of these depend only on the classes of (fν) and (gν). Suppressing
the ideal m in our notation, we write R̂ for the resulting ring, and call it the
completion of R with respect to m. For each f ∈ R, the class of the con-
stant sequence (f) is an element ι(f) ∈ R̂. This defines a ring homomorphism
ι : R → R̂. The kernel of ι is the ideal

⋂∞
k=0 mk. Hence, we may consider R as

a subring of R̂ if this ideal is zero, that is, if R is Hausdorff with respect to the
m-adic topology. By Krull’s intersection theorem, this holds, in particular, if
(R, m) is a local Noetherian ring.

In treating the completion of affine rings and, similarly, that of OA,p, we
make use of the following lemma.

Lemma 4.7.2. Let I ⊂ k[x1, . . . , xn] be an ideal, let > be a degree-anticompa-
tible monomial order on k[x1, . . . , xn], and let f1, . . . , fr form a Gröbner basis
for I. Then, for any k ≥ 1, the fi together with the monomials of degree k
form a Gröbner basis for the ideal I + ⟨x1, . . . , xn⟩k.

Proof. We write G for the set of proposed Gröbner basis elements. By as-
sumption, the remainder in any standard expression for an S-polynomial of
type S(fi, fj) in terms of G is zero. On the other hand, each term of an S-
polynomial of type S(fi, xα), where |α| = k, has degree ≥ k since with respect
to >, L(fi) is chosen among the lowest degree terms of fi. Hence, also in this
case, Buchberger’s test yields a remainder which is zero. ⊓*

Proposition 4.7.3. If R = k[x1, . . . , xn]/I is an affine ring, the completion
of R with respect to the maximal ideal m = ⟨x1, . . . , xn⟩ ⊂ R is

R̂ ∼= k[[x1, . . . , xn]]/I k[[x1, . . . , xn]].

Proof. Let Ie = I k[[x1, . . . , xn]]. Given a power series g =
∑
α aαxα ∈

k[[x1, . . . , xn]], we write g(ν) for the truncation
∑

|α|≤ν aαxα. Associating to
each g the sequence of truncations (g(ν)) and taking residue classes, we get a
homomorphism
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φ : k[[x1, . . . , xn]] → R̂

with Ie ⊂ kerφ. The proposition will follow once we show that Ie = kerφ,
and that φ is surjective. For this, fix a degree-anticompatible monomial order
on k[x1, . . . , xn].

We first show that Ie = kerφ. Given g ∈ kerφ, let h ∈ k[[x1, . . . , xn]] be
the normal form of g mod Ie. Then, in particular, no term of h is contained
in L(I). Moreover, since φ(g) = 0, also φ(h) = 0. In terms of the truncations
h(ν) this means that for all k ≥ 0, there is an index ν0 such that h(ν) + I ∈ mk

for all ν ≥ ν0. By Lemma 4.7.2, the latter condition is equivalent to h(ν) ∈
I + ⟨x1, . . . , xn⟩k for all ν ≥ ν0. Since k can be chosen arbitarily high, we
have L(h) ∈ L(I). By the choice of h, this is only possible if h = 0 and, thus,
g ∈ Ie.

Next, we show that φ is surjective. For this, consider a sequence of poly-
nomials (gν) in k[x1, . . . , xn] ⊂ k[[x1, . . . , xn]] which represents a Cauchy se-
quence in R. For each ν, let hν ∈ k[[x1, . . . , xn]] be the normal form of gν
mod Ie. By Lemma 4.7.2, given ν, k ≥ 0, the truncation h(k)

ν coincides with
the normal form of gν mod I + ⟨x1, . . . , xn⟩k+1. In particular, for each k, the
sequence of polynomials h(k)

ν , ν ≥ 0, is ultimately constant, say h(k)
ν = fk

for ν ≫ 0. Then fℓ − fk ∈ ⟨x1, . . . , xn⟩k for ℓ ≥ k. We conclude that the fk

constitute a power series whose image under φ in R̂ coincides with the class
represented by (gν). ⊓*

Exercise 4.7.4. Let R be a ring, let m be an ideal of R, and let R̂ be the
completion of R with respect to m. Show:

1. If R is Noetherian, then so is R̂.
2. If R is Hausdorff with respect to the m-adic topology, then R̂ is complete

with respect to mR̂.
3. If m is a maximal ideal, then R̂ is a local ring with maximal ideal mR̂.

Furthermore, R̂ = R̂m, where R̂m denotes the completion of the local ring
Rm with respect to its maximal ideal. ⊓*

Now, we focus on the completion of OA,p with respect to mA,p, denoted ÔA,p.
By translating p to the origin and by either imitating the proof of Proposition
4.7.3 or by combining the proposition with part 3 of the exercise, we get:

Corollary 4.7.5. Let A ⊂ An be an algebraic set, and let p = (a1, . . . , an) ∈ A
be a point. Then

ÔA,p
∼= K[[x1 − a1, . . . , xn − an]]/I(A)K[[x1 − a1, . . . , xn − an]]. ⊓*

With respect to dimension, we have:

Corollary 4.7.6. Let A ⊂ An be an algebraic set, and let p ∈ A be a point.
Then

dimOA,p = dim ÔA,p. ⊓*
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Exercise 4.7.7. Prove Corollary 4.7.6.
Hint. Consider systems of parameters in both rings OA,p and ÔA,p. Further-
more, consider the natural projection K[[x1 − a1, . . . , xn − an]] → ÔA,p from
Corollary 4.7.5 and make use of Exercise 1.9.3. ⊓*

Our next result refines Proposition 4.6.24. In particular, we show once more
that the local ring of an algebraic set at a smooth point is an integral domain.

Corollary 4.7.8. Let A ⊂ An be an algebraic set, and let p ∈ A be a point.

1. If p is a smooth point of A, then

ÔA,p
∼= K[[t1, . . . , td]], where d = dimp A = dimOA,p.

2. More generally, if p is arbitrary, we have a representation of ÔA,p as a
quotient

ÔA,p
∼= K[[t1, . . . , te]]/J, where e = dimK TpA,

and where J is an ideal of K[[t1, . . . , te]] such that J ⊂ ⟨t1, . . . , te⟩2.

Proof. We assume that p = o is the origin.
1. By part 1 and the principal ideal theorem, any quotient of K[[t1, . . . , td]]

by a nonzero ideal J has dimension < d since K[[t1, . . . , td]] is an integral
domain. Hence, part 1 is a special case of part 2.

2. If I(A) = ⟨f1, . . . , fr⟩, then TpA = V(dpfi | i = 1, . . . , r) ⊂ An. We may,
hence, choose coordinates x1, . . . , xn such that dpfi = xi, for i = 1 . . . , n − e,
and such that fi ∈ ⟨x1, . . . , xn⟩2, for i > n − e. Sending the ti to the xn−e+i

and composing with the natural projection K[[x1 − a1, . . . , xn − an]] → ÔA,p

from Corollary 4.7.5, we get a ring homomorphism

φ : K[[t1, . . . , te]] → K[[x1, . . . , xn]] → ÔA,o.

To show that φ is surjective, fix a degree-anticompatible monomial or-
der on K[x1, . . . , xn]. Given an element ĝ ∈ ÔA,o, choose a power series
g ∈ K[[x1, . . . , xn]] representing ĝ, and let h be the normal form of g mod
I(A). Then h also represents ĝ. Moreover, no term of h is contained in L(I(A)).
Since L(fi) = xi for i = 1, . . . , n − e, it follows that h is in the image of
K[[t1, . . . , te]] → K[[x1, . . . , xn]].

To finish the proof, we note that J := kerφ is contained in ⟨t1, . . . , te⟩2
since fn−e+1, . . . , fr ∈ ⟨x1, . . . , xn⟩2. ⊓*

In the situation of the corollary, the number e = dimK TpA is called the
embedding dimension of the pair (A, p). Note that always n ≥ e. We say
that (A, p) is minimally embedded in (An, p) if n = e.

Exercise 4.7.9. For Oo and K[[x1, . . . , xn]], formulate and prove statements
analogous to those in Propositions 3.3.3 and 3.3.11 on Noether normalization
respectively to those in the Unmixedness Theorem 3.3.12. ⊓*
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Definition 4.7.10. Given affine algebraic sets A, B and points p ∈ A, q ∈ B,
we call the pairs (A, p) and (B, q) analytically isomorphic if ÔA,p

∼= ÔB,q

as K-algebras. ⊓*

Example 4.7.11. In Example 4.7.1, the pairs (C, o) and (D, o) are analyti-
cally isomorphic. Indeed, by the formal inverse function theorem (see Exercise
4.4.30), the homomorphism

φ : C[[u, v]] → C[[x, y]]

obtained by substituting

u '→ x
√

1 + x = x
∞∑

k=0

(
1/2
k

)
xk, v '→ y,

is an isomorphism. Since φ maps v2−u2 to y2−x2−x3, it induces the desired
isomorphism

ÔD,o
∼= C[[u, v]]/⟨v2 − u2⟩ → C[[x, y]]/⟨y2 − x2 − x3⟩ ∼= ÔC,o. ⊓*

In particular, the analytic type is a coarser invariant than the local ring. It
is finer than the tangent space: If R = ÔA,p, and m is the maximal ideal of
R, then m/m2 ∼= mA,p/m2

A,p. Indeed there is a well-defined map mA,p → m →
m/m2 of OA,p-modules which is surjective with kernel m2

A,p.

Remark 4.7.12. Let K = C, let A, B be analytic sets, and let p ∈ A, q ∈ B
be points. Suppose that (A, p), (B, q) are minimally embedded in (Ae, o).
Moreover, suppose that (A, p) and (B, q) are analytically isomorphic, where
the isomorphism ÔB,q → ÔA,p is given by an e-tuple of convergent power
series (z1, . . . , ze). In this case, there are neighborhoods U of p ∈ Ae(C) and
V of q ∈ Ae(C) in the Euclidean topology such that

z : U → V, a '→ (z1(a), . . . , ze(a)),

is biholomorphic, and with z(A ∩ U) = B ∩ V . ⊓*

Exercise 4.7.13. Let p be a point of a plane curve C ⊂ A2.

1. Assume charK ̸= 2. Show that p is a node respectively a cusp of C iff
(C, p) is analytically isomorphic to V(y2 − x2) respectively V(y2 − x3).

2. Show that p is an ordinary triple point iff (C, p) is analytically isomorphic
to V(xy(x − y)). ⊓*

The precise definition of a tacnode is as follows (see Examples 4.3.1 and 4.3.6):

Definition 4.7.14. Assume char K ̸= 2. A point p of a plane curve C ⊂ A2

is called a tacnode if (C, p) is analytically isomorphic to (V(y2 − x4), o). ⊓*
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Exercise 4.7.15. Let f ∈ K[x, y] be a square-free polynomial, and let C =
V(f) ⊂ A2.

1. Show that C has at most nodes as singularities iff ⟨f, ∂f
∂x , ∂f

∂y ⟩ ⊂ K[x, y] is
a radical ideal.

2. Show that C has at most double points as singularities iff

⟨f,
∂f

∂x
,
∂f

∂y
,
∂2f

∂x2
,
∂2f

∂x∂y
,
∂2f

∂y2
⟩ = ⟨1⟩ ⊂ K[x, y].

3. Formulate and prove a criterion for C to have at most nodes and cusps
as singularities.

4. The curve defined by

f = x4 + y4 − 8x3 + 18xy2 + 18x2 +
27
2

y2 − 27

has only nodes and cusps as singularities. How many of each type are
there? ⊓*

We, now, turn from the local ring to the tangent space. The drawback of TpA
is that it fails to approximate A near a singular point p ∈ A. In fact, in this
case, the dimension of TpA, which determines TpA as a K-vector space up to
isomorphism, is simply too big. In this sense, TpA is too coarse at a singular
point. To overcome this failure, we introduce our second new invariant of A
at p which is the tangent cone TCpA. This coincides with TpA at a smooth
point, but is better behaved than TpA at a singular point.

Recall that according to our definitions, the tangent space at a smooth
point is the union of lines which can be seen as the analogue of limiting
positions of secant lines in calculus. Mimicing this if A is not necessarily
smooth at p gives the tangent cone.

We suppose for simplicity that p = o = (0, . . . , 0) ∈ A is the origin. Then
the lines through p admit parametrizations of type t → tv, where v ∈ An,
and every secant line to A through p gives a point tv ∈ A with t ̸= 0. We are
interested in what is happening if t tends to zero. Consider the set

B = {(v, t) ∈ An × A1 | tv ∈ A} ⊂ An × A1 ∼= An+1.

As we will see more clearly in the proof of proposition 4.7.16 below, B is an
algebraic set. Obviously, B1 = An × {o} is an irreducible component of B (if
B ̸= An). We write B2 = B \ B1 for the residual algebraic set. The tangent
cone of A at o is defined to be the algebraic set

TCoA = B1 ∩ B2 ⊂ An × {o} ∼= An.

In determining equations for the tangent cone, given a polynomial f ∈
k[x1, . . . , xn], we write m = mult(f, o), and denote by fi the homogeneous
component of f of degree i.
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Proposition 4.7.16. Let I ⊂ k[x1, . . . , xn] be an ideal, and let A = V(I) ⊂
An. Suppose that A contains the origin o. Then, with notation as above, the
tangent cone TCoA ⊂ An is the locus of zeros of the ideal

J = ⟨{fm | f ∈ I}⟩.

Proof. The set B ⊂ An×A1 is the common vanishing locus of the polynomials

f(tx) = tmfm(x) + tm+1fm+1(x) + . . . + tdfd(x), f ∈ I

(note that m ≥ 1 since o ∈ A). Saturating with respect to t, we obtain
equations for the algebraic set residual to B1 = V(t). That is, B2 ⊂ An × A1

is the common vanishing locus of the polynomials

fm(x) + tfm+1(x) + . . . + td−mfd(x), f ∈ I.

As a subset of An, the intersection B1 ∩B2 ⊂ An × {o} ∼= An is, then, defined
by the ideal J . ⊓*

In particular, if A = V(f) ⊂ An is a hypersurface with o ∈ A, then TCoA is
defined by the vanishing of the lowest degree part of f .

Example 4.7.17. If A = V(x2 + y2− z2 + z4), then TCoA = V(x2 + y2− z2).

A

z

TCoA

x

y

⊓*

Being defined by homogenous polynomials, TCoA is the union of lines through
the origin and, thus, indeed a cone: With notation as in the proposition, if
o ̸= p ∈ TCoA is a point, and q = λp is any point on the line op, then
fm(q) = λmfm(p) = 0 for all fm ∈ J , so that q ∈ TCoA as well. See also
Exercise 4.7.19, where we will give an alternative description of the tangent
cone. Furthermore, note that TCoA is contained in the tangent space ToA. In
fact, according to our definitions, if I = I(A) ⊂ K[x1, . . . , xn] is the vanishing
ideal of A, then the linear polynomials in J define the tangent space ToA.

Exercise 4.7.18. In the situation of the proposition, let f1, . . . , fr be a
Gröbner basis for the ideal IOo with respect to a degree-anticompatible mono-
mial order on k[x1, . . . , xn]. Then show that TCoA = V((f1)m, . . . , (fr)m). ⊓*
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Remark 4.7.19. In more abstract terms the ring of the tangent cone can be
defined as the graded ring

grR = R/m⊕m/m2 ⊕m2/m3 ⊕ . . . ,

where R can be either the local ring or its completion. This shows that TCpA

depends only on ÔA,p. ⊓*

Example 4.7.20. Consider the algebraic set A = V(f1, f2, f3, f4) ⊂ A4,
where

f1 = x3
2 − x2

1x3 + x1x2x4 − x1x3x4 − x2x2
4 − x1x2,

f2 = x1x2
2 − x1x2

3 + 2x2x3x4 − x2
3x4 − x2x3,

f3 = x3
1 − x1x2x3 + x2

2x4 + x1x2
4 − x3

4 − x1x4,
f4 = x2

1x3 − x2x2
3 + x1x2x4 + 2x3x2

4 − x3x4.

In the exercise below, we will show that these polynomials form a Gröbner
basis with respect to >ldrlex. Thus, the tangent cone of A at the origin o ∈ A4

is defined by the ideal

⟨x1x2, x2x3, x1x4, x3x4⟩ = ⟨x1, x3⟩ ∩ ⟨x2, x4⟩

which gives two planes in A4 intersecting at o. ⊓*

Exercise 4.7.21. Check the assertion about the Gröbner basis in Example
4.7.20. Then show that (A, o) and (TCpA, o) are analytically isomorphic. ⊓*

In general, a singularity p of an algebraic set A is called an improper node
if (A, o) and (TCpA, o) are analytically isomorphic.

Exercise 4.7.22. Show that an ordinary quadrupel point is analytically iso-
morphic to a curve of type

Cλ := V(xy(y − x)(y − λx)), where λ ∈ k \ {0, 1}.

Furthermore, show that two such curves Cλ and Cλ′ are analytically isomor-
phic iff

λ′ ∈ {λ, 1 − λ, 1/λ, 1/(1− λ), (λ− 1)/λ, λ/(λ− 1)}. ⊓*

4.8 Additional Exercises

Exercise 4.8.1.
For the curve V(f) ⊂ A2(C) considered in part 2 of Exercise 4.1.5, deter-
mine the multiplicity at each singular point. Are all singular points ordinary
multiple points?
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0

0

1

!1

1!1 2

2

x

y

⊓*





Part II

Projective Algebraic Geometry





Chapter 5

Linear Systems of Plane Curves

This chapter provides a first impression of projective algebraic geometry. We
will consider a new ambient space, projective n-space Pn(k), which is obtained
from affine n-space An(k) by adding a “point at infinity in every direction”. In
this larger space, many geometric statements become simpler in that special
cases are avoided.

The additional points form a hyperplane H ⊂ Pn(k) which is often re-
ferred to as the “hyperplane at infinity”. In fact, starting from a more formal
definition of Pn(k), we will see that there are many ways of writing Pn(k)
as the union of an “affine chart” An(k) and a hyperplane at infinity. Local
concepts can be extended from An(k) to Pn(k) by considering a covering of
Pn(k) by affine charts.

The introduction of homogeneous coordinates will allow us to define a
projective algebraic set as the common locus of zeros of a collection of homo-
geneous polynomials. With respect to an affine chart, a projective algebraic
set can be regarded as an affine algebraic set “completed” by adding relevant
points at infinity (over the real or complex numbers, considering the Euclidean
topology instead of the Zariski topology, the projective algebraic set is a natu-
ral compactification of the affine algebraic set). Postponing the general study
of this and other facts about projective algebraic sets to the next chapter, we
will, in this chapter, mainly focus on projective hypersurfaces, specifically on
projective plane curves.

The natural parameter space for projective plane curves of a given degree
d is a projective space itself. Its linear subspaces are classically known as
linear systems of plane curves of degree d. They arise naturally in the context
of a number of geometric questions. In fact, many geometric conditions on
plane curves are linear in that the curves satisfying these conditions form a
linear system. For instance, given a finite set of points in Pn(k), we impose
linear conditions by asking that the curves under consideration pass through
these points (have multiplicities exceeding particular values at these points).
After a basic treatment of linear systems in Section 5.3, we will use resultants
to prove Bézout’s theorem. Given two projective plane curves of degrees d, e
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without a common component over an algebraically closed field, the theorem
states that C and D intersect in d · e points, counted with multiplicity. As
applications of Bézout’s theorem, we will show how to bound the number of
singular points of a plane curve and how to compute parametrizations of a
rational plane curve with at most ordinary singularities.

In Section 5.5, we will treat Max Noether’s fundamental theorem which, as
we will see in Chapter 8, is central to the proof of the Riemann-Roch theorem
given by Brill and Noether. Applications of Noether’s result presented in this
chapter are Pascal’s theorem on the mystic hexagon and its generalizations.

In the final section of this chapter, we will define an addition law for points
on cubic curves. We will use a general version of Pascal’s theorem to show
that this addition law is associative (and, thus, indeed a group law). We will,
then, give a sketch of further results on cubic curves. In particular, we will
adress the topology and the arithmetic of cubic curves.

5.1 Projective Space and Projective Algebraic Sets

In the affine plane, Bézout’s theorem already fails in simple cases. For in-
stance, two distinct circles have at most two points of intersection, even if
we allow complex solutions and take multiplicities into account (see Exercise
5.3.10). Still simpler, two distinct lines do not intersect if they are parallel.
The construction of the projective plane is custom-made to remedy the situa-
tion in the case of lines. As we will see in Section 5.4.8, it is universal enough
to make Bézout’s theorem hold in general.

Intuitively, we think of parallel lines as meeting at an “infinitely distant
point” on the horizon (Renaissance painters referred to these points as van-
ishing points and used them as in Figure 5.2 to allow for perspective drawing):

p
horizon

Fig. 5.1. Vanishing points on the horizon

Taking into account that the relation on lines in A2(R) defined by ‘is parallel
to’ is an equivalence relation, the idea is to require that all lines in a given
equivalence class meet in the same point at infinity, with different classes
corresponding to different points. Writing H for the set of all these points, we
provisionally define the projective plane P2(R) by setting

P2(R) = A2(R) ∪H.
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Fig. 5.2. A sketch by Leonardo da Vinci

A line in P2(R) is, then, a line L ⊂ A2(R) together with the common point at
infinity of all lines parallel to L. Moreover, we regard H as a line in P2(R), and
call it the line at infinity. This makes sense since, now, any pair of distinct
lines determines a unique point, and any pair of distinct points determines a
unique line. Note that Figure 5.1 is somewhat inaccurate in that the horizon
is not representing all points of H : It is missing the point at infinity of the
lines “parallel to the horizon”.

Our provisional definition makes it cumbersome to work with P2(R) since
the points of P2(R) are not treated on equal footing. To motivate the formal
definition below, we write x0, x1, x2 for the coordinates on the affine 3-space
A3(R), and choose V(x0 − 1) ⊂ A3(R) as a reference plane for A2(R):
Each point of A2(R) determines, then, a line in A3(R) through the origin o.
In this way, we get all lines through o, except those lying in the plane V(x0).
The latter lines, in turn, form a copy of H . Indeed, the span of a given line
L ⊂ A2(R) and o intersects V(x0) in a line through o which only depends on
the class of lines parallel to L. We make the following general definition:

Definition 5.1.1. The projective n-space over the field k is the set

Pn(k) =
{
lines through the origin in An+1(k)

}

=
{
one-dimensional linear subspaces of kn+1

}
. ⊓*

Considering a line L through the origin o ∈ An+1(k) as an element of the new
space Pn(k), we call it a point of Pn(k). If p denotes this point, then p is
determined (or represented) by any point (a0, . . . , an) ∈ L \ {o}. Accordingly,
we write p = [a0 : · · · : an], and call a0, . . . , an a set of homogeneous
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V(x)

V(x+1) = A2(R)

L

Fig. 5.3.

coordinates for p. Here, the colons and square brackets indicate that the
homogeneous coordinates are determined up to a nonzero scalar multiple (if
ai ̸= 0, the ratio aj : ai depends on p only). Representing the points of Pn(k) in
this way means that we regard Pn(k) as the quotient of An+1(k)\{o} modulo
the equivalence relation defined by (a0, . . . , an) ∼ (b0, . . . , bn) iff (a0, . . . , an) =
λ(b0, . . . , bn) for some nonzero scalar λ:

Pn(k) ∼=
(
An+1(k) \ {o}

)
/ ∼,

and we have the canonical projection

π : An+1(k) \ {o} → Pn(k), (a0, . . . , an) '→ [a0 : · · · : an].

Remark-Definition 5.1.2. 1. It is often useful to have a basis-free defini-
tion of Pn. If W is any k-vector space of dimension n + 1, then

P(W ) =
{
one-dimensional linear subspaces of W

}

is called the projective space of lines in W . Of course, after choosing a
k-basis for W , we can identify P(W ) with Pn(k), and regard the homogeneous
coordinates on Pn(k) as homogeneous coordinates on P(W ).
2. If (tij) ∈ GL(n + 1, k) is an invertible matrix, the linear change of coor-

dinates xi '→
∑

tijxj induces a bijective map

T : Pn(k) → Pn(k), [a0 : · · · : an] '→ (
∑

t0jaj : · · · :
∑

tnjaj).

Any such map is called a change of coordinates of Pn(k). Since multiples
of the identity matrix act trivial, we are led to consider the group

PGL(n + 1, k) := GL(n + 1, k)/k∗

which is called the projective general linear group. Later in the book,
once we will have introduced morphisms between projective algebraic sets, we
will see that any automorphism of Pn(k) is an element of PGL(n + 1, k):
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Aut(Pn(k)) = PGL(n + 1, k)

3. Two subsets A, B ⊂ Pn(k) are called projectively equivalent if there
is a change of coordinates T of Pn(k) such that T (A) = B.
4. We say that P1(k) and P2(k) are the projective line and the projective

plane over k, respectively. ⊓*

In contrast to the affine case, the homogeneous coordinates do not constitute
functions on Pn(k). More generally, given any nonconstant polynomial f ∈
k[x0, . . . , xn], the value f(a0, . . . , an) depends on the choice of homogeneous
coordinates for the point p = [a0 : · · · : an] ∈ Pn(k) and can, therefore, not
be called the value of f at p. Note, however, that if f is homogeneous, then
f(λx0, . . . ,λxn) = λdeg(f)f(x0, . . . , xn) for all nonzero scalars λ, so that

f(a0, . . . , an) = 0 ⇐⇒ ∀ λ ∈ k \ {0} : f(λa0, . . . ,λan) = 0.

As a consequence, any homogeneous polynomial f ∈ k[x0, . . . , xn] has a well-
defined locus of zeros (or vanishing locus) V(f) in Pn(k). If f is noncon-
stant, we say that V(f) is a hypersurface in Pn(k). A hypersurface in P2(k)
is called a projective plane curve.

More generally, if T ⊂ k[x1, . . . , xn] is any subset of homogeneous polyno-
mials, its locus of zeros (or vanishing locus) is the set

V(T ) = {p ∈ An(k) | f(p) = 0 for all f ∈ T }.

If T = {f1, . . . , fr} is finite, we write V(f1, . . . , fr) = V(T ).

Definition 5.1.3. A subset A ⊂ Pn(k) is called an algebraic subset if
A = V(T ) for some subset T ⊂ k[x0, . . . , xn] of homogeneous polynomials.
A projective algebraic set is an algebraic subset of some Pn(k). ⊓*

Remark-Definition 5.1.4. As for An(k), the distinguished open sets

D(f) := Pn(k) \ V(f), f ∈ k[x0, . . . , xn] homogeneous,

form the basis for a topology on Pn(k) whose closed sets are the algebraic sub-
sets of Pn(k). This topology (the topology induced on any subset) is called the
Zariski topology on Pn(k) (on the subset). An algebraic subset of Pn(k) is
called irreducible (a subvariety of Pn(k)) if it cannot be written as a union
of two strictly smaller closed subsets. A projective variety is a subvariety
of some Pn(k). Every nonempty Zariski open subset of a projective variety A
is Zariski dense in A (see Proposition 1.11.8 and its proof). ⊓*

If not otherwise mentioned, subsets of Pn(k) will carry the Zariski topology.

Exercise∗ 5.1.5. Recall that a map between topological spaces is said to
be open if it sends open sets to open sets. Show: The canonical projection
π : An+1(k)\{o} → Pn(k) is continous and open with regard to the respective
Zariski topologies. ⊓*
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Remark-Definition 5.1.6. Given a subset of homogeneous polynomials T ⊂
k[x0, . . . , xn], rather than looking at the vanishing locus A = V(T ) ⊂ Pn, we
might also look at the vanishing locus of T in An+1. This locus is a cone with
vertex o: It is the union of all lines in An+1 through o which correspond to
points in A. We call this cone the affine cone over A, written C(A). ⊓*

Classically, homogenous polynomials are known as forms. The adjectives lin-
ear, quadratic, cubic, quartic, quintic refer to forms of degree 1,2,3,4,5,
respectively.

Example 5.1.7. The subsets of Pn(k) defined by linear forms are precisely
the subsets P(W ) ⊂ Pn(k), where W ⊂ kn+1 is a linear subspace. Every
such subset is called a linear subspace of Pn(k) of dimension dimk W − 1.
Any two linear subspaces of the same dimension are projectively equivalent.
Given a subset ∅ ̸= X ⊂ Pn(k), there is a smallest linear subspace of Pn(k)
containing X . This subspace is called the span of X . A line in Pn(k) is a linear
subspace of dimension 1. A plane in Pn(k) is a linear subspace of dimension
2. A hyperplane in Pn(k) is a linear subspace of dimension n− 1. ⊓*

Exercise 5.1.8. Let p0, . . . , pn, pn+1 ∈ Pn(k) be a collection of n + 2 points
such that no subset of n + 1 points is contained in a hyperplane. Show that
there is a unique change of coordinates T of Pn(k) such that

T (p0) = [1 : 0 : · · · : 0], . . . , T (pn) = [0 : · · · : 0 : 1],
and T (pn+1) = [1 : · · · : 1].

The points [1 : 0 : · · · : 0], . . . , [0 : · · · : 0 : 1] are known as the coordinate
points of Pn(k), and [1 : · · · : 1] is the scaling point. ⊓*

Just as in our provisional definition of the real projective plane, we can write
Pn(k) as the union of An(k) and a hyperplane at infinity:

Pn(k) = U0 ∪ H0
∼= An(k) ∪ Pn−1(k),

where
U0 := D(x0) = {[a0 : · · · : an] ∈ Pn(k) | a0 ̸= 0},

and H0 is the complement H0 = Pn(k) \ U0 = V(x0). We identify H0 with
Pn−1(k) by disregarding the first coordinate, and U0 with An(k) via

ϕ0 : U0 → An(k), [a0 : · · · : an] = [1 : a1
a0

: . . . , · · · : an
a0

]
'→ (a1

a0
, . . . , . . . , an

a0
).

This map is bijective, with inverse

An(k) → U0, (b1, . . . , bn) '→ [1 : b1 : · · · : bn].

Given a point p = [a0 : · · · : an] ∈ U0, the ratios ai/a0 are sometimes called
the affine coordinates for p in U0.
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Example 5.1.9. In the special case of P1(R), the map ϕ0 sends a point p =
[a0 : a1] ∈ U0 to the slope a1/a0 of the line in A2(R) corresponding to p.

The point [0:1] is the single point at infinity. It corresponds to the x1-axis
which is vertical and has, thus, slope ∞. ⊓*

The proof of our next proposition exhibits the geometric meaning of deho-
mogenization and homogenization.

Proposition 5.1.10. The map ϕ0 : U0 → An(k) is a homeomorphism with
regard to the respective Zariski topologies.

Proof. Let A ⊂ Pn(k) be a projective algebraic set. Then A = V(T ) for some
subset of homogeneous polynomials T ⊂ k[x0, . . . , xn]. Let Ta ⊂ k[x1, . . . , xn]
be obtained from T by dehomogenizing each element of T with respect to x0.
Then it is immediate from the definitions that ϕ0(A∩U0) is the algebraic set
Va(Ta) ⊂ An(k), where Va indicates that we look at the affine vanishing
locus. Since the closed subsets of U0 arise as intersections of type A∩U0, the
map ϕ0 is closed.

Conversely, let A ⊂ An(k) be an affine algebraic set. Then A = Va(Ta)
for some subset of polynomials Ta ⊂ k[x1, . . . , xn], and it is easy to check
that ϕ−1

0 (A) is the closed subset V(T h
a ) ∩ U0 of U0, where T h

a ⊂ k[x0, . . . , xn]
is obtained from Ta by homogenizing each element of Ta with respect to
x0. Hence, the inverse map ϕ−1

0 is also closed. We conclude that ϕ0 is a
homeomorphism. ⊓*

Given an algebraic subset A of Pn(k), we will identify A∩U0 with the algebraic
set ϕ0(A ∩U0) ⊂ An(k). Conversely, we will identify an algebraic subset A of
An(k) with ϕ−1

0 (A) ⊂ Pn(k). Hence, the following definition makes sense:

Definition 5.1.11. If A ⊂ An(k) ∼= U0 is an algebraic subset, its Zariski
closure A in Pn(k) is said to be the projective closure of A. ⊓*

Remark 5.1.12. In Section 6.2, considering the homogenization of ideals, we
will show how to compute the projective closure. In the special case of a
hypersurface, if f ∈ k[x1, . . . , xn] is any nonconstant polynomial, and fh is
its homogenization with respect to x0, the argument will show that

Va(f) = V(fh) ⊂ Pn(k). ⊓*

In accordance with our provisional definition of P2(R), we have:
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Example 5.1.13. In P2(k), the projective closure of a line in A2(k) ∼= D(x0)
with equation x2 = mx1 + b is defined by the equation x2 = mx1 + bx0.
It intersects the line V(x0) at infinity in the point [0 : 1 : m]. A line with
equation x1 = c is completed by adding the point [0 : 1 : 0]. ⊓*

In the discussion above, there is nothing special with x0: For 0 ≤ i ≤ n, we
define Ui, Hi and ϕi by using xi instead of x0. Then the Ui, which are known
as the (affine) coordinate charts of Pn(k), cover Pn(k):

Pn(k) =
n⋃

i=0

Ui.

Hence, Pn(k) looks locally like An(k), and we may study a projective algebraic
set A ⊂ Pn(k) by examining the different intersections A ∩ Ui.

Example 5.1.14. Let k = R.

1. The projective closure C of the affine conic

V(x2 − 1/4y2 − 1) ⊂ A2(R) ∼= D(z)

is defined by the quadratic form x2 − 1/4y2 − z2 = 0. We show C in all
three coordinate charts:

z = 1

y

x

x2 − 1/4y2 = 1

y = 1

y

x

x2 − z2 = 1/4

x = 1

z

y

1/4y2 + z2 = 1

2. Similarly, starting from the affine curve

V(y − x3) ⊂ A2(R) ∼= D(z),

we get the pictures below:
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z = 1

y

x

y = x3

y = 1

z

x

z2 = x3

x = 1

z

y

yz2 = 1
⊓*

Exercise 5.1.15. Draw the curve V(zy2 − x2z + x3) ⊂ P2(R) in all three
coordinate charts. For each chart, determine the points of the curve which lie
on the line at infinity. Similarly for the curves in the previous example. ⊓*

Exercise 5.1.16. A conic in P2(k) is defined by a nonzero quadratic form.

1. Show: A conic in P2(R) is projectively equivalent to one of the following:

a) V(x2 + y2 − z2) (nondegenerate conic)
b) V(x2 + y2 + z2) (empty set)
c) V(x2 − y2) (pair of lines)
d) V(x2 + y2) (single point)
e) V(x2) (“double” line).

2. Similarly, show that there are three classes of conics in P2(C):

a) V(x2 + y2 + z2) (nondegenerate conic)
b) V(x2 + y2) (pair of lines)
c) V(x2) (“double” line).

3. More generally, show that quadric hypersurfaces in Pn(C) are classified
by their rank. For this, recall that every quadratic form f ∈ C[x0, . . . , xn]
may be written as

f(x) = xt · A · x,

where x is the column vector with entries x0, . . . , xn, and where A = (aij)
is a symmetric (n+1)× (n+1) matrix of scalars aij ∈ C. The rank of the
corresponding quadric Q = V(f) ⊂ P2(C) is defined to be the rank of A.
Now show that Q has rank r iff it is projectively equivalent to a quadric
with defining equation

r∑

i=0

x2
i = 0.

If r = n + 1, then Q is nondegenerate.



218 5 Linear Systems of Plane Curves

4. Exactly, what invariants classify quadratic forms over R?

By comparing the projective classification of conics with the classification of
conics in the respective affine planes (work this out), you will find another
example of how geometric statements become simpler if we pass from affine
to projective geometry. In particular, as should be already clear from Ex-
ample 5.1.14 and Figure 5.5, the difference between ellipses, parabolas, and
hyperbolas disappears in the projective setting. ⊓*

Remark 5.1.17. In parts 2 and 3 of Exercise 5.1.16, we may replace C by
any algebraically closed field of characteristic ̸= 2. ⊓*

Before we go further, we adopt a convention which extends Convention 2.7.2:

Convention 5.1.18. From now on, K will be an algebraically closed exten-
sion field of k. We will write Pn := Pn(K). If T ⊂ k[x0, . . . , xn] is a set of
homogeneous polynomials, then A = V(T ) will be its vanishing locus in Pn.
We will, then, say that k is a field of definition of A, or that A is defined
over k. A k-rational point of A is a point of the intersection

A(k) := A ∩ Pn(k).

Furthermore, an element of PGL(n + 1, k) ⊂ PGL(n + 1, K) will be called an
automorphism of Pn defined over k. ⊓*

Remark 5.1.19. Convention 5.2.1 is justified by the projective Nullstellen-
satz which will be proved in the next chapter. The Nullstellensatz says, in
particular, that hypersurfaces in Pn correspond to nonconstant square-free
forms in K[x0, . . . , xn], where the form f is uniquely determined by the hy-
persurface H up to multiplication by a nonzero scalar. Then H is irreducible
iff f is irreducible, and the degree of f is also called the degree of H . A
hypersurface is a quadric, cubic, quartic, quintic if its degree is 2,3,4,5,
respectively. ⊓*

As for the elements of the polynomial ring K[x0, . . . , xn], most elements of
the rational function field K(x0, . . . , xn) cannot be regarded as functions in
the projective context. However, if g, h ∈ K[x0, . . . , xn] are forms of the same
degree d, then f = g/h defines a function on D(h) ⊂ Pn. Indeed, in this case,
substituting the homogeneous coordinates of a point p ∈ D(h) for the xi in g
and h gives a well-defined value f(p):

g(λx0, . . . ,λxn)
h(λx0, . . . ,λxn)

=
λdg(x0, . . . , xn)
λdh(x0, . . . , xn)

=
g(x0, . . . , xn)
h(x0, . . . , xn)

.

Specific examples are the affine coordinate functions xj/xi on Ui = D(xi).
The rational function field of Pn is the subfield

K(Pn) = {g/h ∈ K(x0, . . . , xn) | g, h forms of the same degree}
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of K(x0, . . . , xn). Equivalently, K(Pn) is the rational function field of any co-
ordinate chart Ui

∼= An (dehomogenize respectively homogenize to show that
the two definitions give isomorphic fields). Similarly, we may define the local
ring of Pn at a point p ∈ Pn either as the subring

OPn,p = {g/h ∈ K(Pn) | D(h) ∋ p} ⊂ K(Pn),

or as the local ring at p of any coordinate chart containing p. Concepts for-
mulated in terms of the local ring can, then, be directly extended from the
affine to the projective case. For instance, if f ∈ k[x0, . . . , xn] is a nonconstant
form, and p ∈ Pn is a point, the multiplicity of f at p, written mult(f, p),
is well-defined as the multiplicity at p of the dehomogenization of f in any
chart Ui containing p. Similarly for the intersection multiplicity i(f, g; p)
of two nonconstant forms f, g ∈ k[x, y, z].

More generally, the local ring OA,p of any projective algebraic set A ⊂ Pn

at a point p ∈ A can be defined in an analogous way, and in accordance with
what is happening in the affine charts (we will treat this more systematically in
Chapter 6). It makes, then, sense to say that p is a smooth point of A if OA,p

is a regular local ring. Equivalently, if Ui is any coordinate chart containing
p, the affine algebraic set A∩Ui is smooth at p. The notions singular point
and Asing are as before.

Recall that A∩Ui is singular at p if the dimension of the tangent space to
A∩Ui at p is strictly larger than the local dimension of A∩Ui at p. Though this
can be checked in the chart Ui, it is occassionally useful to have a projective
version of the tangent space:

Definition 5.1.20. Let A ⊂ Pn be a projective algebraic set, and let p =
[a0 : · · · : an] ∈ A be a point. The projective tangent space to A at p is
the linear subspace TpA ⊂ Pn defined as follows: If A is a hypersurface, and
f ∈ K[x0, . . . , xn] is a square-free form such that A = V(f), set

TpA = V

(
n∑

i=0

∂f

∂xi
(a0, . . . , an) · xi

)
⊂ Pn.

In the general case, let TpA be the intersection of all projective tangent spaces
at p to hypersurfaces containing A. ⊓*

Exercise∗ 5.1.21. If f ∈ K[x0, . . . , xn] is a square-free form, and A = V(f) ⊂
Pn, use Euler’s rule to show:

1. If Ui is any coordinte chart containing p, then TpA is the projective closure
of the tangent space to the affine algebraic set A ∩ Ui at p.

2. If C(A) ⊂ An+1 is the affine cone over A, and q ∈ C(A) is any point
representing p, the tangent space to C(A) at q passes through the origin.
It is, thus, a linear subspace W of Kn+1. Furthermore, W is independent
of the choice of q, and TpA = P(W ). ⊓*
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For a hypersurface A = V(f) as in the exercise, p is a smooth point of A iff
TpA is a hyperplane. That is,

Asing = V
(

f,
∂f

∂x0
, . . . ,

∂f

∂xn

)
.

If chark does not divide deg f , it is clear from Euler’s rule that only the partial
derivatives need to be considered.

Exercise 5.1.22. Determine the singular points of the curves in Example
5.1.14 and Exercise 5.1.15. ⊓*

In the discussion above, there is no need to restrict ourselves to coordinate
charts: We may take any hyperplane H to be the hyperplane at infinity, re-
garding its complement U as affine n-space, and calling U an affine chart.
Explicitly, if H = V(

∑
λixi), where at least one λj is nonzero, identify

U ∼= An(k)

via
[a0 : · · · : an] '→

(
a0∑
λiai

, . . . ,
âj∑
λiai

, . . . ,
an∑
λiai

)
.

This is useful since a convenient choice of chart may ease explicit computa-
tions. Given any collection y0, . . . , yn of linearly independent linear forms, the
D(yi) form a covering of Pn(k) which is obtained from the one given by the
D(xi) by a projective change of coordinates.

In Renaissance texts on perspective, the idea of considering different affine
charts is a central theme. We illustrate this in Figure 5.5, where the reader
may think of one chart as the floor in a medieval palace, of the other chart as
the canvas of a painter, and of the origin o ∈ A3(R) as the artist’s eye.

In case k = R respectively k = C, the projective space Pn(k) also carries an
Euclidean topology, namely the quotient topology induced from the Euclidean
topology on kn+1 \ {0} via the canonical projection kn+1 \ {0} → Pn(k).

Remark 5.1.23. 1. Let k = R respectively k = C. Then Pn(k) carries an
Euclidean topology, namely the quotient topology induced by the canonical
projection kn+1 \ {0}→ Pn(k). With respect to this topology, the coordinate
charts exhibit Pn(k) as a real respectively complex manifold, which is, in fact,
compact. Indeed, we may regard Pn(k) as the quotient

Pn(k) ∼= Sn/ ∼,

where
S = {x ∈ kn+1 | ||x|| = 1}

is the (compact) unit sphere, and where ∼ refers to identifying antipodal
points.
Compactness follows since Pn(R) is the image of the compact unit sphere
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Fig. 5.4. Different charts in perspective drawing.

S = {x ∈ kn+1 | ||x|| = 1} ⊂ Rn+1.

In case k = C, Pn(C) is the image of the 2n + 1-dimensional unit sphere in
Cn+1.
2. Let k = C. If f ∈ C[x1, . . . , xn} ia a polynomial, then V(fh) is not

only the Zariski closure of V(f) ⊂ U0 ⊂ Pn(C), but also the closure of V(f)
with respect to the Euclidian topology. To see this we may assume that f is
irreducible. Then all affine hypersurface V(fh)∩Ui are irreducible hence path
connected by Theorem 6.7.13 in Chapter
. The claim follows since the

⋃
i Ui covers Pn. In particular we see that a

projective hypersurface equipped with the Euclidean topology is compact as
a closed subset of the compact manifold Pn(C). ⊓*

We will discuss the structure of the differentiable maps Sn → Pn(R) and
S2n+1 → Pn(C) for small n = 2 respectively n = 1.

In the last two remarks of this section, we discuss the construction of P2(R)
and P1(C) by focusing on their Euclidean topology. These considerations will
not play a role in subsequent parts of the book.

Remark 5.1.24. The real projective plane P2(R) has an interesting structure
as a 2-dimensional real manifold. Every line through the origin in R3 intersects
the unit sphere S2 = {(x0, x1, x2 ∈ R3 | x2

0 +x2
1 +x2

2 = 1} in two points. Thus

P2(R) = S2/ ∼,

where the equivalence relation ∼ identifies antipodal points. Thus as real
manifold we obtain P2(R) by gluing the Moebius strip, which is the image of
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a belt around the equator in S2, with a disc, which is the image of the cap
around the north (or south) pole. Hence, the manifold P2(R) is not orientable.
In particular, we cannot embed P2(R) into R3. There are however models of
P2(R) in R3, if we allow self-intersections. The Steiner roman surface discussed
in Example 2.6.6 ,

is such an example, because

S2 → R3, (x0, x1, x2) '→ (x1x2, x0x2, x0x1)

factors over P2(R). The map ϕ : P2(R) → R3 is an immersion at all points
p ∈ P2(R) except at the 6 pinch points on the coordinate axes. (A map between
ϕ : M → N differential manifolds is a immersion at p ∈ M , if the induced
map on the tangent spaces dpϕ : TpM → TpN is an inclusion. An immersion
is a map which is an immersion everywhere). An immersion of P2(R) → R3 is
given by the Boy surface.

Remark 5.1.25. For the complex projective line we have established two points
of view. We can regard P1(C) = C∪∞ ∼= S2 via the projection from the north
pole onto the Gaussian number plane.

The other description realizes P1(C) as the complex lines in C2. On the
unit sphere S3 ⊂ C2 every point in P1 has an S1 ∼= {z ∈ C | |z| = 1} of
representatives. Combining both descriptions, we find a map

h : S3 → S2,

whose fibers are S1’s, the Hopf fibration.
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Identifying S3 = R3 ∪ {(1 + i0, 0 + i0)} via stereographic projection, we
find that R3 is fibered into an R2 of circles and a line.

Exercise 5.1.26. Prove that there is no continues section σ : S2 → S3 of h,
but that there exists a continues section of h : S3 \ h−1(∞) → C. What is the
closure of the graph in your example? ⊓*

5.2 The Extension of Basic Concepts

Coordinate charts allow us to extend concepts such as function fields, local
rings, smoothness, tangent spaces, and dimension with almost no extra effort
to the projective case. In this section, we will give some examples of how this
works. First of all, we adopt a convention which adds to Convention 2.7.2:

Convention 5.2.1. From now on, K will be an algebraically closed extension
field of k. We will write Pn := Pn(K). If T ⊂ k[x0, . . . , xn] is a set of homoge-
neous polynomials, then A = V(T ) will be its vanishing locus in Pn. We will,
then, say that k is a field of definition of A, or that A is defined over k.
A k-rational point of A is a point of the intersection

A(k) := A ∩ Pn(k).

Furthermore, an element of PGL(n + 1, k) ⊂ PGL(n + 1, K) will be called an
automorphism of Pn defined over k. ⊓*

Remark 5.2.2. Convention 5.2.1 is justified by the projective Nullstellensatz
which will be proved in the next chapter. The Nullstellensatz says, in partic-
ular, that hypersurfaces in Pn correspond to nonconstant square-free forms in
K[x0, . . . , xn], where the form f is uniquely determined by the hypersurface
H up to multiplication by a nonzero scalar. Then H is irreducible iff f is ir-
reducible, and the degree of f is also called the degree of H . A hypersurface
is a quadric, cubic, quartic, quintic if its degree is 2,3,4,5, respectively. ⊓*

As for the elements of the polynomial ring K[x0, . . . , xn], most elements of
the rational function field K(x0, . . . , xn) cannot be regarded as functions in
the projective context. However, if g, h ∈ K[x0, . . . , xn] are forms of the same
degree d, then f = g/h defines a function on D(h) ⊂ Pn. Indeed, in this case,
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substituting the homogeneous coordinates of a point p ∈ D(h) for the xi in g
and h gives a well-defined value f(p):

g(λx0, . . . ,λxn)
h(λx0, . . . ,λxn)

=
λdg(x0, . . . , xn)
λdh(x0, . . . , xn)

=
g(x0, . . . , xn)
h(x0, . . . , xn)

.

Specific examples are the affine coordinate functions xj/xi on Ui = D(xi).

Definition 5.2.3. The rational function field of Pn is the subfield

K(Pn) = {g/h ∈ K(x0, . . . , xn) | g, h forms of the same degree}
⊂ K(x0, . . . , xn).

The local ring of Pn at a point p ∈ Pn is the subring

OPn,p = {g/h ∈ K(Pn) | D(h) ∋ p} ⊂ K(Pn). ⊓*
Note that OPn,p is indeed a local ring. Note also that the definition of OPn,p

is consistent with our definition in the affine case: If Ui is a coordinate chart
containing p, then OPn,p is isomorphic to the local ring of An ∼= Ui at p
(dehomogenize; for the inverse map, homogenize).

Concepts formulated in terms of the local ring can, thus, be directly ex-
tended from the affine to the projective case. For instance, if f ∈ k[x0, . . . , xn]
is a nonconstant form, and p ∈ Pn is a point, the multiplicity of f at p, writ-
ten mult(f, p), is well-defined as the multiplicity at p of the dehomogenization
of f in any chart Ui containing p. In the same way, given two nonconstant
forms f, g ∈ k[x, y, z] and a point p ∈ P2, we define the intersection mul-
tiplicity of f and g at p, written i(f, g; p). As in Chapter 4, these notions
carry over to hypersurfaces (plane curves) by considering square-free forms
defining the hypersurfaces (plane curves).

More generally, the local ring OA,p of any projective algebraic set A ⊂ Pn

at a point p ∈ A can be defined in an analogous way, and such that the
definition is consistent with that in the affine case (we will treat this more
systematically in Chapter 6). It makes, then, sense to say that p is a smooth
point of A if OA,p is a regular local ring. Equivalently, if Ui ia any coordinate
chart containing p, the affine algebraic set A∩Ui is smooth at p. Otherwise, p
is a singular point of A. As before, we write Asing for the set of these points.

Recall that A∩Ui is singular at p if the dimension of the tangent space to
A∩Ui at p is strictly larger than the local dimension of A∩Ui at p. Though this
can be checked in the chart Ui, it is occassionally useful to have a projective
version of the tangent space. Here is the definition in the hypersurface case
(see Chapter 6 for the general case):

Definition 5.2.4. Let A ⊂ Pn be a hypersurface, let p = [a0 : · · · : an] ∈ A be
a point, and let f ∈ K[x0, . . . , xn] be a square-free form such that A = V(f).
The projective tangent space TpA to A at p is the linear subspace

TpA = V

(
n∑

i=0

∂f

∂xi
(a0, . . . , an) · xi

)
⊂ Pn.

⊓*
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Exercise∗ 5.2.5. In the situation of the definition, use Euler’s rule to show:

1. If Ui is any coordinte chart containing p, then TpA is the projective closure
of the tangent space to the affine algebraic set A ∩ Ui at p.

2. If C(A) ⊂ An+1 is the affine cone over A, and q ∈ C(A) is any point
representing p, the tangent space to C(A) at q passes through the origin.
It is, thus, a linear subspace W of Kn+1. Furthermore, W is independent
of the choice of q, and TpA = P(W ). ⊓*

With notation as in the definition, p is a smooth point of A iff TpA is a
hyperplane. That is,

Asing = V
(

f,
∂f

∂x0
, . . . ,

∂f

∂xn

)
.

If chark does not divide deg f , it is clear from Euler’s rule that only the partial
derivatives need to be considered.

Exercise 5.2.6. Determine the singular points of the curves in Example
5.1.14 and Exercise 5.1.15. ⊓*

With regard to local studies, there is no need to restrict ourselves to coordi-
nate charts: We may take any hyperplane H to be the hyperplane at infinity,
regarding its complement U as affine n-space, and calling U an affine chart.
Explicitly, if H = V(

∑
λixi), where at least one λj is nonzero, identify

U ∼= An(k)

via
[a0 : · · · : an] '→

(
a0∑
λiai

, . . . ,
âj∑
λiai

, . . . ,
an∑
λiai

)
.

This is useful since a convenient choice of chart may ease explicit computa-
tions. Given any collection y0, . . . , yn of linearly independent linear forms, the
D(yi) form a covering of Pn(k) which is obtained from the one given by the
D(xi) by a projective change of coordinates.

In Renaissance texts on perspective, the idea of considering different affine
charts is a central theme. We illustrate this in Figure 5.5, where the reader
may think of one chart as the floor in a medieval palace, of the other chart as
the canvas of a painter, and of the origin o ∈ A3(R) as the artist’s eye.

5.3 Linear Systems of Plane Curves

The concept of linear systems is a classical concept of algebraic geometry. In
this section, we study the special case of linear systems of plane curves. As
motivation for this, we consider the following question:
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Fig. 5.5. Different charts in perspective drawing.

Given d ≥ 1 and finitely many points in the projective plane,
how many curves of degree d pass through these points? (5.1)

To give the question a precise meaning, we describe the curves with the help of
equations. We denote the coordinates by x, y, z. Recall from Remark 5.2.2 that
each curve C ⊂ P2 of degree d is defined by a square-free form f ∈ K[x, y, z]
of degree d, where f is determined up to multiplication by a nonzero scalar.
In other words, C defines a point in the projective space P(L(d)), where

L(d) = K[x, y, z]d = {f ∈ K[x, y, z] | f is homogenous of degree d}.

In P(L(d)), there are also points corrsponding to polynomials with multiple
factors. Nevertheless, we prefer to work with this space since the subset defined
by the square-free polynomials is difficult to handle. By abuse of notation, we
refer to every point of P(L(d)) as a projective plane curve of degree d, and
to P(L(d)) itself as a parameter space for the plane curves of degree d.
In speaking of components, of curves passing through a point, and of curves
intersecting at a point, we extend the terminology introduced in Section 4.3
from the affine to the projective case.

Note that P(L(d)) is a projective space of dimension
(

d + 2
2

)
− 1 =

d(d + 3)
2

.

In fact, since the monomials of degree d form a K-basis for L(d), we may
regard the coefficients of the polynomials in L(d) as homogeneous coordinates
on P(L(d)) (listed in some order). Note that every change of coordinates of
P2 induces a change of coordinates of P(L(d)) (in the obvious way).
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We can, now, illustrate question (5.1) by an example:

Example 5.3.1. Consider the four points

p1 = [0 : 0 : 1], p2 = [1 : 0 : 1], p3 = [0 : 1 : 1], p4 = [1 : 1 : 1] ∈ P2.

To describe the conics passing through these points, note that a quadratic
polynomial

f = f20x
2 + f11xy + f10xz + f02y

2 + f01yz + f00z
2

vanishes at p1, p2, p3, p4 iff

f00 = 0, f20 + f10 = 0, f02 + f01 = 0, f20 + f11 + f10 + f02 + f01 = 0.

This gives four linear conditions on the coefficients of f which are, in fact,
independent – the conditions determine the two-dimensional linear subspace

L = {λx(x − z) + µy(y − z) | λ, µ ∈ K} ⊂ K[x, y, z]2.

Geometrically, the generators x(x − z) and y(y − z) of L define two pairs of
lines in P2 which, considered as points of L(2), span the line P(L) ⊂ L(2).
This line parametrizes the conics passing through p1, p2, p3, p4 – there is a
P1 of such conics.

The following real picture shows the conics in the affine chart D(z):

⊓*
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It is clear from the example that “passing through a point p ∈ P2 ” imposes
one linear condition on the curves of degree d – the curves passing through p
form a hyperplane in P(L(d)). More generally, as we will see in Proposition
5.3.3 below, we impose linear conditions by asking that the multiplicities of
the curves at p exceed a given value r.

Definition 5.3.2. Let d ≥ 1 be an integer.

1. A linear system of curves of degree d in P2 is a linear subspace P(L) ⊂
P(L(d)). A point p ∈ P2 is a base point of P(L) if every curve in P(L)
passes through p. The words pencil, net, and web refer to a linear system
of dimension 1,2, and 3, respectively.

2. If p1, . . . , ps ∈ P2 are distinct points, and r1, . . . , rs ≥ 1 are integers, we
write

L(d; r1p1, . . . , rsps) := {f ∈ L(d) | mult(f, pi) ≥ ri for all i},

and call
P(L(d; r1p1, . . . , rsps)) ⊂ P(L(d))

the linear system of curves of degree d with multiplicity at least
ri at pi, for all i. Moreover, we say that p1, . . . , ps are the assigned
base points of P(L(d; p1, . . . , ps)). ⊓*

Proposition 5.3.3. Let p1, . . . , ps ∈ P2 be distinct points, and let r1, . . . , rs ≥
1 be integers. Then L(d; r1p1, . . . , rsps) is a linear subspace of L(d) of dimen-
sion

dimK L(d; r1p1, . . . , rsps) ≥
(

d + 2
2

)
−
∑

i

(
ri + 1

2

)
. (5.2)

Proof. Since L(d; r1p1, . . . , rsps) =
⋂

i L(d; ripi), it suffices to treat the points
seperately. After a change of coordinates, we may suppose that the given point
is the point p = [0 : 0 : 1]. Then, a polynomial f =

∑
fαβxαyβzd−α−β ∈ L(d)

vanishes at p with multiplicity at least r iff fαβ = 0 for all α,β with α+β < r.
The result follows since there are

(r+1
2

)
monomials xαyβ with α+ β < r. ⊓*

Whether equality or strict inequality holds in (5.2) depends on whether the
conditions imposed by the different points are linearly independent or not.
Both cases do occur. In the example below, which illustrates this, we say that
three or more points p1, . . . , ps ∈ P2 are collinear if the points lie on a line.

Example 5.3.4. For four distinct points p1, . . . , p4 ∈ P2, (5.2) gives

dimK L(2; p1, . . . , p4) ≥ 2.

If no three of these points are collinear, equality holds (make use of a suitable
change of coordinates to reduce to the case treated in Example 5.3.1). If three
of the points are collinear, say p1, p2, p3 ∈ L, where L ⊂ P2 is a line, then L
must be a component of any conic containing p1, p2, p3 (one way of seeing this



5.3 Linear Systems of Plane Curves 229

is to apply Bézout’s theorem which will be proved in the next section). Hence,
a conic through p1, p2, p3 is determined by the component residual to L, which
may be any line. If we require that the conic also contains p4, and if p4 ̸∈ L, the
residual line must pass through p4 which imposes one extra linear condition. If
p4 ∈ L, there is no extra condition. We conclude that dimK L(2; p1, . . . , p4) = 2
iff p1, . . . , p4 are not collinear, and that dimK L(2; p1, . . . , p4) = 3 if the four
points lie on a line. ⊓*

In the example, the dimension of the linear system under consideration de-
pends on the position of the points in the plane – for “almost all” collections
of four points, the dimension is 2, and it is 3 only in the special case where
the four points are collinear. To give “almost all” a more precise meaning, we
say that a condition on a collection of points is satisfied for points p1, . . . , ps

in general position if the points for which the condition is satisfied can be
chosen in the following way: if p1, . . . , pr, r < s, are already given, there is a
nonempty Zariski open (hence dense) subset U ⊂ P2 such that we can choose
pr+1 from among the points in U (in the example, if p1, p2, p3 are not collinear,
take U = P2; if p1, p2, p3 lie on a line L, take U = P2 \L). With this notation,
we have:

Proposition 5.3.5. Let p1, . . . , ps ∈ P2 be distinct points in general position.
If
(
d+2
2

)
≥ s, then

dimK L(d; p1, . . . , ps) =
(

d + 2
2

)
− s.

Proof. The result follows from the lemma below by induction on s. ⊓*

Lemma 5.3.6. Let P(L) ⊂ P(L(d)) be a nonempty linear system. Then there
is a nonempty Zariski open subset U ⊂ P2 such that L ∩ L(d; p) ⊂ L has
codimension 1 for all p ∈ U .

Proof. Since L(d; p) is a hyperplane in L(d), the linear subspace L ∩ L(d; p)
of L has codimension one iff L ̸⊂ L(d; p). But if f is any nonzero polynomial
in L, then f ̸∈ L(d; p) for any point p ∈ U := P2 \ V(f). ⊓*

In the case where not each ri = 1, it is an open problem to determine the
tupels (d, r1, . . . , rn) for which the analogue of Proposition 5.3.5 holds (see
Ciliberto and Miranda (2000) for some recent research).

Example 5.3.7. For five distinct points p1, . . . , p5 ∈ P2, inequality (5.2) gives

dimK L(4; 2p1, . . . , 2p5) ≥ 0.

However, we always have the sharper estimate

dimK L(4; 2p1, . . . , 2p5) ≥ 1.

Indeed, since dimK L(2; p1, . . . , p5) ≥ 1, there is a conic V(f) passing through
all 5 points, and f2 ∈ L(4; 2p1, . . . , 2p5). ⊓*
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The remark below contains a simple example which prepares for the subse-
quent exercises:

Remark 5.3.8. If p = [a0 : a1 : a2], q = [b0 : b1 : b2] ∈ P2(k) are two distinct
points, the unique line passing through p and q is defined by the determinantal
equation

det

⎛

⎝
x0 x1 x2

a0 a1 a2

b0 b1 b2

⎞

⎠ = 0.
⊓*

Exercise 5.3.9. If p1, . . . , p5 ∈ P2 are five distinct points such that no three
are collinear, show that there is a unique conic passing through the five points,
show that this conic is nondegenerate, and give a determinantal equation for
the conic. What happens if we only suppose that no four of the points are
collinear? ⊓*

Exercise 5.3.10. If p1, p2, p3 ∈ R2 are three points not lying on a line, show
that there is a unique circle passing through these points, and give a determi-
nantal equation for the circle.
Hint. Note that the set of all circles is an affine chart of a 3-dimensional linear
system L ⊂ P(R[x, y]≤2) = P(R[x, y, z]2). The base points of this system in
P2(C) are known as the circle points. Where do these points lie? ⊓*

If d is large enough, we always get the dimension expected from (5.2):

Proposition 5.3.11. Let p1, . . . , ps ∈ P2 be distinct points, and let r1, . . . , rs

be integers ≥ 1. If d ≥ (
∑

i ri) − 1, then

dimK L(d; r1p1, . . . , rsps) =
(

d + 2
2

)
−
∑

i

(
ri + 1

2

)
.

Proof. We do induction on m := (
∑

i ri) − 1. If m ≤ 1, then either s = 1,
or s = 2 and r1 = r2 = 1. In both cases, the result is clear. We may, hence,
suppose that d ≥ m > 1. In the induction step, we distinguish two cases.

Case 1. Suppose that each ri = 1. Choose a linear form l0 not vanish-
ing at any pi (this is possible since “not vanishing at a point” imposes a
Zariski open (dense) condition on lines). In addition, for i = 1, . . . , s − 1,
choose linear forms li such that pi ∈ V(li), but pj ̸∈ V(li) for j ̸= i. Then
f := l1 · · · ls−1 · ld−s+1

0 ∈ L(d; p1, . . . , ps−1) \ L(d; p1, . . . , ps). This shows that
L(d; p1, . . . , ps) ! L(d; p1, . . . , ps−1), and we are done by applying the induc-
tion hypothesis.

Case 2. Now, suppose that not all ri = 1, say r := r1 > 1. Assume that
p1 = [0 : 0 : 1], and set L0 = L(d; (r1 − 1)p1, r2p2, . . . , rsps). Then, for any
f ∈ L0, the dehomogenization f(x, y, 1) is of type

f(x, y, 1) =
r−1∑

i=0

fix
iyr−1−i + terms of higher degree.
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Setting Li = {f ∈ L0 | fj = 0 for all j < i}, we get a filtration

L0 ⊃ L1 ⊃ . . . ⊃ Lr = L(d; r1p1, . . . , rsps).

Since the induction hypothesis applies to L0, it suffices to show that Li # Li+1,
i = 0, . . . , r−1. For this, set W0 = L(d−1; (r−2)p1, r2p2, . . . , rsps). Following
the recipe above, define a filtration

W0 ⊃ W1 ⊃ . . . ⊃ Wr−1 = L(d− 1; (r − 1)p1, r2p2, . . . , rsps).

By the induction hypothesis, Wi # Wi+1, i = 0, . . . , r − 2. Choosing poly-
nomials fi ∈ Wi \ Wi+1, we have yfi ∈ Li \ Li+1, i = 0, . . . , r − 2, and
xfr−2 ∈ Lr−1 \ Lr. This concludes the proof. ⊓*

Exercise 5.3.12. For each set of integers r1, . . . , rs ≥ 1, show by example
that the conclusion of the proposition may be wrong if d = (

∑
ri) − 2. ⊓*

5.4 Bézout’s Theorem and Applications

The projective plane has been constructed such that any two distinct lines
intersect in a unique point. The theorem of Bézout says that much more is
true: given two curves in P2 of arbitrary degrees d, e ≥ 1, the curves intersect
in d · e points, counted with multiplicity. The proof of the theorem, which
will be given in this section, is an application of elimination: we proceed by
projecting the intersection points to a line. For this, we will consider the
resultant which is a classical tool in elimination theory (its use can be traced
back to work of Leibniz, Newton, Euler, and others – see the accounts in Kline
(1972) and von zur Gathen and Gerhard (1999)).

Given two univariate polynomials f, g, the resultant of f and g is a poly-
nomial expression in the coefficients of f and g which vanishes iff f and g
have a nontrivial common factor (see Theorem 5.4.3 below). In the classical
papers, the authors obtained the resultant by different ways of eliminating the
variable from the system f = g = 0. Accordingly, there are different ways of
representing the resultant. We will define it, here, as the determinant of the
Sylvester matrix which provides one natural way of introducing linear algebra
into the common factor problem.

Let R be a ring, and let

f = a0xd + a1xd−1 + . . . + ad,
g = b0xe + b1xe−1 + . . . + be ∈ R[x] (5.3)

be two polynomials of degrees d, e ≥ 1. Then the Sylvester matrix of f and
g is the matrix
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Syl(f, g) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 0 . . . 0 b0 0 . . . 0

a1 a0

... b1 b0

...
... a1

. . .
...

... b1
. . .

...
...

...
. . . a0

...
...

. . . b0

ad a1 be b1

0 ad

... 0 be

...
...

. . .
...

...
. . .

...
0 0 . . . ad 0 0 . . . be

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that Syl(f, g) is a square matrix of size d+e: there are e colums containing
ai’s, and d columns containing bj ’s.

Definition 5.4.1. With notation as above, the resultant of f and g is the
determinant

Res(f, g) = det Syl(f, g) ∈ R. ⊓*

Remark 5.4.2. No matter what ring we are considering, the resultant as a
determinant can always be computed using the same recipe. We conclude that
the construction of the resultant is universal in the following sense: If S is the
polynomial ring

S = Z[ui, vj | i = 0, . . . , d, j = 0, . . . , e]

in d + e + 2 variables with integer coefficients, and

F = u0xd + u1xd−1 + · · · + ud,
G = v0xe + v1xe−1 + · · · + ve ∈ S[x]

are the “generic” polynomials in x of degrees d, e, then for any ring R and
any two polynomials f, g as in (5.3), Res(f, g) is obtained from Res(F, G) by
substituting the ai, bj for the ui, vj . ⊓*

Theorem 5.4.3. Let R be a UFD, and let f, g ∈ R[x] be polynomials of
degrees d, e ≥ 1. Then f and g have a common factor of degree ≥ 1 iff
Res(f, g) = 0.

Proof. Consider the “linear combination map”

φ : R[x]<e ⊕R[x]<d → R[x]<d+e, (A, B) '→ Af + Bg.

This is a map between two free R-modules of rank d + e which, with respect
to the R-bases

(xe−1, 0), (xe−2, 0), . . . , (1, 0), (0, xd−1), . . . , (0, 1)

and
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xd+e−1, . . . , x, 1,

is represented by the Sylvester matrix Syl(f, g). We conclude that φ is injective
iff Res(f, g) ̸= 0. On the other hand, since R is a UFD, φ is injective iff
GCD(f, g) = 1. Indeed, if h := GCD(f, g) ̸= 1, then (−g/h, f/h) ∈ kerφ.
Conversely, suppose that GCD(f, g) = 1, and let (A, B)t ∈ kerφ be a syzygy
on f, g. Then Af = −Bg, which implies that B is a multiple of f . By degree
reasoning, B and, thus, A are zero. ⊓*

Note that if R = k is a field, then f and g have a nontrivial common factor iff
they have a common root in some algebraically closed extension field of k. It
was precisely the search for common (complex) roots which led the classical
authors to consider the resultant.

Example 5.4.4. Computing the resultant of the two polynomials

f = 3x2 + 5x− 2, g = 7x3 + x + 4 ∈ Q[x],

we get

Res(f, g) = det Syl(f, g) = det

⎛

⎜⎜⎜⎜⎝

3 0 0 7 0
5 3 0 0 7
2 5 3 1 0
0 2 5 4 1
0 0 2 0 4

⎞

⎟⎟⎟⎟⎠
= 1142792 ̸= 0.

Hence, f and g do not have a common root in C. ⊓*

Exercise 5.4.5. Let R be an integral domain, and let f, g ∈ R[x] be two
polynomials of degrees ≥ 1. Then show that

Res(f, g) ∈ ⟨f, g⟩ ∩ R. (5.4)

More precisely, show that there are polynomials A, B ∈ R[x] such that Af +
Bg = Res(f, g), deg A < deg g, and deg B < deg f . ⊓*

It is property (5.4) which links the resultant to elimination. Here are the
details: Given two polynomials f, g ∈ k[x1, . . . , xn] of degree ≥ 1 in x1, we
may associate a resultant to f, g and the variable x = x1 by regarding f, g as
univariate polynomials in x1. To indicate the distinguished variable, we, then,
write Syl(f, g, x1) for the Sylvester matrix and Res(f, g, x1) for the resultant.
Note that Res(f, g, x1) is a polynomial in R = k[x2, . . . , xn] which, by (5.4), is
contained in the first elimination ideal of ⟨f, g⟩ ⊂ k[x1, . . . , xn]. Moreover, if
(a2, . . . , an) ∈ An−1(k) is a point such that neither of the leading coefficients
of f, g ∈ R[x1] vanishes at (a2, . . . , an), then, by Remark 5.4.2,

Res(f, g, x1)(a2, . . . , an) = Res(f(x1, a2, . . . , an), g(x1, a2, . . . , an)). (5.5)

The following exercise illustrates the use of this by an example which, at the
same time, shows that Res(f, g, x1) may fail to generate the elimination ideal.
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Exercise 5.4.6. Consider the polynomials

f = xy2 − xy − y3 + 1, g = x2y2 − x2y + xy − 1 ∈ Q[x, y].

1. Compute that

Res(f, g, x) = det

⎛

⎝
y2− y 0 y2− y
−y3+ 1 y2− y y

0 −y3+ 1 −1

⎞

⎠

= y8 − y7 + y6 − 3y5 + y4 + y3 + y2 − y

= y(y − 1)2(y5 + y4 + 2y3 − y − 1).

Since the resultant is contained in the elimination ideal ⟨f, g⟩ ∩ Q[y], the
y-values of the complex solutions of f = g = 0 must be among its roots.
This gives eight candidates for the y-values.

2. If π : A2 → A1 is projection onto the y-component, show that

π(V(f, g)) ! V(Res(f, g)).

Exactly, what y-value does not have a preimage point?
3. Use Gröbner bases to compute that the elimination ideal ⟨f, g⟩ ∩ Q[y] is

generated by the polynomial (y−1)2(y5 + y4 +2y3− y−1). Compare this
with the result of the previous part. ⊓*

Exercise∗ 5.4.7. Let f, g ∈ k[x1, . . . , xn] be forms of degrees d, e ≥ 1. Sup-
pose that both f(1, 0, . . . , 0) and g(1, 0, . . . , 0) are nonzero. That is, the leading
coefficients of f and g – regarded as polynomials in x1 – are nonzero constants.
Then show that Res(f, g, x1) is homogeneous of degree d · e. ⊓*

In the projective setting, there is no value for the point p = [1 : 0 : · · · : 0] ∈ Pn

under projection onto the last n components. We are, thus, led to consider
the projection map

π : Pn \ {p} → Pn−1, [a0 : · · · : an] '→ [a1 : · · · : an].

More geometrically, think of Pn−1 as the hyperplane H0 = V(x0) ⊂ Pn. Then
the image of a point q ∈ Pn \ {p} under π is the intersection of the line
spanned by p and q with H0. More generally, if H ⊂ Pn is any hyperplane,
and p ∈ Pn \ H is any point, the same recipe gives a map from Pn \ {p} to
H ∼= Pn−1. This map is called projection from p to H.



5.4 Bézout’s Theorem and Applications 235

We can, now, prove Bézout’s theorem:

Theorem 5.4.8 (Bézout). Let f, g ∈ k[x, y, z] be forms of degrees d, e ≥ 1.
Assume that f and g have no common component. Then

∑

p∈P2

i(f, g; p) = d · e. (5.6)

Proof. Step 1. It follows from the assumption on f, g and property 2 of inter-
section multiplicities (see Theorem 4.3.18) that i(f, g; p) < ∞ for each point
p. Using the assumption again, we find that there are only finitely many in-
tersection points of f and g (apply Exercise 1.7.13 in each coordinate chart).
Since i(f, g; p) ̸= 0 iff p ∈ V(f) ∩V(g) (this is property 1 of intersection mul-
tiplicities), we conclude that the sum on the left hand side of (5.6) makes
sense.

Step 2. Since V(f)∪V(g) is strictly contained in P2 by the Nullstellensatz,
we may choose the coordinates such that the point [0 : 1 : 0] /∈ V(f) ∪ V(g).
That is, we may assume the leading coefficients of the forms f, g – regarded
as polynomials in y – are nonzero constants. Let

π : P2 \ [0 : 1 : 0] → P1, [a : b : c] '→ [a : c],

be projection from [0 : 1 : 0] to the line V(y) ∼= P1:



236 5 Linear Systems of Plane Curves

Then a point q = [a : c] ∈ P1 is the image of a point p ∈ V(f) ∩ V(g)
iff f(a, y, c) and g(a, y, c) have a common factor. Equivalently, by Theorem
5.4.3, the resultant

F := Res(f, g, y) ∈ k[x, z]

vanishes at [a : c]. By Exercise 5.4.7, F is a form of degree d · e which by
Theorem 5.4.3 and the assumption on f, g, is nonzero. It follows that

∑

q∈P1

mult(F, q) = d · e

(counted with multiplicity, there are deg F (x, 1) zeros of F in the affine chart
D(z) of P1, whereas mult(F, [1 : 0]) = deg F − deg F (x, 1)).

To prove (5.6), it remains to show that the relevant multiplicities match:
We claim that

mult(F, q) =
∑

p∈V(f)∩V(g)
π(p)=q

i(f, g; p),

for all points q ∈ P1 with F (q) = 0.
Step 3. Given a point q ∈ P1 as above, we may suppose after a further

projective change of coordinates that q = [0 : 1]. Then all intersection points
mapped to q lie in the affine chart U = D(z) ∼= A2 of P2. Thus, writing
fa = f(x, y, 1), ga = g(x, y, 1), and Op = OA2,p, the claim from Step 2 reads

mult(F (x, 1), 0) = dimK
∏

p∈V(f)∩V(g)
π(p)=q

Op/⟨fa, ga⟩Op.

Step 4. Since there are only finitely many intersection points, Corollary
4.6.17 gives us an isomorphism of K-algebras
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M := K[x, y]/⟨fa, ga⟩ ∼=
∏

p∈V(f)∩V(g)∩U

Op/⟨fa, ga⟩Op. (5.7)

Step 5. To relate (5.7) to the claim in Step 3, we have to get rid of
the intersection points which are not mapped to q. For this, we localize: Let
h ∈ k[x] be a generator for ⟨F (x, 1)⟩ : x∞. Then h vanishes precisely at the
points of V(f)∩V(g)∩U \π−1(q). In algebraic terms, for p ∈ V(f)∩V(g)∩U ,
the residue class of h in Op/⟨fa, ga⟩Op is a unit if p ∈ π−1(q), and is nilpotent
otherwise (recall from Step 1 that dimK Op/⟨fa, ga⟩Op < ∞). Hence, after
inverting h on both sides of (5.7), we have

M [h−1] := K[x, y, h−1]/⟨fa, ga⟩ ∼=
∏

p∈V(f)∩V(g)
π(p)=q

Op/⟨fa, ga⟩Op. (5.8)

Step 6. Since M is generated by (the residue class of) y as a K[x]-algebra,
and since the leading coefficients of the forms f, g – regarded as polynomials
in y – are nonzero constants, the powers 1, y, . . . , ymin(d,e)−1 generate M as a
K[x]-module. Working with the larger set of generators yd+e−1, . . . , y, 1, and
writing R = K[x], we get the free presentation

R[y]<e ⊕R[y]<d
φ−→ R[y]<d+e → M → 0,

where φ is the linear combination map

(A, B) '→ Af + Bg.

This map is represented by the Sylvester matrix Syl(fa, ga, y) which, then, is
also a representation matrix for M [h−1] considered as an R[h−1] = K[x, h−1]-
module. Since R[h−1] is a PID, and M [h−1] is annihilated by a power of x
(this is clear from the right hand side of (5.8)), the structure theorem for
modules over PID’s gives that Syl(fa, ga, y) has a Smith normal form of type

Syl(fa, ga, y) ∼
R

⎛

⎜⎜⎜⎝

xm1 0 . . . 0
0 xm2 . . . 0
...

...
. . .

...
0 0 . . . xmd+e

⎞

⎟⎟⎟⎠

(see Example 2.8.8, Definition 2.8.9, and Exercise 2.8.10). We conclude that

mult(F (x, 1), 0) = mult(det Syl(fa, ga), 0) =
e+d∑

i=1

mi = dimK M [h−1].

This finishes the proof. ⊓*

Example 5.4.9. Consider the quadratic forms
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f = x2 + y2 − xz, g = (x − y)2 + 2(y + x)2 − 3xz.

Then [0 : 1 : 0] /∈ V(f) ∪ V(g). With notation as in the proof above, we have

Syl(fa, ga, y) =

⎛

⎜⎜⎝

1 0 3 0
0 1 2x 3

x2 − x 0 3x2 − 3x 2x
0 x2 − x 0 3x2 − 3x

⎞

⎟⎟⎠ ∼
K[x]

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 x 0
0 0 0 x2(x − 1)

⎞

⎟⎟⎠ ,

so that, as K[x]-modules,

M = coker Syl(fa, ga, y) ∼= K[x]/⟨x⟩ ⊕ K[x]/⟨x2⟩ ⊕ K[x]/⟨x − 1⟩

(see Exercise 2.8.10). From this decomposition, it is clear that f and g intersect
with multiplicity one at a point p1 of type p1 = [1 : β1 : 1], and one might be
tempted to believe that there are two distinct intersection points p2/3 of type
pj = [0 : βj : 1]. This naive guess, however, is not true. One way of seeing this
is to interchange the role of x and y in the proof of Bézout’s theorem (note
that [1 : 0 : 0] /∈ V(f) ∪ V(g)):

Syl(fa, ga, x) =

⎛

⎜⎜⎝

1 0 3 0
−1 1 2y − 3 3
y2 −1 3y2 2y − 3
0 y2 0 3y2

⎞

⎟⎟⎠ ∼
K[y]

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 y 0
0 0 0 y3

⎞

⎟⎟⎠ .

Now, we conclude, that there is an intersection point p2 of multiplicity at least
three of type p2 = [α2 : 0 : 1] (and possibly another intersection point of the
same type). Taking Bézout’s Theorem into account and comparing with what
we got above, we find that

V(f) ∩ V(g) = {[1 : 0 : 1], [0 : 0 : 1]},

with intersection multiplicities

i(f, g; p1) + i(f, g; p2) = 1 + 3 = 4 = deg C · deg D. ⊓*

Exercise 5.4.10. Let f, g ∈ k[x, y, z] be nonconstant forms. Show that f and
g intersect transversally at each point of V(f)∩V(g)∩D(z) iff, with notation
as in the proof of Bézout’s theorem, every elementary divisor of Syl(fa, ga, y)
over K[x] is square-free. ⊓*

Exercise 5.4.11. Let p1, . . . , p4 ∈ A2 be four points in the affine plane such
that no three are collinear. Then show that there is a parabola passing through
these points iff p1, . . . , p4 do not form a parallelogram.
Hint: A parabola in A2 is the affine part of a nondegenerate conic in P2 which
intersects the line at infinity in a single point with multiplicity 2. ⊓*

As an application of Bézout’s Theorem, we give a bound on the number of
singular points of a plane curve:
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Theorem 5.4.12. Let C ⊂ P2 be a curve of degree d ≥ 1. If rp denotes the
multiplicity of C at a point p ∈ P2, then:

1. C has at most
(
d
2

)
singular points. More precisely,

∑

p∈C

(
rp

2

)
≤
(

d

2

)
.

2. If C is irreducible, then C has at most
(
d−1
2

)
singular points. More pre-

cisely,
∑

p∈C

(
rp

2

)
≤
(

d − 1
2

)
.

Proof. If d = 1, then C is a line, and there is nothing to show. We may, hence,
assume that d ≥ 2. Let p1, . . . , ps be the distinct singular points of C, and
write ri = rpi . Moreover, let f ∈ K[x, y, z] be a square-free form defining C.

1. Since f is square-free, not all formal partial derivatives of f van-
ish, and we may suppose that ∂f

∂x ̸= 0. Then f and ∂f
∂x have no com-

mon component. Applying Bézout’s theorem, we conclude that f and ∂f
∂x

intersect in d(d − 1) points, counted with multiplicity. On the other hand,
mult(∂f

∂x , pi) ≥ mult(f, pi)− 1 = ri − 1 for all i. Taking property 3 of intersec-
tion multiplicities into account (see Theorem 4.3.18), we get, as desired:

d(d − 1) =
∑

i

i(f,
∂f

∂x
, pi) ≥

∑

i

mult(f, pi) · mult(
∂f

∂x
, pi) ≥

∑

i

ri(ri − 1).

2. By Proposition 5.3.3 and part 1,

dimK L(d − 1; (r1 − 1)p1, . . . , (rs − 1)ps) ≥
(

d + 1
2

)
−
∑

i

(
ri

2

)
≥ d.

In particular, t :=
(d+1

2

)
−
∑(ri

2

)
− 1 ≥ 1, and we may choose smooth points

q1, . . . , qt ∈ C. Once more applying Proposition 5.3.3, we see that we can
find a nonzero form g ∈ L(d − 1; (r1 − 1)p1, . . . , (rs − 1)ps, q1, . . . , qt). Since,
by assumption, f is irreducible, the forms f and g have no component in
common. Making use of Bézout’s theorem and arguing as in part 1, we get

d(d − 1) ≥
∑

i

ri(ri − 1) + t =
∑

i

ri(ri − 1) +
d2 + d− 2

2
−
∑

i

(
ri

2

)
.

The desired bound follows. ⊓*

Theorem 5.4.13. Let C ⊂ P2 be an irreducible curve of degree d ≥ 1 such
that
(d−1

2

)
=
∑

p∈C

(rp

2

)
. Then C admits a rational parametrization.
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Proof. The basis idea is the same as in the proof of part 2 of Theorem 5.4.12.
If we choose t − 1 =

(d+1
2

)
−
∑(ri

2

)
− 2 addititional points q1, . . . , qt−1 on C

then

P(L(d − 1; (r1 − 1)p1, . . . , (rs − 1)ps, q1, . . . , qt−1)) = P(⟨g0, g1⟩)

is a pencil of curves, whose intersection points except one with C are known to
us. Thus, if p(t0, t1) denotes the moving intersection point of C∩V(t0g0+t1g1)
then

P1 → C, [t0 : t1] '→ p(t0, t1)

is the desired parmetrization. This proves the Theorem for algebraically closed
fields. Before we complete the proof for arbitrary fields, we discuss the result-
ing algorithm.

Remark 5.4.14. Suppose that C contains a smooth k-rational point. Then
C can be parametrized by rational functions defined over k. ⊓*

Remark 5.4.15. Using the concept of the bihomogeneous coordinate ring R =
k[x0, x1, x2, t0, t1] of P2 × P1, which we will introduce properly in Section 6,
we can compute the parametrization explicitely as follows.

Let f be the equation of C. The zero locus of the ideal J = ⟨f, t0g0+t1g1⟩ ⊂
R decompose into

V(J) = (B × P1) ∪C′ ⊂ P2 × P1,

where B = V(g1, g2) ∩ C ⊂ P2 is the base loci of the pencil on C. The
component C′ is the graph of the desired parmetrization. Note that the two
hypersufaces C × P1 and V(t0g0 + t1g1) intersect transversally along (C′ \
B)× P1, because the additional intersection is simple. Thus, if we saturate J
in ⟨g0, g1⟩ and ⟨t0, t1⟩, we obtain the bihomogeneous ideal of C′ ⊂ P2 × P1:

I(C′) = (⟨f, t0g0 + t1g1⟩ : ⟨g0, g1⟩N ) : ⟨t0, t1⟩N ⊂ R

for N large enough. On the other hand, the rational map

P1 → C, [t0 : t1] '→ p(t0, t1) = [ϕ0(t0, t1) : ϕ1(t0, t1) : ϕ2(t0, t1)],

is defined by three forms ϕ0,ϕ1,ϕ2 ∈ k[t0, t1] of degree d. So I(C′) contains
the minors of the matrix (

x0 x1 x2

ϕ0 ϕ1 ϕ2

)
.

Since there cannot be more than 3 equations of bi-degree (1, d) in I(C′),
we can get the bi-graded piece I(C′)(1,d) spanned by these minors from I(C′).
Finally, to compute t(ϕ0,ϕ1,ϕ2) from the space of minors ⟨m0, m1, m2⟩, we
calculate the syzygy of the matrix (∂mi

∂xj
)i,j=0,1,2.
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Returning to the proof of the theorem, suppose that the field of definition
of C is k = Q. Then we would like the polynomials ϕ0,ϕ1,ϕ2 ∈ Q[t0, t1] such
that P1(Q) parametrizes C(Q) with perhaps of the exception of a few singular
points. For this we need that L(d−1; (r1−1)p1, . . . , (rs−1)ps, q1, . . . , qt−1) is
defined over Q. For the singular points this is no problem: They might not be
defined individually over Q, but the collection Singr = {p ∈ C | mult(C, p) =
r} is defined over Q. So we need to find additional points q1, . . . , qt−1 in C
which are defined over Q. A single point suffices if we alter the pencil.

Let q ∈ C be a smooth point defined over Q. Consider

L = {g ∈ L(d− 1; (r1 − 1)p1, . . . , (rs − 1)ps) | vq(g) ≥ t − 1}.

Then L has codimension at most t− 1 in L(d− 1; (r1 − 1)p1, . . . , (rs − 1)ps))
and i(g, f ; q) ≥ t − 1 for every g ∈ L. Thus L is a pencil, again there is only
one free intersection point and we obtain a parametrization defined over Q.
The same argument works for arbitrary fields of definition. ⊓*

Exercise 5.4.16. Parametrize V (2x2y2−y2(z−x−y)2− (z−x−y)2x2) over
Q.

z = 1

y

x

y = 1

z

x

⊓*

Remark 5.4.17. In view of the application it is inconvenient, that we need a
smooth rational point. Indeed this can be avoided as proved by Hilbert and
Hurwitz [19xx]. A computer implementation of this algorithm was given in
Maple packages [Winkler,19xx] and [?] and in Singular []. In general curves
of odd degree defined over Q with

(d−1
2

)
=
∑

p∈C

(rp

2

)
always allow a Q-

rational parametrization. For even degree a quadratic field extension might
be necessary, as we can see from the example of the conic V (x2 + y2 + z2),
which has no real point, hence also no rational point.

Exercise 5.4.18. Compute a rational parametrization of the curve from Ex-
ample 1.4.4,
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-1

-0.5

0

0.5

1

1.5

2

v

-1 0 1 2 3
u

11 y7 + 7 y6x + 8 y5x2 − 3 y4x3 − 10 y3x4 − 10 y2x5 − x7 − 33 y6 − 29 y5x

−13 y4x2 + 26 y3x3 + 30 y2x4 + 10 yx5 + 3 x6 + 33 y5 + 37 y4x − 8 y3x2

−33 y2x3 − 20 yx4 − 3 x5 − 11 y4 − 15 y3x + 13 y2x2 + 10 yx3 + x4 = 0

without using additional rational points except the 4 singular points.
Hint: Use a suitable pencil of curves of degrees ≤ d − 1. ⊓*

5.5 Max Noether’s Fundamental Theorem

Let f, g ∈ k[x, y, z] be two forms of degrees ≥ 1 without common components.
Then f and g intersect in finitely many points, and we could ask: which other
forms pass through these points? Of course, there are the obvious forms of
type h = Af + Bg. In the special case where f and g intersect in deg f · deg g
distinct points, it follows from Max Noether’s theorem that there are no other
possibilities. More generally, if we allow arbitrary intersection multiplicities,
the theorem tells us that a form h is contained in the image of the linear
combination map (A, B) '→ Af +Bg iff this containment condition is fulfilled
locally at each intersection point of f and g.

In formulating a precise statement, we use the following notation. Given a
form f ∈ k[x, y, z] and a point p ∈ P2, choose a coordinate chart U containing
p and set fp = fa ∈ Op, where fa is the dehomogenization of f in U . Then
fp depends on the choice of U , but only up to multiplication by a unit in Op.
Hence, the local conditions in Max Noether’s theorem below make sense.
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Theorem 5.5.1 (Max Noether’s Fundamental Theorem). Let f, g, h
be forms of degrees ≥ 1 in k[x, y, z]. Assume that f and g have no common
component. Then there is an expression

h = Af + Bg,

with forms A, B ∈ K[x, y, z] of degrees deg h − deg f , deg h− deg g, iff

hp ∈ ⟨fp, gp⟩ ⊂ Op

for every point p ∈ V(f) ∩ V(g).

Proof. Clearly, the global condition in the theorem implies the local ones. For
the converse, arguing as is in the proof of Proposition 5.3.11, we can find a
linear form not vanishing at any of the finitely many intersection points of f
ang g. We may, hence, choose the coordinates such that V(f)∩V(g)∩V(z) = ∅.
That is, to work with the local conditions, we may dehomogenize with respect
to z. We give the remaining part of the proof in two steps, consisting of an
affine and projective argument, respectively.

Step 1. We write fa = f(x, y, 1), ga = g(x, y, 1) ∈ K[x, y] and consider the
composite map

φ : K[x, y, z] → K[x, y] →
⊕

p∈V(f)∩V(g)

Op/⟨fp, gp⟩

defined by

h '→ ha = h(x, y, 1) '→ (hp + ⟨fp, gp⟩)p∈V(f)∩V(g).

The local conditions in the theorem imply φ(h) = 0, so that ha ∈ ⟨fa, ga⟩ by
Corollary 4.6.17. Homogenizing, we get an equation of type

zkh = A′f + B′g,

for some k and some forms A′, B′ ∈ K[x, y, z]. The theorem will follow once
we show that multiplication by z is injective on K[x, y, z]/⟨f, g⟩.

Step 2. Let an equation of type zh′ = A′f + B′g in K[x, y, z] be given. We
show that h′ ∈ ⟨f, g⟩. For this, if E ∈ K[x, y, z] is any polynomial, we write
E0 = E(x, y, 0). We, then, have A′

0f0 + B′
0g0 = 0. On the other hand, since f

and g have no common zero on the line V(z), the polynomials f0 and g0 have
no common factor. It follows that (A′

0, B
′
0) = c · (−g0, f0) for some c ∈ K[x, y].

Setting A′′ = A′ + cg and B′′ = B′ − cf , we have A′′
0 = B′′

0 = 0, so that
A′′ = zA and B′′ = zB for some forms A and B. Since zh′ = A′f + B′g =
A′′f + B′′g = z(Af + Bg), we conclude that h′ = Af + Bg, as desired. ⊓*

Remark 5.5.2. Nowadays, Max Noether’s theorem is usually not treated in
textbooks on algebraic curves since it can be easily deduced from the coho-
mological vanishing result
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H1(P2,O(h − d− e)) = 0.

In this first course on algebraic curves, we will not develop the machinery
of sheaves and cohomology. In a second course, Max Noether’s theorem may
serve as a motivation for the interest in vanishing theorems. ⊓*

Corollary 5.5.3. Let f, h ∈ k[x, y, z] be forms of degrees ≥ 1 which intersect
in deg f ·deg h distinct points. Let g ∈ k[x, y, z] be a form of degree ≥ 1 passing
through deg f · deg g of these points. Then there is a form of degree h − e in
x,y,z passing through the residual deg f · (deg h− deg g) points.

Proof. The conditions hp ∈ ⟨gp, fp⟩ are satisfied, because g and f intersect
transversally by Bézout’s Theorem. Thus

h = af + bg

by Noether’s Theorem. The polynomial b defines the curve of degree h − e,
which contains the remaining d · (h − e) intersection points. ⊓*

A special case of the Corollary is Pascal’s Theorem.

Example 5.5.4 (Pascal’s Theorem). Consider a hexagon with vertices p1, . . . , p6 ∈
P2 and the three intersection points q1 = p1p2 ∩ p4p5, q2 = p2p3 ∩ p5p6, q3 =
p3p4 ∩ p6p1 of the opposite lines. Then p1, . . . , p6 lie on a conic iff q1, q2, q3 lie
on a line.

To prove this, we consider the cubic curves C = p1p2 ∪ p3p4 ∪ p5p6 and
H = p2p3 ∪ p4p5 ∪ p6p1, which intersect in {p1, . . . , p6} ∪ {q1, q2, q3}.
The statement for hexagons with vertices on a reducible conic is known as
Pappus’ Theorem.

5.6 Cubic Curves

Let C = V(f) ⊂ P2 be an absolutely irreducible cubic. Given two points
p, q ∈ C, we can construct another point on C as the third intersection point
of the line p, q with C. We denote this point momentarily by ¬(p∨q). Similarly
for a single smooth point p ∈ C, the third intersection point of the projective
tangent line TpC ⊂ P2 with C gives another point, momentarily called ¬(p∨p).
With this secant-tangent construction, we can give C the structure of an
abelian group as follows:
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Fix a smooth point o ∈ C, which will serve as the “zero” element in the
group. The group law is defined as

p + q := ¬((¬(p ∨ q)) ∨ o),

that is the third intersection point of C with the line ¬(p ∨ q), o. We illustrate
the group law on the curve given by the affine equation

11x3 − 4xy2 + 23y3 − 6x2 − 32xy − 67y2 + 43x + 32y = 0

and points o, p, q with affine integral coordinates.

o

p+q

q

p

0

0

Similarly, replacing the secant by the tangent, we define

2p := ¬((¬(p ∨ p)) ∨ o),

that is the third intersection point of C with the line ¬(p ∨ p), o.

o

p

2P

0

0
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Theorem 5.6.1. Let k be a not necessarily algebraically closed field. Let C
be an absolutely irreducible cubic, let C0 = C \ Sing C denote the set of non-
singular points, and let o ∈ C0 be a fixed point. The binary operation

C0 × C0 → C0, (p, q) '→ p + q

defined above, gives C0 the structure of an abelian group with o ∈ C as zero
element. If o ∈ C(k) then C0(k) ⊂ C0 forms a subgroup.

Proof. All is clear except the associativity law. For example, the statement
about the subgroup follows, because a cubic polynomial in one variable with
two k-rational roots has all three roots k-rational. For the negative of a point
p ∈ C0, we consider the third intersection o′ of C with ToC. Then −p is the
third intersection of C with o′, p.

-p

o’
p

o0

0

Note that we get only smooth points, because a secant or tangent through
smooth points cannot intersect C in a singular point by Bézout’s Theorem
and Proposition 4.3.18.3.

To prove (p + q) + r = p + (q + r), we consider all lines involved in the
construction. We have to prove that the lines p + q, r and p, q + r intersect in
a point of C.
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x

q+r

o

p+q

r

q

p

0

0

For this we consider the cubics C and p, q ∪ p + q, r ∪ o, q + r, which intersect
in the nine points

p, q,¬(p ∨ q), p + q, r, x = ¬((p + q) ∨ r), o, q + r, and ¬(q ∨ r),

which we assume to be different. Out of these, the following six q, r,¬(q ∨
r), o, p + q,¬(p ∨ q) lie on the quadric q, r ∪ o, q + q. Thus, the remaining
three p, q + r,¬((p + q)∨ r) lie on the line p, q + r by Corollary 5.5.3, and the
points

¬((p + q) ∨ r) and ¬(p ∨ (q + r))

coincide. To prove 2p + q = p + (p + q) or other cases, where some of the
points coincide, we argue with continuity. So far, we have proved that ¬((p +
q) ∨ r) = ¬(p ∨ (q + r)) holds for an non-empty Zariski open subset of triples
(p, q, r) ∈ C0 × C0 × C0. We will define the Zariski toplogy on C × C × C in
Chapter 6 precisely. It is clear, that iff some of the points in the construction
come together, some secant lines might become tangent lines, and that some
lines might coincide as well. The condition ¬((p + q) ∨ r) = ¬(p ∨ (q + r)) is
an algebraic condition on the irreducible algebraic set C0 ×C0 ×C0. Since it
holds on a non-empty Zariski open subset, it holds everywhere. ⊓*

The negative in the group law becomes particularly simple, if we can choose
a flex as the origin o. In that case o and o′ coincide, and −p is the third
intersection of o, p with C.

Definition 5.6.2. Let p ∈ C ⊂ P2 be a smooth point on a curve. The point
p ∈ C is a flex of C, if i(TpC, C; p) ≥ 3. The multiplicity of the flex is
i(TpC, C; p) − 2.
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Thus, every point on a line is a flex. A smooth conic has no flexes at all by
Bézout’s Theorem.

To determine the flexes of a curve C(f) defined by a square-free polynomial
f ∈ k[x, y, z], we consider the Hessian and the Hessian matrix. We abbreviate
fx = ∂f

∂x and so on. Then

Hess(f) = det

⎛

⎝
fxx fxy fxz

fxy fyy fyz

fxz fyz fzz

⎞

⎠ .

Note, that the Hessian curve H = V(Hess(f)) is independent of the choice
of the coordinate system, because a change coordinates (x, y, z)t = A(u, v, w)t

amounts to the multiplication with the matrices At and A.

Proposition 5.6.3. Assume char k = 0 and that f ∈ k[x, y, z] is square-free.
Then C = V(f) and H = V(Hess(f)) intersect in the singular points of C
and in the flexes. More precisely,

i(C, TpC; p) − 2 = i(C, H ; p)

for smooth points of p ∈ C.

Proof. We may assume that d = deg C ≥ 2. That H and C intersect in
singular points of C follows with the Euler relation:

xgx + ygy + zgz = deg g · g,

for g homogeneous. Thus

(d − 1)

⎛

⎝
fx

fy

fz

⎞

⎠ =

⎛

⎝
fxx fxy fxz

fxy fyy fyz

fxz fyz fzz

⎞

⎠

⎛

⎝
x
y
z

⎞

⎠ .

Since fx, fy, fz vanish at singular points of C, we conclude that at a
singular point [α : β : γ] of C the Hessian matrix has a nonzero kernel,
hence determinant zero. For a smooth point p ∈ C, we consider
appropriate coordinates. Suppose p = [0 : 0 : 1] and TpC = V(y). Then
the affine equation of C is of the form

f(x, y, 1) = yu(x, y) + xkg(x) with k ≥ 2

with u(0, 0) ̸= 0, g(0) ̸= 0. Homogenization gives

f(x, y, z) = yu(x, y, z) + xkg(x, z)

for suitable homogeneous polynomials u, g with u(0, 0, 1), uz(0, 0, 1) and g(0, 1) ̸=
0. We evaluate the vanishing order vp(Hess(f)) at p on C. Since
vp(y) = k and vp(x) = 1, we find that vp(fxx) = vp(yuxx +k(k−1)xk−2g +
2kxk−1gx + xkgxx) = k − 2 and vp(fyz) = vp(uz) = 0. It follows that
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i(C, H ; p) = vp(Hess(f)) = vp(−fxxf2
yz) = k − 2 = i(C, TpC; p)− 2,

since all other terms in the Laplace expansion of the Hessian have
higher vanishing order. ⊓*

Corollary 5.6.4. Let chark = 0. A smooth curve C of degree d has 3d(d−2)
flexes counted with multiplicity.

Proof. The degree of the Hessian is 3(d-2). ⊓*

Exercise 5.6.5. Suppose chark = 0. Let C ⊂ P2 be a curve with singularities.
Prove:

1. i(C, Hess(C), p) = 6, for p ∈ C an ordinary node,
2. i(C, Hess(C), p) = 8, for p ∈ C an ordinary cusp.

Conclude that a curve with δ ordinary nodes and κ ordinary cusps as its only
singularities has

f = 3d(d − 2)− 6δ − 8κ

flexes counted with multiplicities. ⊓*

A smooth cubic curve can have only simple flexes by Bézout. Analysing in
the proof the assumption char k = 0, we find for cubic curves

Corollary 5.6.6. If chark ̸= 2, 3 then a smooth cubic curve has precisely 9
flexes.

Corollary 5.6.7. Suppose that chark ̸= 2, 3. Then, after a change of coordi-
nates, any smooth cubic curve C ⊂ P2 can be defined by an equation

y2z = x3 + axz2 + bz3

with coefficients a, b. Conversely, the cubic defined by such an equation is
smooth iff the disriminant 27a3 + 4b2 ̸= 0.

Proof. We may change coordinates such, that o = [0 : 1 : 0] is a flex, and that
ToC = V(z). Then the affine equation of C has shape

a′
0y

2 + a′
1xy + a′

2 = x3 + b′1x
2 + b′2x

2 + b′3

Taking a′
0 into z, we arrive at

y2 + a1xy + a2y = x3 + b1x
2 + b2x + b3.

Finally, substituting first y = y − a1/2x − a2/2 and then x = x − b′′1/3, we
arrive at

y2 = x3 + ax + b.

The curve defined by such an equation is singular iff x3 +ax+b has a multiple
root iff 27a3 + 4b2 = 0. Note that this change of coordinates is defined over
the ground field iff the flex is a k-rational point. ⊓*
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Definition 5.6.8. An elliptic curve in Weierstrass normal form is a
smooth cubic curve E defined by an affine Weierstrass equation

y2 + a1xy + a2y = x3 + b1x
2 + b2x + b3.

The curve E carries a group structure with the single intersection point o =
[0 : 1 : 0] of E and the line at infinity as Null in the group. If chark ̸= 2, 3
then the equation can be simplified to

y2 = x3 + ax + b.

The main difference between a smooth cubic and an elliptic curve is, that
an elliptic curve has a k-rational point over its field of definition. We will see
in Chapter 8, that indeed any smooth cubic curve C with a k-rational point
is isomorphic to a cubic in Weierstrass normal form. However, in general the
isomorphism is not induced by a linear automorphism of P2.

Exercise 5.6.9. Suppose that char k ̸= 2, 3. Prove that the secant line
through two flexes of an irreducible cubic curve intersects the curve in a fur-
ther flex. Hint: Choose one of the flexes as the Null in the group, and consider
the 3-torsion elements of the group. ⊓*

Exercise 5.6.10. Proove that the incidence correspondence between flexes
and secant lines joining them, coincides with the incidence configuration of
F3-rational points and lines in A2(F3). ⊓*

Exercise 5.6.11. Prove that for an irreducible cubic defined over R, at most
three of the flexes can be real. ⊓*

Exercise 5.6.12. Let C = V(f) be a cubic defined by an affine Weierstrass
equation

y2 = x3 + ax + b.

Choose as Null the single intersection point o = [0 : 1 : 0] of C with the line
at infinity. Prove the following formulas for the group law on C0:

1. −(x, y) = (x,−y)
2. (x1, y1) + (x2, y2) = (x3, y3) with

x3 = (
y2 − y1

x2 − x1
)2 − x1 − x2 and y3 = (

y2 − y1

x2 − x1
)(x3 − x1) + y1

3. 2(x1, y1) = (x3, y3) with

x3 = (
3x1 + a

2y1
)2 − 2x1 and y3 = (

3x1 + a

2y1
)(x3 − x1) + y1

⊓*
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Exercise 5.6.13. Let C be the projective closure of V(y2 − x3) and the Null
o ∈ C as in Exercise 5.6.12. Prove that

C0(k) ∼= (k, +).

Let C be the projective closure of V(y2 − x3 − x2) and the Null o ∈ C as
in Exercise 5.6.12. Prove that

C0(k) ∼= (k∗, ∗).

⊓*

Remark 5.6.14. Elliptic curves E defined over the finite field Fq with q ele-
ments recently found applications in cryptography, see Koblitz [1994]. Choos-
ing an elliptic curve over Fq at random, is like choosing a random abelian
group of size ≈ q + 1 by the famous Hasse-Weil Theorem. Let ♯E(Fq) denote
the number of Fq-rational points.

Theorem 5.6.15 (Hasse-Weil Theorem). Let E be a smooth elliptic curve
defined over Fq. Then the number of Fq-rational points is estimated by

|♯E(Fq) − q − 1| ≤ 2
√

q.

We will prove a more general formula for arbitrary smooth curves in Chap-
ter 8, Theorem 8.8.24. A plausibility argument runs as follows: E(Fq) contains
the point o at infinity. All other points project onto a point of A1(Fq) ⊂ P1(Fq).
There are q points in A1(Fq). Over the possible three roots α of x3 + ax + b
in A1(Fq) we have precisely one point [α : 0 : 1] in E(Fq). Over the other
points α ∈ A1(Fq), we find either two or no point depending on whether
α3 + aα+ b ∈ (F∗

q)2 or not. If we assume that the map

D(x3 + ax + b)(Fq) → F∗
q/(F∗

q)
2, α '→ α3 + aα+ b

behaves like a random function then we can model ♯E(Fq) − q − 1 with a
random path with steps ±1 of length q. Then the expectation value of ♯E(Fq)
is q + 1 and the expectation value of |♯E(Fq) − q − 1| is ≈ √

q.
A much more precise statemant about the distribution of the orders ♯E(Fq)

of elliptic curves over Fq, when E runs through the finite set of elliptic curves
over Fq, can be found in [Gekeler, 2003].

A different application of elliptic curves over finite fields due to Lenstra
and Lenstra concerns integer factorization and primality tests, see ? and ?.

Elliptic curves over number fields are an intense area of current research.
To start, we have Mordell’s Theorem:

Theorem 5.6.16 (Mordell, 1922). Let E be an elliptic curve defined over
Q. Then E(Q) is a finitely generated group.
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Thus, every Q-rational point on E can be constructed via the tangent-
secant construction from finitely many points. For a proof we refer to Silver-
man [1986].

Example 5.6.17. The point p = (1, 1) on the elliptic curve E defined by y2 =
x3 − x + 1 generates an infinite subgroup of E(Q).
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The torsion part of E(Q) was clarified by the celebrated Theorem of
Mazur.

Theorem 5.6.18 (Mazur, 1976). Let E be an elliptic curve over Q. Then
E(Q)tors is one of the following groups

Z/n with 1 ≤ n ≤ 10 or n = 12

or
Z/2 × Z/2n with 1 ≤ n ≤ 4.

On the other hand, the rank of E(Q) is the topic of one of most famous
conjectures in Mathematics. Let E(Q) be a smooth elliptic curve with defining
equation in Z[x, y]. Then for almost all prime numbers p, we obtain a smooth
cubic curve E mod p over the finite field Fp = Z/p. Write its number of
points in the form

E(Fp) = 1 − ap + p.
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A more precise version of the Hasse-Weil Theorem (Theorem 8.8.25) says that
the reciprocal roots α,α of

1 − apt + pt2 = (1 − αt)(1 − αt)

are integral algebraic numbers of absolute value |α| = √
p.

We collect the local information of E mod Fp with an Euler product to
an analytic function: The Hasse-Weil L-function of E is defined by

L(E/Q; s) =
ζ(s)ζ(1 − s)∏

p(1 − app−s + p1−2s)

where ζ(s) =
∏

p(1 − p−s)−1 =
∑

n n−s denotes the Riemann zeta function.
The product of the denominators of L(E/Q, s) converges to an holomorphic
function of s for s with real part Re s > 1. As the Riemann zeta function, the
function L(E/Q, s) should have an analytic continuation.

Conjecture 5.6.19 (Birch and Swinnerton-Dyer, 1963, 1965). The Hasse-Weil
L-function has an analytic continuation to the whole complex plane, and
rankE(Q) equals the vanishing order of L(E/Q, s) at the critical point s = 1.

They also conjecture a precise statement about the leading coefficient. For
reading on this fascinating topic in number theory we recommend Silverman
[1986] or Husemöller [1986].

We now turn to the complex analytic side of the story about elliptic curves.
One way to think about the elliptic curve E ⊂ P2(C) defined by y2 = x3 +
ax + b over C is as the Riemann surface of the 2-valued analytic function√

x3 + ax + a. This amount to study E via the projection from o = [0 : 1 : 0].
The image of o will be the point at infinity ∞ = [1 : 0] ∈ V(y) ∼= P1. Moreover,
this is a ramification point, because o is a flex. The other ramification points
lie on the line V(y). The three roots ρ1, ρ2, ρ3 of x3 + ax + a give us three
further ramification points pj = [ρj : 0 : 1] ∈ E.

We can make
√

x3 + ax + a to a single valued function, if we restrict the
domain of definition appropriately. Consider the line segment S1 joining p1

and p2 and a half-line S2, disjoint from S1, which connects p3 with ∞ on
the Riemann number sphere P1(C). Then

√
x3 + ax + a is single valued on

P1(C)\ (S1∪S2), and the Riemann surface E is obtained by gluing two copies
of P1(C) \ (S1 ∪ S2) crosswise along the cuts.
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It is easier to understand the Euclidean topology globally, if we draw the
spheres not in each other and deform them a little bit. Note that the angle of
two arcs ending at one of the branch point get divided by 2. Thus the angle
of 360o of the cut gives an angle of 180o and thus a smooth arc. We conclude
that the Riemann surface E is homeomorphic to a torus.

The universal covering space Ẽ of E is C as Riemann surface and

E = C/Λ,

where Λ ⊂ C is a lattice. We see the group structure on E very clearly from
this: (E, +) is the quotiont group of (C, +) by the subgroup (Λ, +). To prove
Ẽ ∼= C, one considers the elliptic integral

∫
dx√

x3 + ax + b
.

ω =
dx√

x3 + ax + b
=

dx

y
=

2dy√
3x2 + a

is a nowhere vanishing holomorphic 1-form, because y =
√

x3 + ax + b and
x3 + ax + b has no multiple roots. Thus we can define the integral

∫ p

o

dx√
x3 + ax + b

by choosing an arbitrary path from o to p, and the result is well defined up
to a period, that is the integral of ω along a closed path. The first homology
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group H1(E, Z) has as basis represented by the red and blue/green paths
γ1, γ2 indicated above.

One can prove that the periods

λj =
∫

γj

ω

are R-linearly independent. Thus Λ = Zλ1 ⊕ Zλ2 is a lattice, and integration
defines an unramified holomorphic map

∫

o
: E → C/Λ, p '→

∫ p

o
ω mod Λ

The inverse is given by the Weierstraß ℘-function and its derivative. Recall
from the theory of complex function in one variable that

℘(z) =
1
z2

+
∑

λ∈Λ\{0}

1
(z − λ)2 − 1

λ2

defines a meromorphic function with poles of order 2 at the lattice points.
Moreover, the ℘-function and its derivative

℘′(z) =
∑

λ∈Λ

1
(z − λ)3

are double periodic and satisfy the functional equation

(℘′)2 = 4℘3 + g2℘+ g3

with g2 = 1
60

∑′
λ∈Λ

1
λ4 and g3 = 1

140

∑′
λ∈Λ

1
λ6 . The inverse of

∫
o : E → C/Λ is

given by
C/Λ→ E ⊂ P2, z '→ [℘(z] : ℘′(z)/2 : 1]

In particular, we claim that a = g2/4 and b = g3/4 holds. We do not prove this
fact, but refer to Silverman [1986] and Husemoeller [1986] for further reading.





Chapter 6

Projective Algebraic Sets and Morphisms

In this Chapter we study arbitrary subvarieties of Pn. In the first section we
develop the algebra geometry dictionary for the projective setting and settle
the question, how to compute the projective closure of arbitrary algebraic
sets.

The second section is devoted to the definitions of products and mor-
phisms. The main result of this section is the fundamtental theorem of elimi-
nation theory, which says that the image of an algebraic set under a projective
morphism is an algebraic set. As consequence we get that regular functions
on absolutely irreducible algebraic varieties are constant.

In Section 6.4 we introduce the Hilbert polynomial, which allows to define
the degree of algebraic sets of higher codimension. Using the Hilbert poly-
nomial we prove another version of Bézout’s Theorem for the intersection of
projective varieties of arbitrary codimension with hypersurface

In Section 6.5 we prove the dimension bound for intersections and the
semi-continuity of the fiber dimension in a projective morphism. Section 6.6
deals with Bertini’s Theorem and projective duality. An appendix contains
the monodromy arguments for the uniform position of a general hyperplane
section of curves and the irreducible of general hyperplane sections of higher
dimensional varieties over fields of characteristic zero.
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6.1 The Projective Nullstellensatz

In this section, we will explain how to link algebraic sets to ideals in the
projective case. Since projective algebraic sets are defined by homogeneous
polynomials, the ideals under consideration will have homogeneous generators.
The general context for such ideals is that of graded rings.

Definition 6.1.1. A graded ring is a ring S with a decomposition S =⊕
d≥0 Sd as Abelian groups such that SdSe ⊂ Sd+e for all d, e. A homoge-

neous element of S is an element f of some graded piece Sd, and d is then
called the degree of f . If f = f0 + f1 + f2 + . . . is the unique decomposition
of an element f ∈ S into homogeneous summands fi of degree i, the fi are
called the homogeneous components of f . A homogeneous ideal of S is
an ideal generated by homogeneous elements. ⊓*

If S =
⊕

d≥0 Sd is a graded ring, then S0 is a ring with 1 ∈ S0, and S is
an S0-algebra. Furthermore, S+ :=

⊕
d≥1 Sd is a homogeneous ideal. In the

case where S0 = k is a field, this ideal is maximal and contains all other
homogenous ideals of S.

Proposition 6.1.2. Let I be an ideal of a graded ring S =
⊕

d≥0 Sd. Then
the following are equivalent:

1. I is homogeneous.
2. For each f ∈ I, the homogeneous components of f are in I as well:

I =
⊕

d≥0

(I ∩ Sd)

Proof. 1 =⇒ 2: Let {f (λ)} be a set of homogenous generators for I, with
dλ := deg f (λ) for all λ. Moreover, let f ∈ I, and let fm ̸= 0 be the homogenous
component of f of least degree. The result will follow by induction once we
show that f − fm ∈ I. For this, we write f as a sum f = g(λ1)f (λ1) +
· · · + g(λr)f (λr). Then, with the obvious notation, fm = g(λ1)

m−dλ1
f (λ1) + · · · +

g(λr)
m−dλr

f (λr) ∈ I.
2 =⇒ 1: If condition 2 is satisfied, the homogeneous components of the

elements of any given set of generators for I generate I, too. ⊓*

Exercise∗ 6.1.3. Let S be a graded ring.

1. Show that the sum, product, intersection, ideal quotient, and radical of
homogeneous ideals are homogeneous.

2. Show that a homogeneous ideal p ⊂ S is prime iff for any two homogeneous
elements f, g ∈ S with fg ∈ p we must have f ∈ p or g ∈ p. ⊓*

It is clear from the proof of Proposition 6.1.2 that every homogeneous ideal of
a Noetherian graded ring is generated by finitely many homogeneous elements.
The polynomial ring k[x0, . . . , xn] with its natural grading by the degree of
polynomials is our basic example of a Noetherian graded ring.
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Exercise∗ 6.1.4 (Characterization of Noetherian Graded Rings). Let
S =
⊕

d≥0 Sd be a graded ring. Show that the following are equivalent:

1. S is Noetherian.
2. S0 is Noetherian and S+ is a finitely generated ideal.
3. S0 is Noetherian and S is a finitely generated S0-algebra. ⊓*

At this point, setting up an I–V-correspondence between algebraic subsets of
Pn(k) and homogeneous ideals of k[x0. . . . , xn], the reader will have no diffi-
culty in verifying results analogous to those proved in Chapter 1. In particular,
each algebraic set A ⊂ Pn(k) is defined by finitely many homogeneous poly-
nomials; it has finitely many irreducible components; and, it is irreducible
iff I(A) is a prime ideal. Moreover, the Zariski closure of the difference of
two projective algebraic sets is obtained as in Theorem 1.9.1. For the sake of
brevity, we will only treat the projective version of the Nullstellensatz in some
detail. In doing so, we will use I and V in accordance with Convention 5.2.1:

Definition 6.1.5. 1. If I ⊂ k[x0, . . . , xn] is a homogeneous ideal, its locus
of zeros (or vanishing locus) in Pn is the projective algebraic set

V(I) := {p ∈ Pn | f(p) = 0 for all homogeneous f ∈ I}.

2. Let S := K[x0, . . . , xn]. If A ⊂ Pn is any subset, its vanishing ideal is
the homogeneous ideal

I(A) := ⟨f ∈ S | f is homogeneous and f(p) = 0 for all p ∈ A⟩. ⊓*

Remark 6.1.6. Note that

I(A) = {f ∈ S | f(a0, . . . , an) = 0 for any p ∈ A and any set
a0, . . . , an of homogeneous coordinates for p}.

Indeed, if f = fm + . . . + fd is an element of the ideal on the right hand side,
where the fi are homogenous of degree i, and p = [a0 : · · · : an] ∈ A, then

0 = f(λa0, . . . ,λan) = λmfm(a0, . . . , an) + · · · + λdfd(a0, . . . , an)

for all λ ∈ K. Since K is infinite, this is only possible iff fi(a0, . . . , an) = 0 for
all i. It follows that f ∈ I(A). The reverse inclusion is clear. ⊓*

Theorem 6.1.7 (Projective Nullstellensatz). Let I ⊂ k[x0, . . . , xn] be a
homogeneous ideal. Then:

1. V(I) = ∅ ⇐⇒ I ⊃ ⟨x0, . . . , xn⟩d for some d ≥ 1.
2. If V(I) is nonempty, then

I(V(I)) = rad (I K[x0, . . . , xn]).
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Proof. The theorem follows by applying the affine version of the Nullstellen-
satz to the affine cone C(V(I)):

1. We have

V(I) = ∅ ⇐⇒ C(V(I)) ⊂ {0} ⇐⇒ rad (I) ⊃ ⟨x0, . . . , xn⟩.

2. If V(I) is nonempty, we have

f ∈ I(V(I)) ⇐⇒ f ∈ I(C(V(I))) ⇐⇒ f ∈ rad (I K[x0, . . . , xn]). ⊓*

Corollary 6.1.8. There is an inclusion-reversing one-to-one correspondence

{algebraic subsets of Pn}
I !!

V
""

⎧
⎨

⎩

homogeneous radical ideals
of K[x0, . . . , xn]

not equal to ⟨x0, . . . , xn⟩

⎫
⎬

⎭ .

Under this correspondence, subvarieties of Pn correspond to homogeneous
prime ideals of K[x0, . . . , xn] not equal to ⟨x0, . . . , xn⟩. ⊓*

Since the ideal K[x0, . . . , xn]+ = ⟨x0, . . . , xn⟩ is missing in this correspon-
dence, it is often called the irrelevant ideal.

Definition 6.1.9. The homogeneous coordinate ring of an algebraic set
A ⊂ Pn is the quotient ring

K[A] = K[x0, . . . , xn]/I(A). ⊓*

In terms of affine algebraic sets, K[A] is the coordinate ring of the affine cone
C(A) ⊂ An+1. Note that K[A] has a natural grading. In fact, if S =

⊕
d≥0 Sd

is any graded ring, and I =
⊕

d≥0(I∩Sd) is any homogeneous ideal of S, then

S/I =
⊕

d≥0

Sd/(I ∩ Sd).

The relationship between algebraic subsets of A and homogeneous ideals of
K[A] is analogous to Exercise 1.11.7.

Remark 6.1.10 (Buchberger’s Algorithm and Homogeneous Ideals).
With respect to computational aspects, we note that Buchberger’s algorithm
applied to homogeneous polynomials yields Gröbner basis elements which are
homogeneous, too. In particular, given any global monomial order on S =
k[x0, . . . , xn], the elements of the reduced Gröbner basis for a homogeneous
ideal I of S are homogeneous. Hence, the computational recipes given in
Chapter 2 are valid in the projective case as well. ⊓*

We finish this section by defining the dimension of a projective algebraic set.
One way of doing this is to extend the affine notion of dimension via coordinate
charts (alternative ways will be discussed in subsequent sections):
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Definition 6.1.11. The dimension of an algebraic subset A ⊂ Pn, written
dimA, is defined to be the number

dim A = max{A ∩ Ui | i = 0, . . . , n}. ⊓*

We will use the words codimension, equidimensional, curve, and sur-
face exactly as in the affine case. It follows from that case that dim A is the
maximum dimension of the irreducible components of A, and that A is a hy-
persurface iff it is equidimensional of dimension n− 1. In algebraic terms, we
will see in Corollary 6.4.19 that if A ⊂ Pn is any projective algebraic set, then

dimA = dimC(A) − 1 = dim K[A]− 1.

6.2 Computing the Projective Closure

To describe the projective closure of an affine algebraic set in algebraic terms,
we introduce the following notation: The homogenization of an ideal I ⊂
k[x1, . . . , xn] with respect to an extra variable x0 is the ideal

Ih = ⟨fh | f ∈ I⟩ ⊂ k[x0, . . . , xn].

Theorem 6.2.1. Let I ⊂ k[x1, . . . , xn] be an ideal, and let Ih be its homoge-
nization with respect to x0. Then V(Ih) ⊂ Pn is the projective closure of the
affine algebraic set Va(I) ⊂ An ∼= U0 ⊂ Pn.

Proof. First, it is clear that V(Ih) is an algebraic subset of Pn which contains
Va(I). To show that V(Ih) is the smallest such set, let B ⊂ Pn be any algebraic
set containing Va(I), and let F ∈ I(B) ⊂ K[x0, . . . , xn] be any form. Then the
dehomogenization f = F (1, x1, . . . , xn) is contained in Ia(Va(I)) (with obvi-
ous notation). Hence, by the affine Nullstellensatz, fm ∈ rad (I K[x1, . . . , xn])
for some m. This shows

(fh)m = (fm)h ∈ (I K[x1, . . . , xn])h = Ih K[x1, . . . , xn] ⊂ I(V(Ih)).

Since F = xs
0f

h for some s ≥ 0, it follows that F ∈ I(V(Ih)), as desired. ⊓*

Exercise∗ 6.2.2. Let A ⊂ An ∼= U0 be an affine algebraic set, and let A be
its projective closure in Pn. Show:

1. A is irreducible iff A is irreducible.
2. If A = V1∪ · · ·∪Vr is the decomposition into irreducible components, then

A = V 1 ∪ · · · ∪ V r is the decomposition into irreducible components.

In particular, no irreducible component of A is contained in the hyperplane
at infinity. ⊓*

With respect to computing Ih, we note that the naive approach of just ho-
mogenizing the given generators for I may lead to the wrong ideal:
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Example 6.2.3. Consider the ideal I = ⟨y − x2, z − x3⟩ ⊂ k[x, y, z], which
defines the twisted cubic curve C in A3. Homogenizing the generators, we get
the ideal J = ⟨wy − x2, w2z − x3⟩ ⊂ k[w, x, y, z], which decomposes as

J = ⟨x2 − wy, xy − wz, y2 − xz⟩ ∩ ⟨x2 − yw, xw, w2⟩.

This shows that the line V(w, x), which is contained in the hyperplane at
infinity, is an irreducible component of V(J) ⊂ P3. Hence, J cannot be the
homogenization of I (of course, this can also be seen directly by specifaying
an element of Ih not contained in J). The projective closure of C, which is
called the twisted cubic curve in projective 3-space P3, is defined by
the ideal

J : ⟨w, x⟩ = ⟨x2 − wy, xy − wz, y2 − xz⟩.

Note that the generators for this ideal are obtained by homogenizing the
elements of the (reduced) Gröbner basis for I with respect to >drlex. ⊓*

In general, we have:

Proposition 6.2.4. Let I ⊂ k[x1, . . . , xn] be an ideal. Pick a degree-compatible
(global) monomial order > on k[x1, . . . , xn], and set

xαxd
0 >h xβxe

0 ⇐⇒ xα > xβ or (xα = xβ and d > e).

Then >h is a global monomial order on k[x0, . . . , xn]. Moreover, when homog-
enizing with respect to x0, the following holds: If f1, . . . , fr form a Gröbner
basis for I with respect to >, then the homogenized polynomials fh

1 , . . . , fh
r

form a Gröbner basis for the homogenized ideal Ih with respect to >h.

Proof. That >h is a global monomial order is immediate from the definitions.
For the second statement, note that if f ∈ k[x1, . . . , xn] is any nonzero poly-
nomial, then deg L>(f) = deg f since > is degree-compatible. Hence, L>(f)
remains unchanged when we homogenize. According to how we defined >h, it
follows that L>h(fh) = L>(f).

We use this to show that L(Ih) ⊂ ⟨fh
1 , . . . , fh

r ⟩ (the reverse inclusion is
clear). Let F ∈ Ih. Since Ih is a homogeneous ideal, any homogeneous com-
ponent of F is contained in Ih, and we may suppose that F itself is homeo-
geneous. Writing F as a k[x0, . . . , xn]-linear combination of polynomials gh

j ,
with all gj ∈ I, we find that the dehomogenization f = F (1, x1, . . . , xn) is a
k[x1, . . . , xn]-linear combination of the gj. In particular, f ∈ I. On the other
hand, since F is homogeneous, we have F = xs

0f for some s ≥ 0. Hence,

L>h(F ) = xs
0 · L>h(fh) = xs

0 · L>(f).

Since L>(f) is a multiple of one of the L>(fi) by assumption, we conclude
that L>h(F ) is a multiple of L>(fi) = L>h(fh

i ), as required. ⊓*
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Exercise 6.2.5. Let d ≥ 2, and consider the image C of the parametrization

A1 → Ad, t '→ (t, t2, . . . , td).

The projectice closure C ⊂ Pd is known as the rational normal curve in Pd.
Note that for d = 2, 3, we get a nondegenerate conic respectively the twisted
cubic curve. In general, show that I(C) is generated by

(
d
2

)
quadrics, and that

there is no set of generators with fewer elements. Note that for d ≥ 3, the
number of generators is strictly larger than the codimension d− 1. ⊓*

6.3 Products and Morphisms

We have seen in Exercise 1.11.5 that the product A×B of two affine algebraic
sets A ⊂ An and B ⊂ Am is an algebraic subset of An × Am = An+m. In the
projective setting, it is initially not even clear that Pn×Pm can be viewed as an
algebraic set. There is, however, a natural way of doing this. The basic idea is
to embed Pn×Pm in some PN such that the image is a projective variety which
locally, in the coordinate charts of PN , is isomorphic to the product An×Am.
To make this precise, we note that sending ([a0 : · · · : an], [b0 : · · · : bm]) to
[a0b0 : · · · : a0bm : a1b0 : · · · : anbm] gives a well-defined map

σm,n : Pn × Pm → PN , where N = (n + 1)(m + 1) − 1

(the map does not depend on the choice of homogeneous coordinates ai, bj ,
and at least one of the aibj is nonzero). In studying σm,n, we denote the homo-
geneous coordinates on Pn, Pm, and PN by x = x0, . . . , xn, y = y0, . . . , ym,
and z = z00, . . . , z0m, z10, . . . , znm. Moreover, we say that a polynomial of
type

f =
∑

|α|=d, |β|=e

cαx
αyβ ∈ k[x, y]

is bihomogeneous (in x and y, of bidegree (d, e)).

Proposition 6.3.1. The map σm,n is injective, and its image Σm,n is a sub-
variety of PN . The vanishing ideal I(Σm,n) is generated by the 2 × 2 minors
of the (n + 1) × (m + 1) matrix of coordinates (zij). In terms of coordinate
charts, we have

Ui × Uj
∼= Σm,n ∩ Uij .

Proof. It is clear that the minors vanish on Σm,n:

det
(

xi1yj1 xi1yj2

xi2yj1 xi2yj2

)
= 0. (6.1)

Hence, if A ⊂ PN denotes the algebraic set defined by the minors, thenΣm,n ⊂
A. To show equality, we first intersect with the coordinate chart U00. If r =
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[1 : c01 : · · · : cij : . . . ] ∈ A∩U00 is a point, then cij = ci0c0j . Hence, ([1 : c10 :
. . . : cn0], [1 : c01 : . . . : c0m]) is the unique pair of points (p, q) ∈ U0 ×U0 such
that σm,n

(
(p, q)

)
= r. We conclude that σm,n restricts to an isomorphism

U0×U0
∼= A∩U00 of affine varieties. Since the corresponding statement holds

for the other coordinate charts, we have Σm,n = A, as desired. At the same
time, the argument shows that σm,n is injective.

The proposition will follow once we show that the ideal I ⊂ K[z] generated
by the minors is prime. For this, we show that I coincides with the kernel of
the ring homomorphism

φ : K[z] → K[x, y], zij '→ xiyj .

It is clear from (6.1) that I ⊂ kerφ. For the reverse inclusion, we use a counting
argument which actually gives that the minors form a Gröbner basis for kerφ.

On K[z], consider a global monomial order > refining the partial order on
the variables defined as follows:

z00 > z01 > . . . > z0m

∨ ∨ ∨
z10 > z11 > . . . > z1m

∨ ∨ ∨
...

...
...

∨ ∨ ∨
zn0 > zn1 > . . . > znm

.

Then
L(det

(
zi1j1 zi1j2

zi2j1 zi2j2

)
) = −zi1j2zi2j1

whenever i1 < i2 and j1 < j2. Hence, if f ∈ K[z] is any polynomial, division
with remainder yields a representation

f = g + h,

where g is a K[z]-linear combination of the minors, and such that h is a
K-linear combination of monomials of type

zi1j1zi2j2 · . . . · zidjd , where i1 ≤ i2 ≤ . . . ≤ id and j1 ≤ j2 ≤ . . . ≤ jd.

Then φ(g) = 0. Since φ restricts to a bijection between the set of ordered
monomials of degree d as above and the set of bihomogeneos monomials in
K[x, y] of bidegree (d, d), we conclude that φ(f) = 0 iff φ(h) = 0 iff h = 0.
Hence, as claimed, the minors form a Gröbner basis for kerφ. In particular,
I = kerφ. Moreover, I is a prime ideal since K[z]/ kerφ is isomorpic to a
subring of the integral domain K[x, y]. ⊓*

Being defined by by the 2 × 2 minors of the matrix (zij), the Segre variety
Σm,n is sometimes called an example of a determinantal variety.
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Exercise 6.3.2. In the situation of the proof above, describe the syzygies on
the 2 × 2 minors arising from Buchberger’s test. ⊓*

Definition 6.3.3. The map σm,n is called the Segre embedding of Pn×Pm

into PN . Its image Σm,n is called the Segre variety. We give Pn × Pm the
structure of a projective variety by identifying it with Σm,n. ⊓*

Example 6.3.4. The Segre variety Σ1,1 is the image of the map

σ1,1 : P1 × P1 → P3, ([a0 : a1], [b0 : b1]) '→ [a0b0 : a0b1 : a1b0 : a1b1].

It is a quadric defined by the equation z00z11−z01z10 = 0. Note that the fibers
of either projection of P1 ×P1 onto P1 form a pencil of lines on Σ1,1 such two
different lines in the same pencil do not meet, and such that two lines from
different pencils intersect in one point.

⊓*

Now that we have given Pn × Pm the structure of a projective algebraic set,
we wish to describe its algebraic subsets. In terms of the Segre embedding, a
subset A ⊂ Pn × Pm ∼= Σn,m ⊂ PN is closed iff it is the vanishing locus of
finitely many polynomials fk ∈ K[z], where each fk is homogenous of some
degree dk. For a characterization just in terms of Pn×Pm, substitute the xiyj

for the zij in the fk as in the proof of Proposition 6.3.1. The resulting polyno-
mials are bihomogeneous in x and y, of bidegrees (dk, dk), and their common
vanishing locus in Pn × Pm is A. In fact, every bihomogeneous polynomial
f ∈ K[x, y] has a well-defined vanishing locus V(f) in Pn × Pm, and we have:

Proposition 6.3.5. A subset of Pn × Pm is algebraic iff it is the common
vanishing locus of finitely many bihomogeneous polynomials in x and y.

Proof. The implication from left to right is clear from the discusion above. For
the converse implication, let f ∈ K[x, y] be any bihomogeneous polynomial
of any bidegree (d, e). We show that V(f) is an algebraic subset of Pn × Pm.
This is obvious if d = e since, then, we may rewrite f as a homogeneous
polynomial in the xiyj and, thus, in the zij . If d ̸= e, say e < d, we get(
n+d−e

n

)
bihomogeneous polynomials of bidegree (d, d) by multiplying f with

each of the monomials in y of degree d− e. Since the common vanishing locus
of these polynomials equals V(f), we are done. ⊓*

If f ∈ K[x, y] is a nonconstant polynomial of bidegree (d, e), then its vanishing
locus V(f) in Pn × Pm is called a hypersurface of bidegree (d, e).
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Example 6.3.6. The equation z00z11 − z01z10 = 0 of the quadric Σ1,1 ⊂ P3

is one of the equations of the twisted cubic curve C in P3 which is, thus,
contained in Σ1,1. Taking the other two defining quadrics of C as in Example
6.2.3 and substituting, we get the bihomogeneous polynomials x0(x0y2

1−x1y2
0)

and x1(x1y2
0 − x0y2

1). Hence, C ⊂ P1 × P1 is defined by the single equation
x0y2

1 − x1y2
0 = 0. It is a hypersurface of bidegree (1,2). ⊓*

Given algebraic subsets A ⊂ Pn and B ⊂ Pm, it is, now, clear that the
product A×B ⊂ Pn × Pm is an algebraic subset as well: If A = V(f1, . . . , fr)
and B = V(g1, . . . , gs), with homogeneous fk and gℓ, then the fk and gℓ
considered as bihomogeneous polynomials in x and y of bidegrees (deg fk, 0)
and (0, deg gℓ) define A ×B. We call

I(A ×B) = ⟨f ∈ K[x, y] bihomogeneous | f(p) = 0 for all p ∈ A ×B⟩

the bihomogenous ideal and K[x, y]/I(A×B) the bihomogeneous coor-
dinate ring of A×B.

Exercise∗ 6.3.7. In the situation above, show:

1. I(A ×B) =
(
(I(A) K[x, y] + I(B) K[x, y]) : ⟨x⟩∞

)
: ⟨y⟩∞ ⊂ K[x, y].

2. The Zariski topology on A×B is not the product of the Zariski topologies
on A and B, except when one of A and B is a finite set of points. ⊓*

Identifying Am with the affine chart U0 of Pm, the product Pn × Am in-
herits a Zariski topology from Pn × Pm. With respect to this topology, a
subset A ⊂ Pn × Am is closed iff there are finitely many polynomials in
K[x0, . . . , xn, y1, . . . , ym] which are homogeneous in x0, . . . , xn, and such that
their common vanishing locus is A. Here, any polynomial of type

f =
∑

|α|=d

xαhα(y1, . . . , ym) ∈ K[x0, . . . , xn, y1, . . . , ym],

with polynomials hα(y1, . . . , ym) ∈ K[y1, . . . , ym], is called homogeneous in
x0, . . . , xn (of degree d). Note that every such polynomial f has a well-
defined vanishing locus V(f) in Pn × Am.

Our next objective is to define morphisms between projective algebraic
sets. Among the maps introduced so far in the projective setting are the
coordinate maps ϕi : Ui → An, the canonical projection An+1\{o}→ Pn, and
the projection maps Pn\{p} → Pn−1. To include these and other natural maps
in our treatment of morphisms, we work with a class of sets which embraces
the affine and projective algebraic sets, and all open subsets of these.

Definition 6.3.8. An open subset of an affine algebraic set is called a quasi-
affine algebraic set. Similarly, we have the notion of a quasi-projective
algebraic set. ⊓*
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Remark 6.3.9. The product of two quasi-affine (quasi-projective) algebraic
sets is quasi-affine (quasi-projective) as well:

(A1 \ A2) × (B1 \ B2) = (A1 ×B1) \ ((A1 ×B2) ∪ (A2 ×B1)) . ⊓*

As in Section 1.11, our discussion of morphisms begins with the study of ad-
missible functions. For quasi-affine algebraic sets, these have been introduced
in Definition 4.2.25. Adapting this definition, we get well-defined functions in
the quasi-projective case:

Remark-Definition 6.3.10. Let A ⊂ Pn be a quasi-projective algebraic set.
A function f : A → K is called regular at a point p ∈ A if there are
homogeneous polynomials g, h ∈ K[x0, . . . , xn] of the same degree such that
h(p) ̸= 0 and f agrees with the function g/h on some open neighborhood of p
in A. We say that f is regular on A if it is regular at every point of A. The
set O(A) of all regular functions on A becomes a ring, with pointwise defined
algebraic operations. ⊓*

The definition is natural in that locally, in the coordinate charts of Pn, we get
the notion already familiar to us:

Exercise 6.3.11. Let f : A → K be a function on a quasi-projective algebraic
set A ⊂ Pn. Show that the following are equivalent:

1. f is regular.
2. If π : An+1\{o}→ Pn is the canonical projection, then f ◦π : π−1(A) → K

is regular in the sense of Definition 4.2.25.
3. For each coordinate chart Ui, the composition f ◦ ϕ−1

i : ϕi(A ∩ Ui) → K
is regular in the sense of Definition 4.2.25. ⊓*

We use the regular functions to define morphisms:

Definition 6.3.12. Let A be a quasi-affine or quasi-projective algebraic set.

1. Let B ⊂ Am be a quasi-affine algebraic set. A map ϕ : A → B is called
a morphism if it is given by a tuple of regular functions: There exist
functions f1, . . . , fm ∈ O(A) such that

ϕ(q) = (f1(q), . . . , fm(q)) for all q ∈ A.

2. Let B ⊂ Pm be a quasi-projective algebraic set. A map ϕ : A → B is
called a morphism if it is locally given by a tuple of regular functions:
For any p ∈ A, there exist an open neighborhood U of p in A and functions
f0, . . . , fm ∈ O(U) such that

ϕ(q) = [f0(q) : · · · : fm(q)] for all q ∈ U. ⊓*

As we will see in Example 6.3.19 below, the neighborhood U and the fj in part
2 of Definition 6.3.12 may well depend on the point p. That is, the functions
giving ϕ may not exist globally.
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Exercise∗ 6.3.13. Let A and B be quasi-affine or quasi-projective algebraic
sets, and let ϕ : A → B be a map. Show that ϕ is a morphism iff the following
two conditions hold:

1. ϕ is continous.
2. For any open subset U ⊂ B and any regular function f on U , the compo-

sition f ◦ ϕ is a regular function on the open subset ϕ−1(U) ⊂ A. ⊓*

Clearly, the composition of two morphisms is a morphism. As usual, we have
the notions of isomorphism and isomorphic. A morphism ϕ : A → B is said
to be a closed embedding if ϕ(A) ⊂ B is closed, and ϕ is an isomorphism
of A onto ϕ(A).

Example 6.3.14. 1. The canonical projection π : An+1 \ {o} → Pn is a
morphism.
2. The coordinate maps ϕi : Ui → An are isomorphisms.
3. The Segre embedding σm,n is a closed embedding.
4. Projecting onto the y-component, we get an isomorphism of the hyperbola

V(xy − 1) ⊂ A2 with the punctured line A1 \ {0}.

Whereas the hyperbola is an affine algebraic set in the sense considered so
far, the punctured line is not.
5. More generally, if f ∈ K[y1, . . . , ym] is any polynomial, then V(xf − 1) ⊂

Am+1 and D(f) ⊂ Am are isomorphic. ⊓*

To make the notion of affine and quasi-affine algebraic sets invariant under
isomorphisms, we alter our definitions. For this, note that if A ⊂ An is a
quasi-affine algebraic set, then ϕ−1

0 (A) ⊂ U0 ⊂ Pn is quasi-projective, and
ϕ0 restricts to an isomorphism ϕ−1

0 (A) → A. We may, thus, regard A as a
quasi-projective algebraic set.

Definition 6.3.15. An affine algebraic set is a quasi-projective algebraic
set which is isomorphic to an algebraic subset of some affine space. A quasi-
affine algebraic set is defined similarly. ⊓*

A quasi-projective algebraic set A ⊂ Pn which is isomorphic to an algebraic
subset of some Pm is necessarily a closed subset of Pn and, thus, a projective
algebraic set in the sense of Definition 5.1.3 (see Theorem 6.3.26 below).
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Exercise 6.3.16. Show that A = A2 \ {(0, 0)} is a quasi-projective algebraic
set which is neither projective nor affine.
Hint. To exclude that A is affine, compute the ring O(A). ⊓*

The definition of a morphism says what conditions we require, but not how
to create meaningful examples. Here is one possibility for the latter:

Remark 6.3.17. Let A ⊂ Pn be a quasi-projective algebraic set. Suppose
that f0, . . . , fm ∈ K[x0, . . . , xn] are forms of the same degree, and such that
A ∩ V(f0, . . . , fm) = ∅. Then we have a well-defined map

A → Pm, p '→ [f0(p) : · · · : fm(p)],

where [f0(p) : · · · : fm(p)] is obtained by substituting the homogeneous coor-
dinates of p for the xi in the fj. This map is a morphism: the open subsets
A \V(fj) cover A, and on A \V(fj), the map is given by the tuple of regular
functions f0/fj, . . . , fm/fj. ⊓*

Projection from a point gives an example. More generally, we have:

Example 6.3.18. Let y0, . . . , ym ∈ K[x0, . . . , xn] be linearly independent lin-
ear forms, and let L = V(y0, . . . , ym) ∼= Pn−m−1 be the corresponding linear
subspace of Pn. Then the yj define a morphism

Pn \ L → Pm

which is called projection from L to Pm. ⊓*

Example 6.3.19. Let n, d ≥ 1, let N =
(
d+n

n

)
− 1, and let m0, . . . , mN be

the monomials of degree d in x0, . . . , xn (listed in some order). Then the mj

define a morphism
ρn,d : Pn → PN

which is called the d-uple embedding (or Veronese embedding) of Pn

into PN . ⊓*

If n = 1 and d is arbitrary, we get the map

ρ1,d : P1 → Pd, [s : t] '→ [sd : sd−1t : · · · : td],

whose image is the rational normal curve in Pd (see Exercise 6.2.5). Another
special case is treated in the following example:

Example 6.3.20. If n = d = 2, we get the map

ρ2,2 : P2 → P5, [a : b : c] '→ [a2 : ab : b2 : ac : bc : c2].

Let V be the image of ρ2,2, and let w0, . . . , w5 be the homogeneous coordinates
on P5. Consider the symmetric matrix
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∆ =

⎛

⎝
w0 w1 w3

w1 w2 w4

w3 w4 w5

⎞

⎠ .

Clearly, the 2 × 2 minors of ∆ vanish on V . That is, if I ⊂ K[w0, . . . , w5] is
the ideal generated by the minors, then V ⊂ V(I). We show that V = V(I),
and that ρ2,2 maps P2 isomorphically onto V . For this, we define a morphism
ϕ : V(I) → P2 which, as the reader may easily check, is inverse to ρ2,2. We
consider a covering of V(I) by coordinate charts: V(I) ⊂ U0 ∪ U2 ∪ U5. On
V(I) ∩ U0, let ϕ be the map p '→ [w0(p) : w1(p) : w3(p)]. On V(I) ∩ U2 and
V(I) ∩ U5, define ϕ similarly by considering the second and third column of
the matrix ∆. Since ∆ has rank 1 one V(I), the respective local maps agree
on the respective overlaps Ui ∩Uj ∩V(I), so that ϕ is well-defined. Note that
ϕ is not a morphism of the type described in Example 6.3.17.

It turns out that I is in fact the vanishing ideal of V . To see this, we
proceed as in the case of the Segre embedding, using a counting argument to
show that I is prime ideal. This time, according to how we defined ρ2,2, we
consider the ring homomorphism

φ : K[w0, . . . , w5] → K[x, y, z], w0 '→ x2, w1 '→ xy, . . . , w5 '→ z2,

whose kernel contains I. To show that I = kerφ, choose the degree reverse
lexicographic order on K[w0, . . . , w5], where the variables are ordered such
that w1, w3, w4 > w0, w2, w5. Then the leading monomials of the minors are

w2
1 , w1w3, w

2
3 , w1w4, w3w4, w

2
4 .

It follows that for each d ≥ 2, there are precisely 3
(d+1

2

)
+
(d+2

2

)
=
(2d+2

2

)

standard monomials of degree d. Hence, since the map

K[w0, . . . , w5]d/Id → K[x, y, z]2d

induced by φ is surjective, it must be an isomorphism. Thus, as in the case of
the Segre embedding, a polynomial f ∈ K[w0, . . . , w5] is contained in kerφ iff
the remainder on division by the minors is zero. We conclude that the minors
form a Gröbner basis for kerφ, and the result follows. ⊓*

The variety V ⊂ P5 in the example is known as the Veronese surface.

Exercise 6.3.21. Show that ρn,d is a closed embedding for every n and d.
Moreover, show that the vanishing ideal of the image is generated by quadrics
which are binomials. How many quadrics do you get? ⊓*

In contrast to the affine case, the homogeneous coordinate ring of a projective
algebraic set is not invariant under isomorphism:

Exercise 6.3.22. Let A = P1, and let B ⊂ P2 be the image of A under the
2-uple embedding. Then show that S(A) ≁= S(B). ⊓*
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Proposition 6.3.23. Every quasi-projective algebraic set A ⊂ Pn has a finite
open covering of affine algebraic sets.

Proof. If A = A1 \ A2, where A1 and A2 ⊂ A1 are closed subsets of Pn, let
f1, . . . , fr ∈ K[x0, . . . , xn] be forms such that A2 = V(f1, . . . , fr) (if A2 = ∅,
take the linear forms x0, . . . , xn). Then A =

⋃r
i=1

(
A1 \ V(fi)

)
. Hence, since

A1 \ V(fi) is closed in Pn \ V(fi), it is enough to show that Pn \ V(f) is an
affine algebraic set for each form f . For this, we identify Pn with its image
under the d-uple embedding of Pn into PN . Then V(f) is the intersection of
Pn with a hyperplane H of PN . The result follows since Pn \V(f) is closed in
PN \ H ∼= AN . ⊓*

Remark 6.3.24. Let A ⊂ Pn be a quasi-projective algebraic set, and let

φ = (fij)

be a matrix of forms fij ∈ K[x0. . . . , xn], 1 ≤ i ≤ ℓ, 0 ≤ j ≤ m. For all i,
suppose that deg fij depends only on i. In addition, suppose:

1. A ∩ V(fij | 1 ≤ i ≤ ℓ, 0 ≤ j ≤ m) = ∅;
2. All 2 × 2 minors of φ vanish on A.

Given a point p ∈ A, choose an index i such that p /∈ V(fi0, . . . , fim), and set
ϕ(p) = [fi0(p) : . . . : fim(p)]. Then

ϕ : A → Pm, p '→ ϕ(p),

is a well-defined morphism. ⊓*

Exercise 6.3.25. If A ⊂ Pn is a quasi-projective algebraic set, show that
every morphism A → Pm is given by a matrix as in Remark 6.3.24 above. ⊓*

Morphisms between affine algebraic sets are easier to describe, but morphisms
between projective algebraic sets are better behaved. For instance, as we al-
ready know, the image of an affine algebraic set under a morphism needs not
be closed. In fact, the image may not even be a quasi-projective algebraic
set: As an example, consider the map ϕ : A2 → A2 corresponding to the
substitution homomorphism

K[x, y] → K[u, v], x '→ u, y '→ uv,

whose image is
(A2 \ V(x)) ∪ {(0, 0)}.

For the image of a projective algebraic set, however, we have:

Theorem 6.3.26. Let A be a projective algebraic set, and let ϕ : A → B be
a morphism of quasi-projective algebraic sets. Then ϕ(A) ⊂ B is closed.

Proof. The theorem follows from Lemma 6.3.27 and Theorem 6.3.28 below. ⊓*
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Lemma 6.3.27. If ϕ : A → B is a morphism of quasi-projective algebraic
sets, then the graph of ϕ is a closed subset of A×B.

Proof. Closedness is a local property. Hence, by Corollary 6.3.23, we may
replace B by an open affine subset U of B, and A by an open affine subset
of ϕ−1(U) ⊂ A. That is, we may suppose that A respectively B are algebraic
subsets of some An respectively Am. Then ϕ is a polynomial map (f1, . . . , fm),
and its graph is defined by the ideal ⟨f1 − y1, . . . , fm − ym⟩ ⊂ K[A×B]. ⊓*

Theorem 6.3.28 (Fundamental Theorem of Elimination Theory).
Let A be a projective algebraic set, and let B be any quasi-projective algebraic
set. Then the projection A ×B → B is a closed map.

Proof. As in the previous proof, we may suppose that B is an algebraic subset
of some Am. Hence, if Pn is the ambient space of A, then A×B ⊂ Pn ×Am is
a closed subset, and it suffices to consider the case where A ×B = Pn × Am.

So let X ⊂ Pn × Am be any closed subset. Then X is the common van-
ishing locus of polynomials f1, . . . , fr ∈ K[x0, . . . , xn, y1, . . . , ym], where each
fi is homogeneous in x0, . . . , xn of some degree di. By the projective Nullstel-
lensatz, a point q ∈ Am is in the image Y of X iff the ideal

I(q) := ⟨f1(x, q), . . . , fr(x, q)⟩ ⊂ K[x]

does not contain any of the ideals ⟨x⟩d, d ≥ 1. Writing

Yd = {q ∈ Am | I(q) # ⟨x⟩d},

we have Y =
⋂

d Yd, and it suffices to show that Yd is closed for any given d.
To obtain equations for Yd, multiply each fi with any monomial in x

of degree d − di, and write Td for the resulting set of polynomials. Then
q ∈ Yd iff each monomial in K[x]d is a K-linear combination of the polynomials
f(x, q), f ∈ Td. That is, the f(x, q), f ∈ Td, span K[x]d. Arranging the
coefficients of the monomials m ∈ K[x]d appearing in the polynomials f ∈ Td

as a
(d+n

n

)
×
∑

i

(d−di+n
n

)
matrix φd with entries in K[y], the condition is that

rankφd(q) <
(
d+n

n

)
. That is, the

(
d+n

n

)
×
(
d+n

n

)
minors of φd define Yd. ⊓*

Remark 6.3.29. Theorem 6.3.26 is reminiscent of the fact that the image of
a compact topological space under a continous map to an Hausdorff space is
compact. Note that such a map is proper (that is, it is closed, and each fiber
is compact). In complex analysis, Remmert’s proper mapping theorem states
that the image of a proper holomorphic map f : X → Y of complex analytic
spaces is an analytic subset of Y (see ?).

In algebraic geometry, the usual notion of properness is not suitable since
the Zariski topology is not Hausdorff. There is, however, a corresponding no-
tion of properness: A morphism A → B of quasi-projective algebraic sets is
called proper if it can be factored as the composite of a closed embedding
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A → Pn × B with the projection Pn × B → B (if A is projective, this condi-
tion is automatically fulfilled). It is clear from the proof of the fundamental
theorem of elimination theory that Theorem 6.3.26 can be generalized to the
following statement: If ϕ : A → B is a proper morphism of quasi-projective
algebraic sets, then ϕ(A) ⊂ B is closed. Moreover, it is easy to show that over
the complex numbers, a morphism is proper in the sense of algebraic geometry
iff it is proper in the usual sense with respect to the Euclidean topology. ⊓*

Corollary 6.3.30. Let A be a projective variety. Then every regular func-
tion on A is constant. More generally, every morphism from A to an affine
algebraic set is constant.

Proof. Let f ∈ O(A). Then f defines a morphism A → A1 ⊂ P1. The image is
a closed, proper subset of P1 and consists, thus, of finitely many points. Being
irreducible, it consists of a single point. This proves the first statement of the
corollary. Composing with coordinate functions, we get the second one. ⊓*

Remark 6.3.31. For K = C, the corollary can also be deduced from the
maximum modulus principle. Indeed, a regular function f on A is holomor-
phic. Since A is compact in the Euclidian topology, the modulus |f | achieves
its maximum on A. Hence, f is constant on every connected component of
A (with respect to the Euclidean topology). The corollary follows since A is
path connected by Theorem 6.7.13 in Section 6.6 below. ⊓*

Corollary 6.3.32. Let π : Pn \ {p} → Pn−1 be projection from the point
p = [1 : 0 : · · · : 0]. Let A ⊂ Pn be a projective algebraic subset such that
p ̸∈ A. Then A′ := π(A) ⊂ Pn−1 is an algebraic subset of Pn−1. Moreover,
the inclusion of homogeneous coordinate rings

K[A′] = K[x1, . . . , xn]/I(A′) −→ K[A] = K[x0, . . . , xn]/I(A)

is an integral ring extension, and dimA = dimA′.

Proof. The first statement is clear. For the second statement, we note that
K[A] = K[A′][x0] is finite over K[A′]. Indeed, since p ̸∈ A, the vanishing ideal
I(A) contains a form f of some degree d ≥ 1 which is monic in x0:

f = xd
0 + c1(x1, . . . , xn)xd−1

0 + . . . + cd(x1, . . . , xn).

This shows that K[A′] ⊂ K[A] is integral. For the last statement, write Vi

and Ui for the coordinate charts on Pn−1 and Pn, respectively. Then, for
i = 1, . . . , n, the inclusions of affine coordinate rings K[A′ ∩ Vi] −→ K[A∩Ui]
are also finite: A polynomial in I(A ∩Ui) which is monic in x0 is obtained by
dehomogenizing f with respect to xi. We conclude that dim A = dimA′. ⊓*

Corollary 6.3.33 (Projective Noether Normalization). Let A ⊂ Pn be
a projective algebraic set.
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1. The dimension dimA is the least number r such that there is a linear
subspace L ⊂ Pn of dimension n− r − 1 with A ∩ L = ∅.

2. Let r = dimA, and let L be any linear subspace as above. Then projection
from L defines a morphism

π : A → Pr

which is surjective and has finite fibers. Moreover, the map of homogeneous
coordinate rings

K[y0, . . . , yr] −→ K[A]

is a Noether normalization. In particular,

dimA = dim K[A]− 1.

Proof. If r = n, then A = Pn, and we are done. If r < n, there is a point p ∈
Pn \A. After a change of coordinates, we may suppose that p = [1 : 0 : · · · : 0].
So the result follows from the preceeding Corollary by induction on n− r. ⊓*

Remark 6.3.34. A morphism ϕ : A → B of projective algebraic sets is called
a finite morphism if for every point q ∈ B there is an open affine neighbor-
hood V of q in B such that U := ϕ−1(V ) is affine, and the induced morphism
U → V is finite in the sense of Chapter 3. We conclude from the proofs of
the last two corollaries that the morphism π : A → Pr above is finite. In the
projective case, a morphism is finite iff it has finite fibers (see Harris (1992),
Lemma 14.8). The example of the inclusion A1 \ {o} → A1 shows that this is
wrong in the affine case. ⊓*

Exercise 6.3.35. Show: The points corresponding to reducible polynomials
f = gh form an algebraic subset of P(K[x0, . . . , xn]d). ⊓*

We finish this section by briefly treating Grassmanians. These are natural gen-
eralizations of projective spaces and provide important examples of projective
varieties.

Definition 6.3.36. Given an n-dimensional vector space W over the field K,
the Grassmannian G(k, W ) is the set

G(k, W ) =
{
k-dimensional linear subspaces of W

}
.

If W = Kn, we write G(k, n) for G(k, W ). ⊓*

Remark 6.3.37. Note that G(k, W ) can also be thought of as the set of
(k − 1)-dimensional linear subspaces of the projective space P(W ). ⊓*

To show that G(k, W ) carries the structure of a projective variety, let V ⊂ W
be a k-dimensional linear subspace, and let v1, . . . , vk be a basis for V . Then
v1 ∧ · · · ∧ vk is a nonzero vector of the exterior product

∧k W . This vector is
determined by V up to scalar (choosing a different basis means to multiply
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the vector by the determinant of the change of basis matrix). We, thus, obtain
a well-defined map

G(k, W ) → P(
k∧

W ) (6.2)

whose image is the set of points corresponding to the totally decomposable
vectors of

∧k W . This map is injective: if v1 ∧ · · · ∧ vk ∈
∧k W represents a

point p in the image, the kernel of the linear map

W →
k+1∧

W, w '→ w ∧ v1 ∧ . . . ∧ vk,

is the unique linear subspace of W sent to p.

Definition 6.3.38. The map (6.2) is called the Plücker embedding of
G(k, W ) into P(

∧k W ). The homogeneous coordinates on P(
∧k W ) are called

the Plücker coordinates on P(
∧k W ). ⊓*

Note that if p ∈ P(
∧k W ) corresponds to the linear subspace V = ⟨v1, . . . , vk⟩

of W under the Plücker embedding, then the Plücker coordinates of p are the
k × k minors of the n× k matrix with columns vj .

Exercise∗ 6.3.39. With notation as above, show:

1. The Plücker embedding is a closed embedding.
2. Each coordinate chart of P(

∧k W ) intersects G(k, W ) in an affine space
of dimension k(n − k). ⊓*

We give G(k, W ) the structure of a projective variety by identifying it
with its image under the Plücker embedding.

6.4 Hilbert Functions and Hilbert Polynomials

Numerical invariants of a projective algebraic set such as the dimension are
useful in that they allow us to partition a given classification problem into
handy pieces. In this section, we will rediscover the dimension as the degree
of the Hilbert polynomial, and we will use this polynomial to obtain other
important invariants. Theorem 6.4.5, which shows the existence of the poly-
nomial, is the fourth major result of Hilbert treated in this book. Hilbert’s
goal when proving the result was to encode the infinitely many values of what
is nowadays called the Hilbert function in finite terms. The general context
for the Hilbert function is that of graded modules.

Definition 6.4.1. Let S =
⊕

d≥0 Sd be a graded ring. A graded module
over S is an S-module with a decomposition M =

⊕
d∈Z Md as Abelian groups

such that SdMe ⊂ Md+e for all d, e. An element of Md is, then, called a
homogeneous element of M of degree d. A graded submodule of M is
a submodule generated by homogeneous elements. If N =

⊕
Nd is another

graded S-module, a graded homomorphism from M to N is an S-module
homomorphism φ : M → N such that φ(Md) ⊂ Nd for any d. ⊓*
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If we consider S as a graded module over itself, its graded submodules are
precisely its homogeneous ideals. The characterization of homogeneous ideals
in Proposition 6.1.2 extends from the ideal to the submodule case:

Aushuehren
Furthermore and if N =

⊕
Nd is a graded submodule of M =

⊕
Md,

then the quotient M/N =
⊕

Md/Nd is graded as well. The direct sum of a
collection of graded S-modules is naturally graded, and so are the kernel and
the image of a graded homomorphism.

Example 6.4.2. Let S be a graded ring. Given a graded S-module M =⊕
Md and ℓ ∈ Z, the ℓth twist of M , written M(ℓ), is the graded S-module

M(ℓ) =
⊕

d∈Z
Md+ℓ.

That is, M(ℓ) is isomorphic to M as an S-module, but its grading is shifted
in degrees by ℓ. In particular, for each ℓ, we have the graded S-module S(ℓ) in
which the free generator 1 of S has degree −ℓ. Since each homomorphism of S
is multiplication by an element of S, each graded homomorphism S(k) → S(ℓ)
is multiplication by a homogeneous element of S of degree k − l.

By specifying a basis together with a degree for each basis vector, a free
S-module F becomes a graded free S-module (with a basis of homogeneous
elements). That is, as a graded S-module, F is isomorphic to a direct sum of
graded modules of type S(ℓ), for various ℓ. ⊓*
Each graded piece of a graded S-module M is an S0-module and, thus, a
k-vector space if S is a graded k-algebra. These vector spaces are of finite
dimension if, in addition, S is Noetherian, and M is finitely generated. Indeed,
in this case, M is Noetherian by Exercise 1.10.9. On the other hand, if Me

would not be of finite dimension for some e, the truncation M≥e =
⊕

d≥e Md

would be a submodule of M which is not finitely generated.

Definition 6.4.3. Let S be a Noetherian graded k-algebra, and let M =⊕
d∈Z Md be a finitely generated graded S-module. The function

H(M, ) : Z −→ Z, d '−→ H(M, d) := dimk Md,

is called the Hilbert function of M . ⊓*

Example 6.4.4. Let S be the polynomial ring k[x0, . . . , xn]. Then

H(S, d) =
(

d + n

n

)

for all d ≥ 0. In fact, the formula holds for all d ∈ Z if we set Sd = 0 for d < 0.
Thus, H(S, d) agrees for d ≥ −n with the polynomial expression

(d + n)(d + n− 1) · · · (d + 1)
n!

.

We refer to this fact by saying that H(S, ) is of polynomial nature. ⊓*
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More generally, we have:

Theorem 6.4.5 (Polynomial Nature of Hilbert Functions). Let S be
the polynomial ring k[x0, . . . , xn], and let M be a finitely generated graded
S-module. Then there is a unique polynomial PM (t) ∈ Q [t] such that

H(M, d) = PM (d) for all d ≫ 0.

Furthermore, deg PM ≤ n. ⊓*

Definition 6.4.6. In the situation of the theorem, PM is called the Hilbert
polynomial of M . ⊓*

Following Hilbert, we will use graded free resolutions to reduce Theorem 6.4.5
to the special case considered in Example 6.4.4. Here is the relevant notation:

Definition 6.4.7. Let S =
⊕

d≥0 Sd be a graded ring. A graded complex of
S-modules is a complex of S-modules where all modules and homomorphisms
are graded. Similarly, we define the notions graded free resolution and
graded homomorphism of graded complexes. ⊓*

In the context of graded free resolutions, we often write homomorphisms “from
right to left” since this is consistent with how information on the resolutions
is printed by computer algebra systems. Note that a graded homomorphism
F =

⊕s
i=1 S(ℓi) ←− G =

⊕t
j=1 S(kj) is given by an s × t-matrix whose ij

entry is a homogeneous element of S of degree kj − ℓi, for each pair i, j.

Example 6.4.8. If S = k[w, x, y, z], the matrix

φ =
(

x + y + z w2 − x2 z3

1 x xy + z2

)

defines a graded homomorphism

S ⊕ S(−1) φ←− S(−1)⊕ S(−2)⊕ S(−3). ⊓*

In the graded case, the recipe from Section 2.8 for constructing free resolutions
yields a graded free resolution if we choose homogeneous generators at each
stage. In the special case where S is the polynomial ring k[x0, . . . , xn], we get
a graded version of the syzygy theorem: Each finitely generated graded
S-module M has a graded free resolution of length ≤ n + 1, with finitely
generated graded free S-modules. Indeed, this follows from our constructive
proof of the syzygy theorem in Chapter 2 and Remark 6.1.10 on the behaviour
of Buchberger’s algorithm in the graded case.

Example 6.4.9. Consider the ideal I = ⟨f1, f2, f3⟩ ⊂ S = k[w, x, y, z], where
f1 = x2 − wy, f2 = xy − wz, and f3 = y2 − xz. Then I defines the twisted
cubic curve in P3, and
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0 S/I"" S"" S(−2)3
(f1,f2,f3)
"" S(−3)2

„ x w
−y −x
z y

«

"" 0""

is a graded free resolution of S/I. Note that f1, f2, f3 are precisely the 2 × 2
minors of the 3 × 2 matrix in the resolution (with appropriate signs). This
is no accident. It is, in fact, a consequence of the theorem of Hilbert-Burch,
proved by Hilbert in his 1890 paper to give examples of free resolutions (see
Eisenbud (1995), Theorem 20.15). ⊓*

Given a graded free resolution

0 M"" F0
"" F1

φ1"" · · ·"" Fi−1"" Fi
φi"" Fi+1

φi+1"" · · · ,""

where all free modules are finitely generated, we usually collect all copies of
S involving the same twist when writing Fi:

Fi =
⊕

j

S(−j)βij . (6.3)

The βij are known as the graded Betti numbers of the resolution. A con-
venient way of visualizing these numbers is to write a Betti diagram as in
the following example:

0 1 2 3
------------------------------

0: 1 - - -
1: - 2 1 -
2: - 2 3 1

------------------------------
total: 1 4 4 1

A number i in the top row of the diagram refers to the ith free module Fi of
the resolution. More precisely, the column with first entry i lists the number
of free generators of Fi in different degrees and, in the bottom row, the total
number of free generators (that is, the rank of Fi). If k: is the first entry
of a row containing a number β in the column corresponding to Fi, then Fi

has β generators in degree k + i. That is, in (6.3), β is the number βij with
j = k+i. The diagram above indicates, for instance, that F2 has one generator
in degree 3 and three generators in degree 4. In total, the diagram corresponds
to a graded free resolution of type

S(−2)2 ⊕ S(−3)2 S(−3)⊕ S(−4)3"" S(−5)"" 0 .""

Example 6.4.10. Resolving the homogeneous coordinate ring of the twisted
cubic curve as in Example 6.4.9, we get the Betti diagram below:
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0 1 2
------------------------

0: 1 - -
1: - 3 2

------------------------
total: 1 3 2

⊓*

In general, the βij cannot be called invariants of M since they depend on
the choices made when constructing the resolution. Over a Noetherian graded
k-algebra S, the concept of minimal free resolutions takes care of this prob-
lem. To show the uniqueness of such a resolution, we need a graded version
of Nakayama’s lemma. In comparison with the local version, we replace the
uniquely determined maximal ideal m by the ideal S+, which is the uniquely
determined homogeneous maximal ideal if S is a graded k-algebra.

Theorem 6.4.11 (Lemma of Nakayama, Graded Version). Let S be
any graded ring, let M be a finitely generated graded S-module, and let N ⊂ M
be a graded submodule. Then

N + S+M = M iff N = M.

Proof. Reducing to the case N = 0 as in the proof of the local version, it
suffices to show that S+M = M implies M = 0. Since M is finitely generated,
Md = 0 for d ≪ 0. Suppose that M ̸= 0, let d be the least d such that Md ̸= 0,
and let m ∈ Md be a nonzero element. If S+M = M , then m can be written as
a sum m =

∑
i simi, with elements si ∈ S+ and mi ∈ M , and where we may

assume that all si and mi are nonzero and homogeneous. Then all di = deg si

are strictly positive, so that d − di < d for each i. This contradicts the fact
that the Md−di are zero by the choice of d. ⊓*

If S is a graded k-algebra, and M is a graded S-module, then the quotient
M = M/S+M is a k-vector space, and each graded homomorphism φ : M →
N induces a k-vector space homomorphism φ : M → N . As in the local case,
Nakayama’s lemma gives:

Corollary 6.4.12. Let S be a graded k-algebra, and let M be a finitely gen-
erated graded S-module. Then m1, . . . , mr ∈ M generate M as an S-module
iff the residue classes mi = mi + S+M generate M = M/S+M as a k-vector
space. In particular, any minimal set of generators for M corresponds to a
k-basis for M , and any two such sets have the same number of elements. ⊓*

Let, now, S be a Noetherian graded k-algebra, and let M be a finitely gen-
erated graded S-module. A minimal free resolution of M is obtained by
choosing a minimal set of homogeneous generators at each stage of construct-
ing a graded free resolution of M . Given any graded free resolution

0 M"" F0
φ0"" F1

φ1"" . . ."" Fi−1
"" Fi

φi"" Fi+1
φi+1"" . . .""
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with finitely generated free modules, the images of the basis vectors of Fi

under φi form a minimal set of generators for imφi iff imφi+1 ⊂ S+Fi. That
is, if we regard φi+1 as a matrix, then φi+1 does not have a nonzero scalar
entry. In fact, the jth row of φi+1 has an entry in k \ {0} iff the image of the
jth basis vector of Fi under φi is an S-linear combination of the images of the
other basis vectors.

Example 6.4.13. The resolution of the homogeneous coordinate ring of the
twisted cubic curve in Example 6.4.9 is minimal. ⊓*
Minimal free resolutions are uniquely determined up to graded isomorphisms
of complexes. This is a consequence of the following more general result:

Proposition 6.4.14. Let S be a Noetherian graded k-algebra, let M be a
finitely generated graded S-module, and let

0 M"" F0
φ0"" F1

φ1"" F2
φ2"" . . .""

and

0 M"" G0
ψ0"" G1

ψ1"" G2
ψ2"" . . .""

be graded free resolutions with finitely generated graded S-modules. Suppose
that the first resolution is minimal. Then there is a graded homomorphism of
complexes

0 M

idM

))

"" F0

α0

))

φ0"" F1

α1

))

φ1"" F2

α2

))

φ2"" . . .""

0 M"" G0
ψ0"" G1

ψ1"" G2
ψ2"" . . .""

such that each αi is injective and identifies Fi with a direct summand of Gi:

Gi
∼= Fi ⊕G′

i, for some graded free S-module G′
i.

Proof. Following the recipe from Exercise 2.8.17, starting from homogeneous
free generators for F0, we find a graded homomorphism α0 such that the
diagram

M

idM

))

F0

α0

))

φ0""

M G0
ψ0""

commutes. If we regard α0 as a matrix with entries in S, all entries and,
in fact, all minors are homogenous. On the other hand, by Corollary 6.4.12,
the induced maps on vector spaces φ0 and, thus, also α0 are injective. Hence,
there is a rankF0×rankF0 minor of α0 which is nonzero modulo S+. Since the
minor is homogeneous, it must be a nonzero scalar, so that the corresponding
rankF0 × rankF0 matrix is invertible over S. This shows that α0 has the
desired properties. The result follows by induction. ⊓*
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Exercise 6.4.15. With S and M as in the proposition, design an algorithm
which computes a minimal free resolution starting from any given graded free
resolution (of finite length, with finitely generated free modules).
Hint. Use nonzero scalar entries of the given matrices as pivot elements as for
Gaussian elimination. ⊓*

The proposition shows that the graded Betti numbers βij of a minimal free
resolution depend on the finitely generated S-module M only. We, therefore,
call these numbers the graded Betti numbers of M , written βij(M) = βij .

Remark 6.4.16. Due to the local version of Nakayama’s lemma, the concept
of minimal free resolutions makes also sense over a local Noetherian ring R. If
a finitely generated R-module M is given, its ith Betti number is the rank
of the ith free module in the minimal free resolution of M . ⊓*

Proof of Theorem 6.4.5 (Hilbert). The uniqueness of PM is clear. For the
existence, consider any graded free resolution of M of length ≤ n + 1, with
finitely generated free modules Fi =

⊕
j S(−j)βij , where S = k[x0, . . . , xn]:

0 M"" F0
"" F1

"" F2
"" · · ·"" Fn+1

"" 0""

Then, for each d, the graded pieces of degree d fit into an induced exact
sequence of finite dimensional k-vector spaces. Computing the alternating
sum of the dimensions as in Exercise 2.8.4, we get

H(M, d) =
n+1∑

i=0

(−1)i
∑

j

βijH(S(−j), d)

=
n+1∑

i=0

(−1)i
∑

j

βij

(
n − j + d

n

)

(see Example 6.4.4). For each d ≥ j − n, the value H(S(−j), d) agrees with
the polynomial expression

(d − j + n)(d − j + n − 1) · · · (d − j + 1)
n!

.

Hence, if PM is the polynomial

PM (t) =
n+1∑

i=0

(−1)i
∑

j

βij

(
t− j + n

n

)
∈ Q[t],

then H(M, d) = PM (d) for each d ≥ max{j − n | βij ̸= 0 for some i}. ⊓*

In algebraic geometry, the module M in Hilbert’s theorem is the homogenous
ccordinate ring of a projective algebraic set.
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Definition 6.4.17. If A ⊂ Pn is an algebraic set, the Hilbert polynomial of
A, written PA(t), is defined to be the Hilbert polynomial of the homogeneous
coordinate ring K[A]. ⊓*

Theorem 6.4.18. If A ⊂ Pn is a projective algebraic set of dimension r, then
its Hilbert polynomial is of type

PA(t) = d
tr

r!
+ terms of degree < r,

where d is a strictly positive integer.

Proof. By Remark 3.3.2, there is a Noether normalization

K[y0, . . . , ym] ⊂ K[A] = K[x0, . . . , xn]/I(A)

such that the yj are linear forms in the xi. Then A ∩ V(y0, . . . , ym) = ∅
since, otherwise, the yj would not be algebraically independent over K. Hence,
by Exercise ??, projection from V(y0, . . . , ym) defines finite morphisms A ∩
π−1(Uj) → π(A) ∩ Uj , where the Uj are the coordinate charts of Pm. In
particular, r = dim A = m. Furthermore, by the second defining condition
of a Noether normalization, K[A] is a finitely generated graded K[y0, . . . , yr]-
module. Considering graded free resolutions over K[y0, . . . , yr], we see that
the Hilbert function of K[A] is of type

H(K[A], d) =
r+1∑

i=0

(−1)i
∑

j

αij

(
r − j + d

r

)
.

It follows that PA(t) ∈ Q[t] is a polynomial of degree ≤ r, and that r! PA(t) ∈
Z[t]. On the other hand, since k[y0, . . . , yr] is a graded subring of K[A], we
have

H(K[A], d) ≥
(

r + d

r

)
for all d.

We conclude that PA has exactly degree r, and that its leading coefficient is
strictly positive. ⊓*

Here are two corollaries of the proof:

Corollary 6.4.19. Let A ⊂ Pn be a projective algebraic set, and let C(A) ⊂
An+1 be the affine cone over A. Then

dim K[A] = dimC(A) = dimA + 1.

Proof. We have dim K[A] = dimC(A), and this number is obtained via a
Noether normalization as in the proof of the theorem. ⊓*

Corollary 6.4.20. Let A ⊂ Pn be a projective algebraic set. Then dimA is
the least number r such that there is a linear subspace L ⊂ Pn of dimension
n− r − 1 with A ∩ L = ∅.



6.4 Hilbert Functions and Hilbert Polynomials 283

Proof. The projection from a linear subspace Pn−r−1 ⊂ Pn with X∩Pn−r−1 =
∅ induces a morphism X → Pr, which is finite onto its image. If r is minimal,
then the map is onto Pr and corresponds to a Noether normalization of the
coordinate ring. ⊓*

Definition 6.4.21. In the situation of Theorem 6.4.18, we write deg A = d,
and call this number the degree of A. ⊓*

Though our definition is of purely algebraic nature, the degree has a geometric
meaning: We will show in Proposition 6.6.11 that deg A is the number of points
in which a general linear subspace of Pn of complementary dimension n−dimA
intersects A.

Example 6.4.22. Let A ⊂ Pn be a hypersurface, let f ∈ S = K[x0, . . . , xn]
be a square-free form defining A, and let d = deg f . Then

0 K[A]"" S"" S(−d)
f"" 0""

is a graded free resolution of K[A], so that

PA(t) =
(

n + t

n

)
−
(

n + t− d

n

)

= d
tn−1

(n − 1)!
+ terms of degree < n− 1.

Hence, deg A = d = deg f , and we conclude that our general definition of
degree is consistent with that for hypersurfaces given earlier. ⊓*

Definition 6.4.23. Let A ⊂ Pn be a projective algebraic set of dimension r,
with Hilbert polynomial PA. The arithmetic genus of A is defined to be

pa(A) = (−1)r(PA(0)− 1).

Let C ⊂ Pn be a curve. Then the Hilbert function can be written in the
form

pC(t) = dt + 1 − pa.

pa is called the arithmetic genus of C. ⊓*

Example 6.4.24. A plane curve C ⊂ P2 of degree d has Hilbert polynomial

pC(t) =
(

t + 2
2

)
−
(

t− d + 2
2

)
= dt + 1 −

(
d − 1

2

)
.

So C has arithmetic genus pa =
(
d−1
2

)
. ⊓*
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Remark 6.4.25. The funny way to write the constant term of the Hilbert
polynomial comes from the Riemann-Roch Theorem 8.3.2.

We already mentioned that the degree d has a geometric interpretation.
The arithmetic genus pa has an even more fundamental interpretation. For
a smooth irreducible curve over the complex numbers the arithmetic genus
pa determines the Euclidean topology of the underlying 2-dimensional man-
ifold. By Corollary 8.4.7 and 8.2.6, the Euler number of the underlying 2-
dimensional real manifold is 2 − 2pa. We will return to the arithmetic genus
in Chapter 7, where we prove Riemann’s inequality 7.4.12, and in Chapter 8.
⊓*

Exercise 6.4.26. Let A ⊂ P4 be the projective closure of the surface consid-
ered in Example 4.7.20. Compute equations for A as well as deg A. ⊓*

Computing the Hilbert polynomial of a homogeneous coordinate ring S/I via
syzygies may be costly since this means to compute Gröbner bases for I as
well as for every kernel needed to construct a graded free resolution. The ideas
of Macaulay only require the computation of a Gröbner basis for I:

Theorem 6.4.27 (Macaulay). Let S = k[x0, . . . , xn], let F be a graded free
S-module, and let M ⊂ F be a graded submodule. For any global monomial
order > on F , we have

H(F/M, ) = H(F/L>M, ).

Proof. By Macaulay’s Theorem 2.3.5, the standard monomials of degree d
represent k-vector space bases for both (F/M)d and (F/L>(M))d. ⊓*

Computing the intitial ideal of a homogeneous ideal J and then the Hilbert
polynomial of pS/L(J) is one of the fastest ways to obtain information about
V(J).

Exercise 6.4.28. Let A ⊂ Pn be a projective algebraic set, and let B be its
image under the d-uple embedding of Pn into PN , with N =

(n+e
d

)
. Show that

PA and PB have the same constant term:

PA(0) = PB(0). ⊓*

Exercise 6.4.29. Let C ⊂ P1 ×P1 be a hypersurface of bidegree (a, b). Show
that C has degree deg C = a + b and arithmetic genus pa(C) = (a− 1)(b− 1).

⊓*

Exercise 6.4.30. Describe an algorithm which computes the minimal resolu-
tion from an arbitrary finite free resolution. Give a simplified algorithm which
computes only the graded Betti numbers of the minimal resolution. ⊓*

Let X ⊂ Pn be a projective variety of dimension r, and let H = V(h) ⊂ Pn

be a hypersurface which does not contain X . By the Principal Ideal Theorem
??, every component Z of X ∩ H has dimension r − 1.
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Definition 6.4.31. The intersection multiplicity of X and H along Z is
the length of the Artinian ring OZ,Pn/(Ia

X + ⟨ha⟩)OZ,Pn , where Ia
X and ⟨ha⟩

denote the corresponding ideals in an affine chart Ui
∼= An intersecting Z:

i(X, H ; Z) = lengthOZ,Pn/(Ia
X + ⟨ha⟩)OZ,Pn .

Example 6.4.32. The two hypersurfaces of Exercise 4.1.16 intersect along their
common intersection curve with multiplicity two.

Theorem 6.4.33 (Bézout’s Theorem, second version). Let X ⊂ Pn be
a projective variety and let H ⊂ Pn be a hypersurface which does not contain
X. Let Z1, . . . , Zs be the irreducible components of X ∩ H. Then

deg X · deg H =
s∑

j=1

i(X, H ; Zj) deg Zj .

For the proof we need some preparations.

Definition 6.4.34. Let M be a module over a ring R and m ∈ M . Then

Ann(m) = {r ∈ R | rm = 0}

is called the annihilator of m.

Ann(M) = {r ∈ R | rm = 0 ∀m ∈ M}

is the annihilator of M . An associated prime p of M is a prime ideal which
occurs as annihilator of an element.

p = Ann(m)

for some m ∈ M \ 0.

AssM = {p prime | p = Ann(m) for some m ∈ M}

denotes the set of associated primes.

Thus with this notation the associated primes of an ideal I in the sense of
Chapter 1 are the associated primes of the quotient R/I as R-module, and
not the associated primes of the R-module I. This inconsistency in notation is
unfortunate, but has a long tradition. In practise it rarely leads to confusion.
The associated primes of R/I are of much more interest than the associated
primes of the module I.

Remark 6.4.35. Note, that in case of an module over an affine coordinate ring

V(Ann(M)) =
⋃

p∈Ass M

V(p)

is the support of M . The minimal primes in Ass(M) correspond to the
irreducible components of the support of M . Non-minimal primes are called
embedded primes, because their zero loci is strictly contained in a compo-
nent.
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Exercise 6.4.36. Let M be an R-module, and let q be a prime ideal of R.
Prove Mq = 0 iff q ⊃ p for an associated prime p ∈ Ass(M) ⊓*

The set of associated primes is never empty for a module M ̸= 0 over a
Noetherian ring.

Lemma 6.4.37. Every maximal element in the set {Ann(m) | m ∈ M \ 0} is
a prime ideal.

Proof. Let p = Ann(m) be maximal among the annihilators. Suppose x, y ∈ p
and x /∈ p. Then xm ̸= 0 and Ann(m) ⊂ Ann(xm) and y ∈ Ann(xm) =
Ann(m) = p by the maximality. So p is prime. ⊓*

Thus, by the Noetherian property there exist an associated prime.

Exercise 6.4.38. Every associated prime of a graded module is homogeneous.
⊓*

Exercise 6.4.39. Let

0 → M ′ → M → M ′′ → 0

be a short exact sequence. Prove:

Ass(M ′) ⊂ Ass(M) ⊂ Ass(M ′) ∪ Ass(M ′′)

⊓*

Proposition 6.4.40. Let M be a finitely generated graded S-module. M has
a filtration

0 = M0 ⊂ M1 ⊂ . . . ⊂ M r = M

by graded submodules such that the quotients M i/M i−1 ∼= (S/pi)(ai) for a
homogeneous prime ideal pi and a twist ai.

Proof. If m ∈ M is a homogeneous element of degree a with p = Ann(m) an
associated prime, then

(S/p)(−a) ↪→ M , r + p '→ rm

is an embedding.
Consider the set of graded submodules N ⊂ M , which have a filtration

as in the proposition. This set is nonempty, because M has an associated
prime. Let M ′ ⊂ M be maximal in this set. We have to show M ′ = M .
Suppose M ′ ! M . Consider an associated prime p of M/M ′ and the inclusion
(S/p)(a) ↪→ M/M ′. Let M+ be the preimage of (S/p)(a) in M . Then M ′ !
M+ has a one step longer filtration. This contradicts the maximality of M ′.
⊓*
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Exercise 6.4.41. Let p be a minimal prime of M . Then p occurs precisely
length M(p)-times in any filtration of M . ⊓*

Proof of Bézout’s Theorem 6.4.33. We compute the Hilbert polynomial of
M = S/(IX + IH) = RX/hRX in two ways. The short exact sequence

0 −→ RX(− deg h) h−→ RX −→ M −→ 0

gives us

pM (t) = deg X(tr/r! − (t− deg H)r/r!) + lower terms

= deg X · deg H tr−1/(r − 1)! + lower terms .

On the other hand, the filtration of M gives

pM (t) =
∑

j

pS/pj
(t + aj)

=
∑

dim V(pj)=r−1

deg V(pj) tr−1/(r − 1)! + lower terms

=
( s∑

j=1

i(X, H ; Zj) deg Zj

)
tr−1/(r − 1)! + lower terms ,

because the number, in which I(Zj) occurs in the filtration, coincides with
i(X, H ; Zj). Comparing the leading coefficients gives

deg X · deg H =
s∑

j=1

i(X, H ; Zj) deg Zj

as desired. ⊓*

Exercise 6.4.42. Let M be a graded S-module. Prove that the Hilbert poly-
nomial of M has degree

deg pM (t) = dim suppM = max{dimV(p)|p ∈ Ass(M)},

and that the leading coefficient is

∑

dimV(p)=dim supp M

length M(p)
deg V(p)

r!
.

⊓*

Apriori knowledge of the Hilbert function or Hilbert polynomial can ease
Gröbner basis computation tremendously. We illustrate this in an example.
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Example 6.4.43. Consider the morphism

P1 → P3, [x0 : x1] '→ [x4
0, x

3
0x1, x0x

3
1, x

4
1].

We want to compute the equations of the image curve. One way to do this is
to compute a Gröbner basis of

⟨y0 − x4
0, y1 − x3

0x1, y2 − x0x
3
1, y3 − x4

1⟩

with respect to a product order. Another way is to guess the equations and
then argue. Clearly,

J = ⟨y1y2 − y0y3, y
3
1 − y2

0y2, y
2
1y3 − y0y

2
2 , y1y

2
3 − y3

2⟩

is contained in the kernel I = kerϕ of

ϕ : S = k[y0, . . . , y3] → R = k[x0, x1].

To prove, that this is the Gröbner basis of the kernel, we compare various
Hilbert functions. The image is imϕ = k[x4

0, x
3
0x1, x0x3

1, x
4
1] ⊂ R. Hence,

S/I ∼= imϕ has Hilbert function

hS/I(t) = hR(4t) = 4t + 1 for t ≥ 2.

On the other hand the lead terms of the generators of J with respect to the
reversed lexicographic order and variables sorted y1 > y2 > y3 > y0 generate
the ideal J ′ = ⟨y1y2, y3

1 , y
2
1y3, y3

2⟩. A k-basis of S/J ′ is represented by the
monomials in

k[y3, y0] ⊕ k[y3, y0]y1 ⊕ k[y3, y1]y2 ⊕ k[y3, y0]y2
2 ⊕ k[y0]y2

1 .

Thus, hS/J′(t) = t + 1 + 2t + t− 1 + 1 = 4t + 1 for t ≥ 2. On the other hand,

hS/J′(t) ≥ hS/J(t) ≥ hS/I(t).

Thus, equality holds, I = J , L(I) = J ′ and our 4 generators form a Gröbner
basis. This completes our goal.

Finally, we can now easily compute the shape of the free resolution of S/I.

M2 = ⟨y1y2⟩ : y3
1 = ⟨y2⟩,

M3 = ⟨y1y2, y3
1⟩ : y2

1y3 = ⟨y1, y2⟩,
M4 = ⟨y1y2, y3

1 , y
2
1y3⟩ : y3

2 = ⟨y1⟩

Thus, the shape of the free resolution computed as in 2.8.11 is

0 ← S/I ← S ← S(−2)⊕ S(−3)3 ← S(−4)4 ← S(−5) ← 0,

and this gives the minimal free resolution, since no constant term is contained
in syzygy matrices for degree reasons. Computing the Hilbert polynomial from
the free resolution, we get

pS/I(t) =
(

t + 3
3

)
−
(

t + 1
3

)
− 3
(

t

3

)
+ 4
(

t − 1
3

)
−
(

t− 2
3

)
= 4t + 1,

which agrees already for t ≥ 2 with the Hilbert function.
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For practical computations, the idea of using the Hilbert function in
Gröbner basis computations leads to the following spead up of the elimination
algorithm. The key point is, that a Gröbner basis with respect to a weighted
reversed lexicographic order is much sheaper to compute than a Gröbner basis
with respect to an elimination order.

Algorithm 6.4.44 (Hilbert function driven elimination). Input: A
homogeneous ideal I ⊂ k[x0, . . . , xn, y0, . . . , ym] with weighted variables of pos-
sibly different degrees. Output: I ∩ k[y0, . . . , ym]
1. Compute a Gröbner basis with respect to the weighted reverse lexicographic
order.
2. Compute the Hilbert function of k[x, y]/I.
3. Compute a Gröbner basis with respect to an elimination order, but skip
all Buchberger tests in a given degree, when there are already enough leading
terms to account for the Hilbert function.

Example 6.4.45. Here is an example, where the Hilbert function driven Buch-
berger allows to compute the elimination ideal, while without this the com-
putation takes much too long. Camera positioning.

Another way to present the Hilbert function is as follows:

Definition 6.4.46. Let M be a graded module with dim Md < ∞ for all d.
Then

HM (s) =
∑

d∈Z
dimMds

d ∈ Z[[s, s−1]]

is called the Hilbert series of M .

Lemma 6.4.47. Let M be a finitely generated graded module over the poly-
nomial ring k[x0, . . . , xn]. Then HM is the rational function

HM (s) =
∑

ij(−1)iβijsj

(1 − s)n+1
,

where the βij are the graded Betti numbers of M . If r = dim suppM then the
rational function HM (s) has a pole of order precisely r + 1 at s = 1.

Proof. The Hilbert series of k[x1, . . . , xn] is

1
(1 − s)n+1

=
∞∑

t=0

(
n + t

n

)
st.

Thus, expanding the rational function
∑

ij(−1)iβijsj

(1 − s)n+1
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at s = 0 yields a series whose coefficients satisfy the same formula as the
Hilbert function hM (t) = dim Mt:

hM (t) =
n+1∑

i=0

(−1)i
∑

j

βij

(
n− j + t

n

)
.

If we consider syzygies over a linear Noether normalization

supp M → Pr

of suppM , then we see that HM (s) has a pole of order at most r+1 at s = 1.
It cannot have a pole of smaller order, because otherwise the coefficients of
HM (s) would not grow fast enough. ⊓*

Remark 6.4.48. A similar formula holds for graded modules over a polynomial
ring with generators xi of different degrees. If deg xi = di then the denomina-
tor takes the form (1− sd0) · . . . · (1 − sdn).

Example 6.4.49. Let d0, . . . , dn ∈ Z>0 be a set of integers with no common
divisor. We consider the group action of k∗ on kn+1 \ 0 defined by

k∗ × kn+1 → kn+1, (λ, (a0, . . . , an)) '→ (λd0a0, . . . ,λ
dnan).

The weighted projective space

P(d0, . . . , dn) = (kn+1 \ 0)/k∗

is defined as the orbit space under this action. In case d0 = d1 = . . . =
dn = 1 this is the ordinary projective space Pn. We give P(d0, . . . , dn) the
structure of a projective variety as follows. Consider the polynomial ring S =
k[x0, . . . , xn] with grading induced by deg xi = di. Let ℓ = lcm(d0, . . . , dn)
and let m0, . . . , mN ∈ Sℓ be a basis formed by monomials. Then

P(d0, . . . , dn) → PN

induced by
a = (a0, . . . , an) '→ [m0(a) : . . . : mN (a)]

is a well-defined embedding. However P(d0, . . . , dn) is in general not smooth.
The standard charts might carry some quotient singularities:

Ui = {[a] | ai = 1} ∼= kn/µdi ,

where µd denotes the group of d-th roots of unity.

Exercise 6.4.50. Prove that

P(1, 1, 2) ∼= V (x0x2 − x2
1) ⊂ P3.

⊓*
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Exercise 6.4.51. Consider S = k[x0, . . . , xn] the polynomial ring with the
grading induced by deg xi = di and the corresponding weighted projective
space. Let I ⊂ S be a homogenous ideal with respect to this grading.

1. Prove that

V (I) = {[a] ∈ P(d0, . . . , dn) | f(a) = 0 for all homogeneous f ∈ I}

is an algebraic subset of P(d0, . . . , dn), and that every algebraic subset arises
in this way.
2. Let

HS/I(s) =
∑

ij(−1)iβijsj

(1 − sd0) · . . . · (1 − sdn)
be the Hilbert series of S/I according to Remark 6.4.48. Prove that V (I) ⊂
P(d0, . . . , dn) has dimension r iff HS/I(s) has a pole of order r + 1 at s = 1.

⊓*

Exercise 6.4.52. Complete the proof of Theorem 3.3.8.
Hint: Consider the projective closure in a suitable weighted projective

space P(1, d1, . . . , dn), where w = (d1, . . . , dn) ∈ Zn
>0 is a weight vector, such

that the Gröbner basis for the given monomial order > and the weight order
>w coincides. ⊓*

Exercise 6.4.53. Let I ⊂ k[x0, . . . , xn] = k[x] be a homogeneous ideal, and
let

ϕ : k[y0, . . . , ym] → k[x]/I, yi '→ fi + I

be the substitution homomorphism induced by homogeneous forms fi ∈
k[x0, . . . , xn] of degree deg fi = di. Let

J = Ik[x, y] + ⟨y0 − f0, . . . , ym − fm⟩

be the ideal of the graph in P(deg x0, . . . , deg xn, d0, . . . dm) of the correspond-
ing rational map

V(I) !!" P(d0, . . . , dm).

Prove
Hk[x]/I(s) = Hk[x,y]/J(s).

⊓*

6.5 Dimension Formulas

Theorem 6.5.1 (on the dimension of intersections). Let X, Y ⊂ Pn be
two subvarieties. Then every component Z of X ∩ Y has dimension

dimZ ≥ dim X + dim Y − n.

If the right hand side is non-negative then the intersection X∩Y is non-empty.
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Proof. Consider the join J(X, Y ) ⊂ P2n+1 defined by the ideal I(X)+I(Y ) ⊂
k[x0, . . . , xn, y0, . . . , yn]. J(X, Y ) is the union of all lines joining a point of X ⊂
Pn ⊂ P2n+1 with a point of Y ⊂ Pn ⊂ P2n+1 contained in two complementary
linear subspaces Pn ⊂ P2n+1. With Pn ∼= ∆ = V(x0−y0, . . . , xn−yn) ⊂ P2n+1

the “diagonal” we have

X ∩ Y = ∆ ∩ J(X, Y ).

A Gröbner basis of J(X, Y ) is the union of the Gröbner basis for X and
for Y . So dimJ(X, Y ) = dimX + dimY + 1. On the other hand ∆ is defined
by n+1 equations. Thus the generalized Principle Ideal Theorem 4.6.19 gives
the desired inequality for the dimension of each component of X ∩ Y .

For the second statement we consider the affine cones C(X), C(Y ) ⊂
An+1. The origin 0 ∈ An+1 lies in the intersection of the cones. Since
every component of the intersection C(X) ∩ C(Y ) has dimension at least
dimX + 1 + dimY + 1 − n − 1 ≥ 1, there is at least one component con-
taining the origin properly. This component is a cone again. Hence, we obtain
X ∩ Y ̸= ∅. ⊓*

Remark 6.5.2. The reader might ask, why we did not prove Bézout’s Theorem
in a more general version for intersections X ∩ Y ⊂ Pn, say in case all com-
ponents Z of X ∩ Y have expected dim Z = dimX + dimY − n. The reason
is that lengthOZ,Pn/(IX + IY )OZ,Pn no longer gives the correct intersection
multiplicity for the Theorem.

Exercise 6.5.3. Consider the surface X ⊂ P4 from Example 4.7.20 and Ex-
ercise 6.4.26 and let Y = V(x1 −x3, x3−x4) ⊂ P4 be a plane passing through
the improper node p = [0 : 0 : 0 : 0 : 1]. Prove that

lengthOp/(IX + IY )Op = 3,

although there are 3 intersection points away from the node. Thus, adding the
various length gives at least 3+1+1+1=6, which is larger than deg X deg Y =
5 · 1

The reason why the numbers do not match is, that the module S/(IX +IH)
for the intersection of X with a hyperplane H containing Y has already mp

as an associated prime. Thus, the full intersection ring gets too large. ⊓*
The general correct definition of the intersection multiplicity was a topic

of Gröbner’s research [1951]. In case of an intersection of two varieties of
“expected” dimension dim X + dim Y − dim Pn, the correct definition was
finally given by Serre [1957]:

i(X, Y ; Z) =
∑

i≥0

(−1)i lengthTori
OPn,Z

(OPn,Z/IXOPn,Z ,OPn,Z/IY OPn,Z).

A disadvantage of this formula is that i(X, Y ; Z) > 0 is no longer obvious.
Fortunately, this is still true . In case we have a component Z of excess dimen-
sion, that is of dimension dimZ > dimX + dimY − dim Pn, one can apply
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the intersection theory of Fulton [1998] and/or Flenner, O’Carrel and Vogel
[1999].

Let ϕ : X → Y be a morphism. For q ∈ Y we call Xq = ϕ−1(q) the fiber
of ϕ over q. On the right is the illustration of an affine piece of the
surface

X = V(y2z − x2(t2z − x)) ⊂ P2 × A1

ϕ ↓

Y = A1

and three fibers of the projection to the
t-axis.

Theorem 6.5.4 (on the fiber dimension). Let ϕ : X → Y be a projective
morphism.

1. The function
q '→ dimXq

is upper semi-continous on Y .
2. If ϕ is a surjective map between varieties then there exists a non-empty

open subset of U ⊂ Y , such that

dimXq = dimX − dimY

for all q ∈ U .

In particular, for a surjective projective morphism,

dimXq ≥ dimX − dimY

holds for every q ∈ Y .

Proof. 1.) We may assume that X ⊂ Y × Pn is a closed subset. Let q ∈ Y be
a point and dimXq = r. Choose a linear subspace Pn−r−1 ⊂ Pn which does
not intersect Xq ⊂ Pn. Then A = X ∩ (Y × Pn−r−1) ⊂ Y × Pn is an algebraic
set, whose image pr1(A) ⊂ Y contains all points q′, where the fiber Xq′ has
dimension > r by Theorem 6.5.1 and perhaps some other points. Since the
image is algebraic by 6.3.26 and q /∈ pr1(A) the open set V = Y \ pr1(A) is
an open neighborhood of q with dim Xq′ ≤ r for all q′ ∈ V .

2.) We may assume that Y is affine and that X ⊂ Y × Pn. Consider the
function fields k(Y ) ⊂ k(X).

trdegk(Y ) k(X) = trdegk k(X) − trdegk k(Y ).
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Let I ⊂ k[Y ][x0, . . . , xn] be the ideal of X ⊂ Y × Pn. We compute a Gröbner
basis for I ⊂ k(Y )[x0, . . . , xn] over the function field k(Y ). The resulting
Gröbner basis corresponds to a variety of dimension trdegk(Y ) k(X) defined
over k(Y ). In such a computation of a Gröbner basis we have to invert finitely
many leading coefficients in k[Y ]. Let f be the product of all these leading
coefficients. Then for a point q ∈ U = Y \ V(f) the Gröbner basis of the
ideal Iq = ⟨f(x, q) | f ∈ I⟩ defining Xq is obtained by substituting q into the
coefficients of the Gröbner basis for I ⊂ k(Y )[x0, . . . , xn]. Thus, dimXq =
trdegk(Y ) k(X) = dimX − dimY for all q ∈ U . We have proved more: the
Hilbert function of k[x0, . . . , xn]/Iq is the same for all q ∈ U .

The last statement follows from combining 1.) and 2.). ⊓*

Remark 6.5.5. 1. Assertion 6.5.4.1 does not hold without the hypothesis of
projectivity. An example where the assertion does not hold is Example ??.2.
2. An example of a projective morphism between varieties, where the fiber

dimension is not constant, is the blow-up 7.2.1 below.

The following result has a very similar proof.

Theorem 6.5.6 (Reduction mod p). Let I = ⟨f1, . . . , fr⟩ ⊂ Q[x0, . . . , xn]
be a homogeneous ideal defined by polynomials fi with integer coefficients. For
a prime number p we denote by Ip ⊂ Fp[x0, . . . , xn] the ideal generated by the
reduction of the fi mod p. For all but finitely many primes the Hilbert function
of Q[x0, . . . , xn]/I and Fp[x0, . . . , xn]/Ip coincide.

Proof. We compute a normalized Gröbner basis of I ⊂ Q[x0, . . . , xn]. In this
process we divide by finitely many leading terms. Let B be the set of primes,
which devides a numerator of some of these leading terms. For p a prime
outside B the computation of the Gröbner basis of Ip has exactly the same
steps. In particular, L(I) and L(Ip) are generated by the same monomials.
The result follows with Corollary 6.4.27. ⊓*

Remark 6.5.7. 1. Within Grothendieck’s theory of schemes (eg. Hartshorne
[1977], Chapter II and III), Theorem 6.5.6 and Theorem 6.5.4 have indeed a
common generalization.
2. For practical purposes, Theorem 6.5.6 on the reduction mod p is of great

importants. As long as we are only interested in the qualitative behavior of
a system of equations, say in the dimension or degree, we can use a Gröbner
basis computation mod p, which is much faster than the computations over
Q, because the bit length of the coefficients do not grow over Fp. In doing
so, we have to choose p outside B, which we usually do not know in advance.
However, when choosing moderate size p, the chances for p ∈ B are really low.
The authors never had the bad luck to choose p ∈ B.

Exercise 6.5.8. Let X ⊂ Pn be a variety defined over Q, and let I(X) =
⟨f1, . . . , fr⟩ be generators with integral coefficients. Let Ip = ⟨f1, . . . , fr⟩ ⊂



6.6 Bertini’s Theorem and other Applications 295

Fp[x0, . . . , xn] be generated by their reductions mod p. Prove: If X is non-
singular, then Xp = V(Ip) is non-singular for all but finitely many primes p.
⊓*

Exercise 6.5.9. Let f1, . . . , fr ∈ Z[x0, . . . , xn] be homogeneous polynomials,
and let I ⊂ Q[x0, . . . , xn] and Ip ⊂ Fp[x0, . . . , xn] denote the ideals generated
by them over Q and Fp, respectively. Prove

hFp[x0,...,xn]/Ip
(t) ≥ hQ[x0,...,xn]/I(t) for all t ∈ Z.

⊓*

6.6 Bertini’s Theorem and other Applications

The dimension formulas have many applications. One of the most important
is Bertini’s theorem.

For a given projective space Pn = P(V ) the space of hyperplanes is natural
the projective space of the dual vector space

P̌n = Pn(V ∗).

Theorem 6.6.1 (Bertini). Let X ⊂ Pn be a smooth projective variety of
dimension r. There exists a non-empty open subset U ⊂ P̌n, such that X ∩H
is smooth of dimension r − 1 for every H ∈ U .

Remark 6.6.2. It is true that for dimX ≥ 2 and H ∈ U the intersection
X ∩ H is also connected, hence irreducible. Frequently, this is considered to
be part of Bertini’s Theorem. The connectedness statement follows easily from
cohomology theory of coherent sheaves, in particular Serre duality, which we
do not treat in this book. See Hartshorne [1977] III.7.9. We will sketch a proof
for fields k of characteristic zero in the appendix to this section.

Proof. We may assume that X is non-degenerate, i.e. that X spans Pn.
Then X ∩ H is singular at p iff TpX ⊂ H . Since TpX ∼= Pr there exists an
Pn−r−1 ⊂ P̌n of hyperplanes H with H ⊃ TpX . Consider the diagram

N = {(p, H) ∈ X × P̌n | TpX ⊂ H} → P̌n

↓
X

The fibers of N → X are (n− r − 1)-dimensional. Hence, dimN = n− 1 and
the image X̌ of N in P̌n is at most a hypersurface. The open set U = P̌n \ X̌
has the desired property. ⊓*

Definition 6.6.3. X̌ ⊂ P̌n is called the dual variety of X ⊂ Pn. More gener-
ally, for possibly singular varieties X ⊂ Pn the dual variety is defined as the
closure of the image of
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N0 = {(p, H) ∈ X0 × P̌n | TpX ⊂ H} → P̌n

where X0 = X \ Xsing denotes the set of smooth points of X.

Example 6.6.4. For a plane curve C ⊂ P2 the dual variety is again a plane
curve Č ⊂ P̌2.

The curve defined by
y = x4 − x2.

The dual curve in the chart
b = 1.

In this example the dual curve has equation

27a4 − 4a2b2 + 144a2bc− 16b3c + 128b2c2 − 256bc3 = 0

in coordinates a, b, c dual to x, y, z.

Exercise 6.6.5. Prove: An ordinary double point of Č corresponds to a bi-
tangent of C. A cusp of Č corresponds to a flex of C. ⊓*
Exercise 6.6.6. Consider the curve V(x4 + 4y4 − x2z2 − y2z2 − 1

10z4) ⊂ P2.

–0.5

0.5

 

–1 1 

The curve with equation
x4 + 4y4 − x2 − y2 − 1

10

–1

0

1 

–0.5 0.5 

The dual curve.
–0.1

–0.05

0

0.05

0.1

 

0.92 0.96 

A detail of the dual
curve.

Verify that the dual curve is defined by the equation

a12 +
20

13
a10b2 +

1297

676
a8b4 +

205

169
a6b6 +

239

338
a4b8 +

35

169
a2b10 +

49

676
b12

+
290

13
a10c2 −

1210

169
a8b2c2 −

3335

338
a6b4c2 +

385

338
a4b6c2 −

1355

338
a2b8c2 +

385

338
b10c2

+
23430

169
a8c4 −

34000

169
a6b2c4 +

34595

338
a4b4c4 −

9250

169
a2b6c4 +

30

169
b8c4

+
9600

169
a6c6 +

61800

169
a4b2c6 +

37800

169
a2b4c6 −

5400

169
b6c6 −

164800

169
a4c8

−
80000

169
a2b2c8 +

800

169
b4c8 +

192000

169
a2c10 +

48000

169
b2c10 −

64000

169
c12 = 0

Here a, b, c are dual coordinates to x, y, z. ⊓*
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Exercise 6.6.7. Suppose char k = 0. Prove for an irreducible plane projective
curve, that the double dual curce is the original curve, i.e. ˇ̌C = C.

⊓*

Remark 6.6.8. In case of char k = p > 0, the double dual curve is not neces-
sarily the original curve. For example, each tangent of the curve V(xp +yzp−1)
passes through the point [1 : 0 : 0], so the dual curve is the line L ⊂ P̌2 dual to
this point. A curve different from a line with the property that every tangent
line passes through a fixed point is called strange. Strange curves exist only
in chark = p > 0, by the exercise above. One can prove that strange curves
are not smooth.

Exercise 6.6.9. (char k = 0). Prove ˇ̌X = X for arbitrary varieties. ⊓*

Corollary 6.6.10. Let X ⊂ Pn be a variety. There exists a open set U ⊂ P̌n

such that (X ∩H)sing = Xsing ∩ H for all H ∈ U .

Proof. U = P̌n \ X̌ has this property. ⊓*

Corollary 6.6.11. Let X ⊂ Pn be a variety of dimension r and degree d. A
general linear subspace Pn−r ⊂ Pn intersects X in d distinct points.

Proof. Combine Bertini’s Theorem with Bézout’s Theorem 6.4.33. ⊓*

Exercise 6.6.12. Let X ⊂ Pn an absolutely irreducible non-degenerate vari-
ety of dimension r. Prove

deg X ≥ n− r + 1.

⊓*

Exercise 6.6.13. Consider the d-th Veronese embedding

Pn ↪→ PN

with N =
(n+d

d

)
. The dual variety X̌ of the image X can be identified with

the set of singular hypersurfaces of degree d in Pn. What is the degree of X?
See Ge’lfand, Kapranov and Zelevinsky [1994] for a beautiful treatise on dual
varieties. ⊓*
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Exercise 6.6.14. Deduce Brianchon’s Theorem from Pascal’s Theorem 5.5.4
and projective duality: A hexagon in P2 is circumscribed to a smooth conic,
if and only if the lines joining opposite vertices intersect in a point.

⊓*

The dimension formulas and Bertini’s theorem give another proof that
every variety is birational to a hypersurface:

Theorem 6.6.15. Let the ground field k be infinite. A variety X ⊂ Pn of
dimension r can be birationally projected onto a hypersurface X ′ ⊂ Pr+1

Proof. We will project X from a center Pn−r−2 ⊂ Pn to Pr+1. The induced
map X → X ′ ⊂ Pr+1 is everywhere defined and finite if the center does not
intersect X , which is the case for a general choice of the projection center.
The problem is to prove that X → X ′ is birational. The preimage of a line
L ⊂ Pr+1 is a Pn−r containig the center of projection. For general choices this
linear space will intersect X in d = deg X many distinct points by Bertini’s
Theorem. X → X ′ is birational in a neighborhood of one of these points iff
none of the d − 1 secant lines of X through the point intersect the center
Pn−r−2. We can acchieve this if we choose the primage Pn−r of the line first
and then the center of projection Pn−r−2 ⊂ Pn−r such that it intersects none
of the

(d
2

)
secant lines. ⊓*

Exercise 6.6.16. With the notation as in the proof of 6.6.15 and the addi-
tional assumption that X ⊂ Pn is smooth, prove that X ′ is either smooth and
X → X ′ an isomorphismen, or X ′

sing is of pure dimension r − 1. ⊓*

The proof of the following theorem is of a simular flavour.

Theorem 6.6.17. Every smooth projective curve can be embedded into P3.

Proof. Suppose C ⊂ Pn. If n ≤ 3 there is nothing to prove. If n ≥ 4 then we
consider the secant variety. Consider the variety {(p1, p2, q) ∈ C × C × Pr |
p1 ̸= p2 and q ∈ p1p2}. The secant variety Sec(C) ⊂ Pn is the image of the
closure of this set. Note that all tangent lines of C are contained in Sec(C).
By the dimension formula dimSec(C) ≤ 3. Thus for n ≥ 4 we can find a point
q ∈ Pn \ Sec(C). The projection from p induces an isomorphism from C onto
its image in Pn−1. ⊓*
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Exercise 6.6.18. Why is Theorem 6.6.17 not true for singular curves? ⊓*

Exercise 6.6.19. Prove that every smooth projective variety of dimension d
can be embedded into P2d+1. ⊓*

Remark 6.6.20. Surfaces which can be embedded into P4 satisfy an identity
between their numerical invariants, (see eg. Hartshorne [1977], Appendix A.
Example 4.1.3). A famous result of Severi says that a non-degenerate smooth
surface X ⊂ P5 can be isomorphically projected into P4 iff X is projectively
equivalent to the Veronese surface, i.e. the image P2 ↪→ P5 under the 2-uple
embedding.

Exercise 6.6.21. a) Prove with Computer algebra the easy part of Severi’s
theorem: P2 ↪→ P5 can be projected isomorphically. b) Describe the set of
points in P5 from which one can project the Veronese surface isomorphically,
and give a proof of the easy part without Computer algebra. (c) Prove the
hard part of Severi’s Theorem, i.e. no other surface in P5 can be projected
isomorphically. ⊓*

6.7 Appendix: Monodromy Arguments

In this appendix we will prove the irreducibility of a general hyperplane X∩H
section of a variety X ⊂ Pn of dimension dimX ≥ 2. We start by investigating
general hyperplane sections of curves. Our first step is to establish the path
connectedness of irreducible curves.

Theorem 6.7.1. Let f ∈ C[x, y] be an irreducible polynomial and C =
V(f) ⊂ A2(C) the corresponding plane algebraic curve. Then C equipped with
the Euclidean topology is path connected.

The proof of this result is interesting in its own. However, it requires
some basic knowledge in Galois theory and analytic continuation of algebraic
functions of one complex variable.

Proof. Let
f(x, y) = gd(x)yd + . . . + g0(x)

with coefficients gj(x) ∈ C[x]. If our coordinates are choosen general, then
d = deg f , ad is a non-zero constant and deg gj ≤ d− j. In that case we have
counted with multiplicities precisely d solutions (a, b) ∈ C for any given value
a ∈ C, and these solutions are distinct, iff the resultant R(x) = Res(f, fy)
does not vanish at a. Moreover, the solutions depend continously on a. In
particular, f has no isolated zeroes. In what follows we will not assume general
coordinates. Then gd(x) might be a non-constant polynomial and some of the
roots of f(a, y) might approach infinity, if a approaches a zero of gd(x) in
A1(C) = C. Let B = V(gd(x)R(x)) ⊂ C. The projection onto the x-coordinate
induces an unramified d sheeted covering
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pr1 : C \ pr−1
1 (B) → C \ B.

Since C has no isolated points, it suffices to prove that C\B is path connected.
We will prove this with monodromy and Galois theory.

Let p ∈ C \ B be a base point. For each closed path

γ : [0, 1] → C \ B with γ(0) = γ(1) = p

and each preimage point pi ∈ Γ = pr−1
1 (p) path lifting defines a path γi :

[0, 1] → C \pr−1
1 (B) which starts in γi(0) = pi and ends in a possibly different

point pj = γ(1) ∈ Γ . Thus, path lifting of γ induces a permutation

µ(γ) : Γ → Γ, pi '→ γi(1)

of Γ . We call the subgroup G, generated all permutations µ(γ) the mon-
odromy group of the covering pr1 : C \ pr−1

1 (B) → C \ B.
Path connectedness follows, if we can prove that G acts transitively on Γ .

The key point is to identify G with a Galois group.
Consider the field extension C(x) ⊂ C(x)[y]/⟨f⟩. Since f is irreducible,

C[x, y]/⟨f⟩ is a domain, and C(x)[y]/⟨f⟩ is simply its quotient field. Let K ⊃
C(x)[y]/⟨f⟩ a splitting field of f ∈ C(x)[y]. The splitting field K can be
constructed explicitely as follows. Suppose that p = 0 ∈ C for notational
convenience. We denote by C{x} the ring of convergent power series and by
C{x}[x−1] = Q(C{x}) the quotient field of meromorphic power series. We
construct the splitting field of f over C(x) as a subfield of C{x}[x−1]. Let
pi = (0, bi) ∈ Γ be a point. By the Theorem on implicit functions , there exists
an holomorphic power series yi(x) ∈ C{x} with constant term yi(0) = bi, such
that C near bi equals the graph of yi.

More precisely, there are ϵ, δ > 0, such that for

Uϵ(bi) = {y ∈ C | |y − bi| < ϵ} and Uδ(0) = {x ∈ C | |x| < δ},

we have
C ∩ (Uϵ(bi) × Uδ(0)) = {(x, yi(x)) | x ∈ Uδ(0)}.

Then
K ∼= C(x)[y1(x), . . . , yd(x)] ⊂ C{x}[x−1],

indeed
f(x, y) = gd(x)(y − y1(x)) · . . . · (y − yd(x)).

We now consider the analytic continuation of our functions yi(x) along one
of the closed path Γ : [0, 1] → C \ B. This is possible, since for each point
γ(t) the implicit function theorem guarantees the existence of power serieses
yi,t(x − γ(t)) ∈ C{x − γ(t)}, whose graphs parametrize C locally above γ(t).
For any t′ in domain of convergence of the powerseries yi,t, the function
yi,t(x − γ(t)) coincides with some yi,t′(x − γ(t′)) in their common domain
of definition, because both parametrize the same piece of C. At the end of
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the path the analytic continuation ends up with the same set of power series
y1(x), . . . , yd(x), however, possibly permuted. The permutation coincides with
µ(γ).

We now claim, that each of these permutation induces an automorphism
of the field K over C(x). Consider

ϕ : C(x)[Y1, . . . , Yd] → K ⊂ C{x}[x−1], Yi '→ yi(x).

To prove that σ = µ(γ) gives an automorhism of K, we have to show that
for any F ∈ kerϕ the function F (yσ(1)(x), . . . , yσ(d)(x)) = 0 ∈ K. This follows
from analytic continuation. The function F (y1,t(x − γ(t)), . . . , yd,t(x − γ(t)))
stays identically zero by the identity theorem for functions in one complex
variable . Thus G is a subset of the Galois group Gal(f) of f .

The Theorem follows, if we can prove that G = Gal(f), because the Ga-
lois group of an irreducible polynomial acts transitively on the roots. So the
following theorem completes the proof. ⊓*

Theorem 6.7.2. With notation as above, the monodromy group G coincides
with the Galois group of f over C(x).

Proof. Let h ∈ KG an invariant function. Then by the definition of G, the
invarinat function h has a well-defined meromorphic continuation to C \ B.
Moreover, also in B and infinity, the continuation of h cannot have an essential
singularity, because it is a polynomial function in the local roots yi,t(x−γ(t))
with coefficients in C(x). Thus, h extend to a meromorphic function on P1(C).
So h is rational. This proves KG = C(x), and hence G = Gal(K/C(x)) =
Gal(f) by the main theorem of Galois theory.

⊓*

Remark 6.7.3. The image of a closed path γ in G depends only on the homo-
topy class of γ. What we really have is an group homomorphism

π1(C \ B, p) → Aut(Γ ).

Here we use the notation π1(X, p) for Poincaré’s fundamental group of
homotopy classes of closed loops in a topological space X with base point p,
and Aut(Γ ) denotes group of permutation group of the set Γ .

Thus to determine the image G, it suffices to apply path lifting to genera-
tors of π1(C\B, p). As it is well known , generators of π1(C\B) are small loops
around each point of b ∈ B connected via a path forwards and backwards to
p.

This gives a numerical method to detect irreducibility of plane curves.

Corollary 6.7.4. Any irreducible quasi-projective curve C over C is path con-
nected with respect to the Euclidean topology.
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Proof. Consider a birational projection of C onto a plane curve C′. By the
proof of the theorem, any non-empty Zariski open part of C′ is path connected.
Since we have an isomorphism of Zariski open parts of C′ and C, and since
C has no isolated points, C is path connected as well. ⊓*

Our next goal is to establishing the uniform position of a general hyper-
plane section of an irrreducible curve. This may be considered as an appro-
priate version of our desired irreduciblity result in case of curves.

Definition 6.7.5. Let Γ = {p1, . . . , pd} ⊂ Pn be a collection of d distinct
points. Γ is in linearly uniform position, if any subset of n points of Γ
spans a Pn−1. Γ is in (arithmetically) uniform position, if the homogeneous
ideals of any two subsets of Γ with the same number of elements have the
same Hilbert function. The arithmetically uniform position is the stronger
statement.

Our goal is to prove that the general hyperplane section of an irreducible
curve C ⊂ Pn+1 over a field k of characteristic 0 is in uniform position. The
assertion is not true in positive characteristic.

Exercise 6.7.6. Consider the curve

V(x2
0 − x1x4, x

2
1 − x2x4, x

2
2 − x3x4) ⊂ P4

over a field of characteristic 2. Prove that the points of a general hyperplane
section form the vertices of a cube. ⊓*

To prove uniform position, we treat the case k = C first. Let C ⊂ Pn(C) be
an irreducible curve of degree d. Consider the Zariski open set U = P̌n \ Č of
transversal hyperplanes. U is path connected in the Euclidean topology. Pick
a base point H0 ∈ U and consider the monodromy action of the fundamental
group π1(U, H0) on Γ = C ∩ H0 = {p1, . . . , pd} defined by path lifting: Let

γ : [0, 1] → U, t '→ Ht

be a continuous path with γ(0) = H0. Then by the continuity of roots of
algebraic systems of equations there exist d continues paths

γi : [0, 1] → C with γi(0) = pi,

such that C ∩Ht = {γ1(t), . . . , γd(t)} for all t. Since all Ht intersect transver-
sally, a loop in U starting and ending in H0 induces a permutation of Γ :

Γ → Γ, pi = γi(0) '→ γi(1),

which in fact depends only on the homotopy class of the closed loop. Thus, if
π1(U, H0) denotes Poincaré fundamental group consisting of homotopy classes
of closed loops starting and ending at H0, we obtain a homomorphism

µ : π1(U, H0) → Aut(Γ )

to the symmetric group of permutations of Γ .
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Theorem 6.7.7 (Harris’ Monodromy Theorem). Let C ⊂ Pn(C) be an
irreducible curve of degree d. The monodromy action of π1(U, H0) on Γ =
C ∩ H0 gives the full symmetric group.

Proof. We assume that C is not a line. We have to prove that ρ is surjective.
For this, it is enough to prove that π1(U, H0) acts double transitive and that
the image contains a simple transposition. Applying if necessary a birational
projection we may assume n = 2. Since the double dual ˇ̌C ∼= C by 6.6.7, there
are only finitely many tangents lines passing through any point q ∈ P2, and all
but finitely many tangent lines are simple tangents, i.e. tangent in precisely
one smooth point of C, which is not a flex.

Consider C′ = C \ Csing and the fibers Xp of the incidence variety

X = {(p, H) ∈ C′ × U |p ∈ C ∩ H} → C′.

C′ is path connected by Corollary 6.7.4 and all Xp are path connected, since
they are Zariski open subset of a P1. So X is path connected, which implies
that π1(U, H0) acts transitively. To see double transitivity, we choose a smooth
point p ∈ C′ and choose the base point H0 in the fiber Xp. The image of
π(Xp, H0) lies in the stabilizer of p. Since

C′′ =
⋃

H∈Xp

(C ∩ H \ {p})

is still path connected by Corollary 6.7.4, we obtaion double transitivity. To
exhibit a simple transposition, we look at a general point H1 ∈ Č. Then H1∩C
is tangent at precisely one point with multiplicity 2. A small loop in U near
H1 around Č will interchanges the two nearby intersection points and leaves
the other d − 2 points unchanged. ⊓*

We denote with Ck the product C ×C × . . .×C and with ∆ =
⋃
∆i,j the

union of the various diagonals.

Corollary 6.7.8. The closure of Xk = {((p1, . . . , pk), H) ∈ (Ck \ ∆) × U |
{p1, . . . , pk} ⊂ H ∩ C} in Ck × P̌n is irreducible for every k.

Proof. Xk is non empty only for k ≤ d = deg C. It is path connected and
irreducible, since we can connect any two points in the fiber of Xk over H0

by a closed path in the smooth part of Xk according to Harris’ Monodromy
Theorem 6.7.7. ⊓*

Corollary 6.7.9. The general hyperplane section Γ∩H of an irreducble curve
lies in uniform position.

Proof. Suppose that two subsets of Γ of the same cardinality k have different
Hilbert functions. Since the values of the Hilbert function of a collection of
points varies semicontineously with the points and H is general, this would
give a decomposition of Xk into at least two components, a contradiction to
Corollary 6.7.8. ⊓*
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Remark 6.7.10. Much more general statements than Corollary 6.7.9 can be
deduced. For example, the graded Betti numbers of the the image of any subset
Γ1 under the projection from the span of Γ2 for disjoint subsets Γ1 ∪ Γ2 ⊂ Γ
depend only on degΓ1 and degΓ2.

We now turn to arbitrary fields k of characteristic zero. First, if X ⊂ Pn is a
quasi-projective algebraic set, then only finitely many coefficients occur in any
finite set of defining equations of X and the complement X \X . The subfield
k0 ⊂ k generated by these coefficients is a field of definition of X . Since k0 is
a finitely generated field extension of Q and because C is algebraically closed
with uncountable transcendence degree over Q, there exists an embedding
k ↪→ C. Pick one and consider X(C) ⊂ Pn(C). Then we apply

Lemma 6.7.11 (Lefschetz principle). Let P be a property of algebraic sets
which can be formulated by the solvability of a system of algebraic equations
and inequalities with coefficients in the field of definition of X. If X(C) sat-
isfies P then X(k) satisfies P, where k denotes an algebraic closure of a field
of definition of X.

Proof. Clear, since we can embed k ↪→ C. ⊓*

Let C ⊂ Pn be an absolutely irreducible curve over a field of characteristic
zero. Let U = P̌n \ Č be the quasi-projective variety of transversal hyper-
planes. For each k, the algebraic set Xk = {((p1, . . . , pk), H) ∈ (Ck \∆)×U |
{p1, . . . , pk} ⊂ H ∩ C} in Ck × P̌n is absolutely irreducible, because it is
irreducible over C by Corollary 6.7.8.

Corollary 6.7.12. There exists a hyperplane H ∈ U defined over the field of
definition of C such that Γ = C ∩ H lies in uniform position in H.

Proof. For each fixed t, the space of hyperplane H such that there exist two
subsets Γ1, Γ2 of C ∩H with the same number of points, but different values
hΓ1(t) ̸= hΓ2(t), is a proper algebraic subset Bt ⊂ U by Corollary 6.7.8 and
the Lefschetz principle.

Since the Hilbert function hΓ1(t) of a finite set of points takes value degΓ1

for t ≥ deg Γ1, there are only finitely many values t which we have to consider.
Hence B =

⋃
t≤degΓ Bt ⊂ U is an proper algebraic subset as well. (Without

the bound for t, we would just conclude, that B is a countable union of proper
algebraic subsets.) Therefore and because the field of definition k0 is infinite,
the set of k0-rational points in U \ B ⊂ P̌n is Zariski dense. ⊓*

To prove the irreducibilty of a general hyperplane section of a variety
X ⊂ Pn of dimension r ≥ 2, we consider the ground field C first, and start by
extending the Mondromy Theorem 6.7.7 to this case.

Theorem 6.7.13. Let X ⊂ Pn be a quasi-projective variety defined over C.
Then X(C) is path connected.
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Proof. Adapt the proof of Theorem 6.7.1 and Corollary 6.7.4. ⊓*

Consider the Grassmannian

G = G(n − r + 1, Cn+1) = {Pn−r ⊂ Pn}

of complementary dimensional linear subspaces, see Exercise 6.3.39 for a def-
inition of the Grassmannian as a projective variety. Let U be the open subset
of transversal subspaces to X :

U = {P ∈ G | P intersects in X in d distinct points},

where d = deg X . Pick a base point P0 ∈ U and consider the monodromy
action of π1(U, P0) on Γ = X ∩ P0.

Theorem 6.7.14. Let X ⊂ Pn(C) be an irreducible variety of dimension r
and degree d. The monodromy action of π1(U, P0) on Γ = X ∩ P0 gives the
full symmetric group.

Proof. With minor modifications as before. ⊓*

Corollary 6.7.15. Suppose char k = 0. A general hyperplane section X ∩ H
of an irreducible variety X ⊂ Pn of dimension r ≥ 2 is irreducible.

Proof. We first consider the case X ⊂ Pn(C). Consider a flag P0 ⊂ H0 of a
general complementary linear subspace P0 and a general hyperplane H0. By
Berini’s Theorem 6.6.1 H0 intersects X \Xsing transversally. Suppose X ∩H0

is reducible. Then every general hyperplane section is reducible. Since a loop

γ : [0, 1] → U, t '→ Pt

can be lifted to a loop of flags t '→ (Pt, Ht) with Pt, Ht transversal to X , the
monodromy action would distinguish between pairs of points in X ⊂ P0, which
do, respectively, which do not lie on the same irreducible component of X∩H0.
This contradicts the Monodromy Theorem. Thus, X ∩ H0 is irreducible. For
arbitrary fields of chararcteristic 0, the statement follows by applying the
Lefschetz principle. ⊓*

Remark 6.7.16. As we see from the above, path lifting allows to establish an
algorithmic test for absolute irreducibility of an algebraic set. Path lifting
itself can be computed by numerical methods. An implementation numerical
primary deomposition based on these ideas, has been developed by Sommese,
Verschelde and Wampler, see Sommese, Wampler [2005].

Remark 6.7.17. A projective algebraic set A ⊂ Pn is called non-degenerate,
if I(A) contains no linear form, equivalently, if A spans Pn. The study of de-
generate algebraic sets can be reduced to non-degenerate ones by passing to
a projective space of smaller dimension. The homogeneous coordinate ring of
an non-degenerate algebraic set is generated by n + 1 linear forms.
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A quasi-projective variety W is a open subset of a projective variety,
open with respect to the subspace topology. So W = V \ A, where V is
a projective variety and A ⊂ V an algebraic set. Quasi-projective varieties
include both affine and projective varieties.

Graded modules over the polynomial are even better behaved then modules
over a local ring.

Definition 6.7.18. A graded ring R is a ring together with a decomposition

R =
⊕

d≥0

Rd,

such that the multplication respects the grading Rd ×Re → Rd+e. A graded
module M over R is a module together with a decomposition

M =
⊕

d∈Z
Md,

such that Rd × Me → Md+e. We require, that homomorphisms of graded
modules preseverve the degree.

Example 6.7.19. S = k[x0, . . . , xn] is a graded ring. A homogenous ideal I is
a graded module, the quotient ring R = S/I is another example of a graded
ring. In particular, for X ⊂ Pn we have the homogeneous ideal I = IX = I(X)
of X and the homogeneous coordinate ring RX = S/IX of X .

Lemma 6.7.20 (Lemma of Nakayama in the graded case). Let R be a
graded ring, and let R>0 =

⊕
d>0 Rd be the ideal of elements of positive degree.

Let N ⊂ M be finitely generated graded R-modules. If N + R>0M = M then
N = M .

Proof. Since N and M are finitely generated, Nd = Md = 0 for d ≪ 0.
Suppose N ! M . Consider the smallest d such that Nd ! Md. Suppose
m ∈ Md \ Nd. By assumption m = n +

∑
i rimi for n ∈ N , ri ∈ R>0 and

mi ∈ M . Since we have graded modules, we may assume that this equation
is homogeneous, i.e. n ∈ Nd, ri ∈ Rdi and mi ∈ Md−di. Since di > 0 we have
d − di < d. Hence by induction hypothesis mi ∈ Nd−di. Hence m ∈ N , a
contradiction. ⊓*

Corollary 6.7.21. If R0 is a field and M a finitely generated graded R mod-
ule. Then dimR0 M/R>0M is the minimal number of generators of M . ⊓*

With respect to S =
⊕

Sd, we are mainly concerned with the case where
the graded piece S0 is a field k. Then S is a k-algebra, which we call a graded
k-algebra. We usually assume that S is finitely generated as a k-algebra. Then
every finitely generated S-module M is Noetherian by Exercise 1.10.9, and
the graded pieces Md are finite dimensional k-vector spaces. Their dimensions
are important numerical invariants of M .
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Our next topic is that of a minimal free resolution which makes equally
sense over local rings and in the graded case. In fact, in both cases, we can
apply Nakayama’s lemma whose graded version is as follows (note that the
homogeneous maximal ideal plays the role of the maximal ideal considered
earlier):

If S =
⊕

Sd is a graded ring such that S0 = k is a field, then S is a
k = S/S+-algebra, and the graded pieces Sd are k-vector spaces. We, then,
say that S is a graded k-algebra.





Chapter 7

Rational Maps

In this Chapter we study rational maps and morphisms of curves to projective
spaces.

In Section 7.2 we prove that a plane curve has an embedded resolution
of singularities via blow-ups, and deduce that any curve is birational to a
smooth projective curve. Our proof is based on the Cremona resolution, which
transforms an arbitrary irreducible plane curve to a plane curve with only
ordinary singularities. The detailed study of the blow-up and the quadratic
transformation gives a first glimpse on the beauty of birational geometry in
higher dimensions.

In Section 7.3 we introduce the concept of a divisor D on a smooth pro-
jective curve and its Riemann-Roch space L(D). Divisors are the basic tool
for the study of morphisms to projective spaces. In Section 7.4 we prove Rie-
mann’s inequality for the dimension of Riemann-Roch spaces, as a byproduct
of an algorithm, which computes a bases of L(D). Key point is here the com-
pleteness of hypersurface systems of large degree. As Corollary we will see the
preliminary result that the arithmetic genus of a smooth projective curve, does
not depend on the embedding, and that divisors of sufficiently large degree
are very ample.

The final section 7.5 is devoted to the δ-invariant of a curve singularity
both from a geometric and an arithmetic point of view. As an application we
give an valuation formula for the intersection multiplicity of plane curves, and
prepare the proof of the equality of the arithmetic and geometric δ-invariant:
The proof will be complete, once we have established the equality of arithmetic
and geometric genus with the help of the Riemann-Roch Theorem in Section
8.3. We begin recalling some basic facts about rational maps.

To easy our notation we make the following convention through out this
Chapter: We work over an algebraically closed field k = k. Only some times we
comment on the field of definition of an object. For example we only mention
in an exercise, that the resolution of singularities of a plane curve is defined
over its the field of definition. A curve refers to an one dimensional variety.
Its is important for computations, that the Riemann-Roch spaces L(D) on a



310 7 Rational Maps

smooth curve C are defined over the common field of definition of the curve
C and the divisor D.

7.1 Basic Facts

Basic facts about rational maps and rational functions have been established
in Theorem 2.6.22, Proposition 4.2.26 and Corollary 6.3.30. We summarize
what we know in case of varieties.

Definition 7.1.1. A rational map f : X !!" Y between two varieties X
and Y is a morphism f : U → Y defined on a non-empty dense open subset
U ⊂ X .

Example 7.1.2. If Y is affine, say Y ⊂ Am, then f is given by a tuple
f1, . . . , fm ∈ k[U ] ⊂ k(X) of rational functions, such that g(f1, . . . , fm) = 0
for every equation g ∈ I(Y ) ⊂ k[y1, . . . , ym] of Y .

Consersely, given a tuple of f1, . . . , fm ∈ k(X) which satisfies g(f1, . . . , fm) =
0 ∈ k(X) for every g ∈ I(Y ), we obtain a rational map f : X !!" Y ⊂ Am

defined on the non-empty open set U = {p ∈ X | fj is regular at p for all j}.

Example 7.1.3. Consider

ϕ : P2 !!" P2, [x : y : z] '→ [yz : xz : xy].

ϕ is defined outside B = V(xy, xz, yz) = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}.
ϕ2 = ϕ ◦ ϕ : P2 !!" P2 is given by

[x : y : z] '→ [x2yz : xy2z : xyz2] = xyz[x : y : z]

Thus, outside the 3 lines V(xyz), we have ϕ2 = idP2 .

Definition 7.1.4. Two rational maps f, g : X !!" Y are called equal (more
precisely equivalent) if there exists a non-empty open set U ⊂ X on which
both maps are defined and equal.

Remark 7.1.5. If we want to be logically completely correct, we call f |U : U →
Y a representative of a rational map and defined a rational map f : X !!" Y
to be an equivalence class of representatives.

With this notion we have ϕ2 = idP2 .

Remark 7.1.6. In general rational maps f : X !!" Y and g : Y !!" Z cannot be
composed. This reason is, that the image of f could be completely contained
in the set, where g : Y !!" Z is not defined.

Definition 7.1.7. A rational map f : X !!" Y is called dominant, if f(U) ⊂
Y is dense, i.e. f(U) ∩ V ̸= ∅ for all non empty open subset V ⊂ Y .



7.1 Basic Facts 311

Thus, if f is dominant then g ◦ f : X !!" Z is defined for every rational map
g : Y !!" Z. In Theorem 2.6.22 we proved

Theorem 7.1.8. Let X and Y be varieties. There is a bijection

{
dominant rational
maps ϕ : X !!" Y

}
←→
{

inclusions

k(Y )
ϕ∗

↪→ k(X)

}
.

Definition 7.1.9. A dominant rational map f : X !!" Y , which has a rational
inverse, is called birational. In that case, X and Y are called birationally
equivalent.

Corollary 7.1.10. The category of birational equivalence classes of varieties
with dominant rational maps as morphism is equivalent to the category of
finitely generated fields over k with field inclusions as morphisms.

Definition 7.1.11. For a given function field k(X), any variety Y birational
to X is called a (geometric) model of the function field.

Rational maps from curves are considerably simpler than the general case.
In Section 7.2 we will prove that any curve is birational to a smooth projec-
tive curve. Moreover rational maps from smooth curve can be extended to
morphisms:

Theorem 7.1.12. Let C be a smooth curve and ϕ : C !!" Pr a rational map.
ϕ has an extension to a morphism ϕ : C → Pr.

Proof. We may assume that C is irreducible and not contained in the hyper-
plane V (x0). The induced rational map C !!" U0 = D(x0) ∼= Ar is given by
a tuple of rational functions fj = ϕ∗(xi/x0). Projectively, we have the map
C !!" Pr with p '→ [1 : f1(p) : . . . : fr(p)].

More general, for any tuple of rational functions, the map

C !!" Pr, p '→ [f0(p) : f1(p) : . . . : fr(p)]

is defined, where none of the rational functions has a pole and not all have
simultaneously a zero. To extend such rational map over a point p, where it
is not yet defined, we consider n = min{vp(fj)|j = 0, . . . , r}. Let t ∈ mp ⊂
Op ⊂ k(C) a generator of mp. Then [t−nf0 : t−nf1 : . . . : t−nfr] is defined in
p and coincides with ϕ, where both tuples have a defined value, because the
common factor t−n does not matter projectively. ⊓*

In Section 7.2 we will proof that any irreducible curve is birational to
a smooth projective curve. Using this we obtain from Theorem 7.1.8 and
Theorem ?? the following:
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Corollary 7.1.13. Let k = k be algebraically closed. There is an equivalence
between the categories
⎧
⎨

⎩

smooth irreducible projective
curves C over k and

dominant morphism C → E

⎫
⎬

⎭↔

⎧
⎨

⎩

finitely generated fields
k(C) with trdegk k(C) = 1 and

algebraic field extensions k(E) ⊂ k(C)

⎫
⎬

⎭

Proof. Any non-constant rational map C !!" E between smooth irreducible
projective curves, extends to a morphism C → E, which is onto hence dom-
inant. Indeed the image is an algebraic subset by Theorem 6.3.28, which is
different from a point. Conversely any dominant morphism induces a field
extension by Theorem 7.1.8. ⊓*

Hence the smooth projective model of a finitely generated function field
of transcendence degree 1 is unique up to isomorphism.

Exercise 7.1.14. By the corollary a smooth irreducible projective curve C
is completely determined by its function field k(C). The point of C can be
recovered from the function field via valuation: Prove that the map p '→ vp

defines a bijection

{ points p of C} ↔

⎧
⎨

⎩

Discrete valuations
v : k(C) \ {0} → Z
with v(k \ {0}) = 0

⎫
⎬

⎭

Hint: Use that an everywhere regular function on a projective curve is con-
stant (Corollary 6.3.30).

Exercise 7.1.15. Let X ⊂ Pn be an irreducible variety, and let f0, . . . , fm ∈
k[x0, . . . , xn] be homogeneous polynomials of the same degree d, which not all
vanish on X . Consider the rational map

X !!" Pm, a '→ [f0(a) : . . . : fm(a)].

Let R = k[x1, . . . , xn]/I(X) be the homogeneous coordinate ring of X , and let

Rm+1 → R(d)

be the homomorphism defined by the image of f0, . . . , fm in R. Consider the
syzygies among f0, . . . , fm in R, and let ϕ = (ϕij) : ⊕jR(−bj) → Rm+1

be their syzygy matrix. Let ϕ = (ϕij) be a matrix of representative in
k[x0, . . . , xn]. Prove

1. The ideal

J = ⟨I⟩ + ⟨(y0, . . . , ym) · ϕ⟩ ⊂ k[x0, . . . , xn, y0, . . . ym]

has the graph of the the rational map X !!" Pm in Pn × Pm as a compo-
nent.
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2. The image of X in Pm is defined by the ideal

(J : ⟨f0, . . . , fm⟩∞) ∩ k[y0, . . . , ym].

⊓*

Exercise 7.1.16. Choose a 4× 5 matrix ϕ of linear foms in k[x0, x1, x2] ran-
domly and let f0, . . . , f4 denote the maximal minors of ϕ. Compute the image
P2 !!" P4 in two ways:

1. by computing algebra relations with Proposition 2.5.12 ,
2. by using Exercise 7.1.15.

⊓*

Exercise 7.1.17. Replace in Exercise 7.1.16 the matrix by a n×(n+1) matrix
and the ground field k by a finite field Fq. Compute the image of the rational
map P2 !!" Pn in the two ways. Which method is faster for large n in your
experiment? ⊓*

7.2 Quadratic Transformation and Desingularization

Consider the origin o ∈ A2 and the variety

X = V(xz1 − yz0) ⊂ A2 × P1

with coordinates ((x, y), [z0 : z1]). Let σ : X → A2 de-
note the morphism induced by the projection onto the
first component. The only preimage of a point (x, y) ̸= 0
is the point ((x, y), [x : y]). On the other hand E =
σ−1(o) = {o}× P1.

Definition 7.2.1. The morphism

σ : X → A2

is called the blow-up of o ∈ A2. E = σ−1(o) is called
the exceptional curve.

The intersection X0 = X ∩ (A2 ×U0) ∼= A2. Indeed, with affine coordinate
z = z1/z0 on U0, the equation restricts to y − xz and hence k[X0] ∼= k[x, z].
σ |X0 : X0 → A2 is given by (x, z) '→ (x, xz). Similarly, for X1 = X ∩ (A2 ×
U1) ∼= A2 we have

σ |X1 : X1 → A2, (y, w) '→ (yw, y).
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Hence X is covered by two charts isomorphic to A2. The equations w = 1/z
and y = xz hold in the intersection X0 ∩X1. In particular we see that X is a
smooth irreducible surface.

If f = fr + fr+1 + . . . ∈ k[x, y] defines a curve C with multiplicity r at o
then the preimage in X0 is defined by

f(x, xz) = xr(fr(1, z) + xfr+1(1, z) + . . .).

Definition 7.2.2. The closure C′ = σ−1(C \ {o}) of σ−1(C \ {o}) is called
the strict transform of C in X . The total transform is σ−1(C).

Thus, C′ is defined on X0 by the equation fr(1, z) + xfr+1(1, z) + . . . ∈
k[x, z].

Lemma 7.2.3. C = V(f) has an ordinary singular point of multiplicity r at o
iff the strict transform C′ is smooth in a neighborhood of E and intersects the
exceptional curve E transversal in precisely r points. The intersetion points
of C′ with E correspond to the different tangents of C at o.

Proof. After a linear change of coordinates we may assume that V(x) is not a
tangent line of C at o. Then fr(1, z)+xfr+1 + . . . = λ

∏r
i=1(z− ai)+xg(x, z)

with g = fr+1(1, z) + xfr+2(1, z) + . . . . Thus, E ∩ C′ ∩ X0 consists of the
points {o}×[1, ai]. These are r distinct points, iff C has the r distinct tangents
V(y − aix). In that case, C′ is non-singular in these points and intersects
E = V(x) ⊂ X0 transversally, because the equation has multiplicity 1 at
these points with tangent V(z − ai). ⊓*

Remark 7.2.4. More general we see that C′ intersects E in precisely r =
mult(C, o) points counted with multiplicities. The multiplicity of an inter-
section point is equal to the muliplicity of the corresponding tangent line.

Thus, blowing-up can improve the singularities. To repeat the blowing-up
we generalize it to arbitrary varieties.

Definition 7.2.5. Let p ∈ V ⊂ Pn be a point on a quasi-projective algebraic
set. Let I(p) = ⟨x1, . . . , xn⟩ be the homogeneous ideal of p ∈ Pn. Then the
blow-up σp : BlpV → V of V in p is the closure of the graph Γ ⊂ V × Pn−1

of the projection

πp : V \ {p} → Pn−1, q '→ [x1(q) : . . . : xn(q)].

Exercise 7.2.6. Prove

1. The exceptional loci E of σp is the projectivized tangent cone of V at p

E = σ−1
p (p) ∼= P(TCp(V )) ⊂ P(TpPn) ∼= Pn−1.

The restriction BlpV \ E → V \ {p} is an isomorphism.
2. σp : BlpV → V does not depend on the embedding V ⊂ Pn.
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3. For two different points p, q ∈ V we have

Blp(BlqV ) ∼= Blq(BlpV ).

⊓*

Remark 7.2.7. Quite frequently, Blp(V ) ∼= πp(V \ p) ⊂ Pn−1. For example,
if V ⊂ Pn is projective and no trisecant line of V passes through p. The
last condition can be achieved, for example, by considering a suitable high
Veronese image Vd = ϕd(V ) of V . Such image is cut out by quadrics, hence
any trisecant would be contained in Vd, but Vd contains no line.

Example 7.2.8 (Cubic Scroll). Consider the Veronese surface V2 = ϕ2(P2) ⊂
P5. With coordinates [x2 : y2 : z2 : xy : xz : yz] = [w0 : . . . : w5], the ideal of
V2 is defined by the 2 × 2 minors of

⎛

⎝
w0 w3 w5

w3 w1 w4

w5 w4 w2

⎞

⎠ .

To find the equation of the image Blp(P2) ∼= F ⊂ P4 of V2 under the projection
from p = [1 : 0 : 0 : 0 : 0 : 0] = ϕ2([1 : 0 : 0]), we eliminate w0 from the
equations, which leaves us with the 2× 2 minors of

(
w3 w1 w4

w5 w4 w2

)
.

(Check this!). The resulting surface has degree 3 and is ruled by the lines
L[λ:µ] = V(λw3 + µw5,λw1 + µw4,λw4 + µw1). Thus F is a ruled sur-
face, i.e. a surface ruled by lines. We call F the cubic scroll. Note, that
E = V(w1, w4, w2) is a further line on F . There are no more lines on F .
However, there is a 2-dimensional family of conics on F . One of them is
C = V(w3, w5, w2

4 − w1w2). The pencil of lines joins points of E and C.

It corresponds to the strict transform of the pencil of lines V(λx+µz) through
p = [1 : 0 : 0] ∈ P2. Each conic is the image of a line L ⊂ P2 which does not
pass through p = [1 : 0 : 0]. The exceptional curve of the blow-up is E.

Exercise 7.2.9. Let F ⊂ P4 be a non-degenerate smooth surface of degree 3.
Prove that F is projectively equivalent to the cubic scroll. Hint: Project from
a point on F . ⊓*
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Examples of further ruled surfaces are the rational normal scrolls: For
0 ≤ b ≤ a ≤ n−1 with a+ b = n−1 consider the surface S(a, b) ⊂ Pn defined

rank
(

x0 x1 . . . xa−1 y0 . . . yb−1

x1 x2 . . . xa y1 . . . yb

)
< 2

in suitable coordinates [x0 : x1 : . . . : xa : y0 : . . . : yb] on Pa+b+1 = Pn, i.e. we
consider the ideal I generated by all 2×2 minors of the matrix above. It is easy
to see that k[x0, xa−y0, yb] ↪→ k[x0, . . . , yb]/I is a projective Noether normal-
ization, and hence S(a, b) a surface of minimal degree n−1, compare Exercise
7.2.10. Moreover I = I(S(a, b)) follows from the minimality of the degree by a
counting argument with the initial ideal L(I) in appropriate coordinates. In
particular we see that these surfaces are arithmetically Cohen-Macaulay. For
b > 0 the surface S(a, b) is smooth, and has the following description: Choose
disjoint linear subspace Pa, Pb ⊂ Pn and rational normal curves ϕa : P1 ↪→ Pa

and ϕb : P1 ↪→ Pb of degree a and b respectively. Then S(a, b) is ruled by the
family of lines joining ϕa(p) and ϕb(p), i.e.

S(a, b) =
⋃

p∈P1

ϕa(p)ϕb(p).

The surface S(n − 1, 0) is the projective cone over the rational normal curve
in Pn−1.

With this notation, the cubic scroll is projectively equivalent to S(2, 1).
The surface S(1, 1) is a quadric in P3.

**** fix ****Move the next exercise to section 6 after Bertini and Bezout

Exercise 7.2.10. Prove the following:

1. A non-degenerate variety X ⊂ Pn of dimension r has degree deg X ≥
n− r + 1.

2. A non-degenerate curve C ⊂ Pn of degree n in Pn is projectively equivalent
to the rational normal curve . Hint: Project from a point on C ⊂ Pn.

The complete classification of varieties of minimal degree is due to Bertini ?,
see also Harris ?. A generalization to algebraic sets is the topic of a recent
paper by Hulek, Eisenbud and Popescu ?. For surfaces, we return to this topic
in Exercise 7.2.11. ⊓*

Exercise 7.2.11. [Surfaces of minimal degree] Let X ⊂ Pn be a non-
degenerate irreducible surface of minimal degree d = n − 1. Prove that X
is projectively equivalent to either a rational normal scroll S(a, b) or to the
Veronese surface P2 ↪→ P5.

Exercise 7.2.12. Let {p1, . . . , pr} ⊂ P2 be a collection of r points. Prove
that the image of P2 under the rational map defined by L(d, p1, . . . , pr) for
d ≥ r + 2 is isomorphic to the blow-up of P2 in the points p1, . . . , pr (in any
order). ⊓*
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Returning to the question, how to improve singularities, we can formulate
now:

Theorem 7.2.13 (Embedded Resolution of Singularities). Let C ⊂ A2

be a plane curve. There exists a sequence of blow-ups

X(k) σk−→X(k−1)σk−1−→ . . .
σ2−→X(1) σ(1)−→A2,

such that the strict transform C(k) of C in X(k) is smooth.

We call C(k) a desingularization of C.

Example 7.2.14. Consider C ⊂ A2 defined by f(x, y) = y4 − x7. The first
strict transform is entirely contained in X0 and defined by f ′(x, z) = z4 − x3,
because f(x, zx) = x4(z4 − x3). Since f ′(uz, z) = z3(z − u3) the second strict
transform C′′ is defined by z − u3. Hence C′′ is smooth.

z = u3

→

z4 = x3

→

y4 = x7

C′′ is parametrized by u '→ (u, z) = (u, u3). This gives for C′ the
parametrization u '→ (x, z) = (uz, z) = (u4, u3). Finally, for C we obtain
u '→ (x, y) = (x, xz) = (u4, u7).

Remark 7.2.15. In general the resolution of singularities via blowing-up gives
as in the example above, a method to compute a power series parametrization
of the various branches of a singularity. For each point p ∈ C(k) we can solve
the final equation f (k) locally with with the implicit function theorem to
obtain a (formal) parametrization t '→ (ak(t), bk(t)) ∈ C(k) with ak, bk ∈ k[[t]],
because p is a smooth point of C(k). Then successive substitutions give a
parametrization

t '→ (a(t), b(t)) ∈ C

with a, b ∈ k[[t]] power series of higher order. If char(k) = 0 and mult(a(t)) =
n, we can achieve that a(t) = tn with a change of coordinates in k[[t]]. The
normalized parametrization

t '→ (tn, b(t))

is uniquely determined up to an n-th root of unity by the branch. It is called
the Puiseux expansion of the branch of the singularity. The set of branches
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of the singularity, is the set of such parametrizations. One can show that there
is a bijection between the branches and the irreducible factors of f ∈ k[[x, y]]
in the powers series ring. For the classical algorithm to compute Puiseux
expansions based on the Newton polytope of f we refer to Brieskorn-Knörrer
? or Walker ?. An implemantation can be found in SINGULAR.

Exercise 7.2.16. Compute a Puiseux expansion of V(y4 − x6 + x7). ⊓*

Although, the statement of Theorem 7.2.13 is local, we will use some
global, i.e. projective arguments to deduce it. The problem is to make precise
what has improved after one blow-up, and to establish that we reach a smooth
curve after finitely many steps.

Key to our proof is a detailed study of the quadratic transformation.

Definition 7.2.17. The birational map

q : P2 !!" P2, [x : y : z] '→ [
1
x

:
1
y

:
1
z
] = [yz : xz : xy]

is called quadratic (Cremona) transformation. p0 = [1 : 0 : 0], p1 = [0 :
1 : 0] and p2 = [0 : 0 : 1] are called the fundamental points of q. The rational
map q is not defined in these points. For a curve C ⊂ P2, we call the closure
of the image C′ = q(C \ {p0, p1, p2} the strict transform of C.

Remark 7.2.18. More generally, a Cremona transformation is a birational
transformation P2 !!" P2. One can show, that the group of Cremona trans-
formations is generated by linear automorphisms and the quadratic transfor-
mation. Max Noether ? gave an incomplete proof of this fact. The discovery
of the gap and the completion of the proof is due to Castelnuovo ?.

To get an idea about the geometry of this transformation, it is convenient
to work with an affine chart, which contains all three fundamental points.
In other words we can define a quadratic tranformation for any set three
non-colinear points, by composing q with a suitable linear automorphisms.

**** fix ****Move to Chapter 5 make an exercise out of this
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In terms of affine coordinates pj = (xj,1, . . . , xj,2) ∈ A2 of the fundamental
points a point with homogeneous coordinates [λ0 : λ1 : λ2] say normalized such
that

∑
j λj = 1 corresponds to the affine point

p =
∑

j

λjpj

and the proper real convex combination in case of real fundamental points
correspond to the inner part of the triangle. Thus homogeneous coordinates
generalize convex coordinates from convex geometry.

Proposition 7.2.19. The graph of the quadratic transformation is isomor-
phic to the blow-up of P2 in the 3 fundamental points. The projection onto
the second factor is again a blow up of three points, the strict transforms of
the 3 fundamental lines Lij = pipj are the exceptional curves of the second
projection.

Proof. The graph G is defined as the closure of the graph of the morphism
U → P2, which represents Q. We use coordinates [x:y:z] and [u:v:w] on P2×P2.
The graph is defined by

rank
(

yz xz xy
u v w

)
< 2

outside the fundamental points. However, over the fundamental points p0, p1, p2

we need additional equations. If J denotes the ideal of minors of the matrix
above then I = J : ⟨xy, xz, yz⟩∞ is the defining ideal of the graph. We claim
I = ⟨vy − ux, ux − wz⟩, which we can easily verify with computer algebra.
The inclusion I ⊃ ⟨vy − ux, ux − wz⟩, which is all we need in the following,
follows from the identiy

(vy − ux)

⎛

⎝
yz
xz
xy

⎞

⎠ = (vyz − uxz, wyz − uxy, wxz − vxy)

⎛

⎝
y x 0
0 0 x
0 0 −y

⎞

⎠

and a similar calculation for the second generator.
Now restistricted to the open set G21 = G∩{z = 1, v = 1} = G∩(U2×U1),

we obtain k[G21] ∼= k[x, y, u, w]/(y − ux, w − ux) ∼= k[x, u] and the projection
onto the first factor is

A2 ∼= G21 → U2
∼= A2, (x, u) '→ (x, ux).

This is the chart of a blow-up with exceptional curve defined by x = 0. The
projection onto the second factor

A2 ∼= G21 → U1
∼= A2, (x, u) '→ (u, ux).

is similarly a chart of a blow-up with exceptional curve this time defined by
u = 0, which is the strict transform under the first projection of the line
V (y) ⊂ U2 to G21, because y = ux on G21. Since the sets Gij = G∩ (Ui ×Uj)
for i ̸= j cover G the proposition follows. ⊓*
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Corollary 7.2.20. The graph of the quadratic transformation is the intersec-
tion

G = (P2 × P2) ∩ P6 ⊂ P8

of a codimension 2 linear subspace with the Segre product.

Proof. Indeed, G is defined by two linear equations in the Segre embedding of
P2 × P2 ⊂ P8. In suitable coordinates z0, . . . , z6 of P6 the homogeneous ideal
is given by the 2× 2 minors of the matrix

⎛

⎝
z0 z1 z2

z3 z0 z4

z5 z6 z0

⎞

⎠ .

⊓*

Exercise 7.2.21. Let denote p0 = [1 : 0 : 0], p1 = [0 : 1 : 0] ∈ P2. The linear
system L(2; p0, p1) = ⟨xy, xz, yz, z2⟩ defines a birational map ϕ : P2 !!"
P1 × P1 ⊂ P3. Describe the graph of ϕ and the exceptional curves of both
projections. **** fix ****add picture of the projection with all the lines! ⊓*

If we want to study the strict transform of an affine plane curve in a blow-
up of the origin we can equivalently study the quadratic transformation with
one of the fundamental points in the origin of the corresponding projective
curve. If the fundamental lines are not tangent to C, then the intersection
points with the exceptional curve correspond to the intersection points of the
transform q(C) with the corresponding new line in the image.

How does C change under the transformation?

**** fix ****add equations

Note, that the circle in one side is the strict transforms of the line at infinity
of the visible chart on the other side. The original curve has an non-ordinary
triple point, the strict transform has an ordinary triple point.
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Proposition 7.2.22. Let C be a plane curve of degree d which has multiplicity
r0, r1, r2 in the fundamental points p0, p1, p2 of a quadratic transformation q.
Then q(C) has degree 2d − r0 − r1 − r2 and three new singular points with
multiplicity d − r1 − r2, d− r0 − r2 and d − r0 − r1.

Proof. The preimage q−1(L) of a general line is a conic through the 3
fundamental points with no common tangent with C in these points. So
deg C′ = 2d − r0 − r1 − r2. The singular points in the fundamental points
of q−1 have multiplicity d− ri − rj , because this is the intersection number of
the strict transform of pipj with C in G. ⊓*

Theorem 7.2.23 (Cremona resolution). k = k. Every irreducible plane
curve can be transformed by a sequence of quadratic transformations into a
plane curve with only ordinary singularities.

Proof. Let C be an irreducible plane curve of degree d. Then by the bound
on the number of singular points 5.4.12, the difference

(
d− 1

2

)
−
∑

p∈C

(
rp

2

)

is non-negative. We compute how this expression changes under a suitable
quadratic transformation. Let p0 ∈ C be a singular point of multiplicity r.
We like to choose p1, p2 /∈ C such that the fundamental lines are not tangent
to C and that the fundamental lines intersect C in smooth points outside p0.
This is possible over a field of char(k) = 0, because not every line through
p0 is tangent to C by Exercise 6.6.7. If char(k) ̸= 0 then possibly every line
through p0 is a tangent line to C, see Remark 6.6.8, and we might need an
additional quadratic tranformation, as we will explain at the end of the proof.
Assume now, that we can find p1 and p2 satisfying the desired requirement
for the fundamental triangle p0, p1, p2. Then the strict transform C′ = q(C)
has degree d′ = 2d− r and three new ordinary singular points of multiplicities
d, d − r and d− r. Since

(
2d − r − 1

2

)
−
(

d

2

)
− 2
(

d − r

2

)
=
(

d− 1
2

)
−
(

r

2

)
,

we have (
d′ − 1

2

)
−
∑

p′∈C′

(
r′p
2

)
≤
(

d − 1
2

)
−
∑

p∈C

(
rp

2

)
,

because the contribution of the singular points outside the fundamental tri-
angles is unchanged. The inequality is strict, if the strict transform of C in
the blow-up of P2 at p0 is not smooth at some points of the exceptional curve
E. Thus such quadratic transformations based at some non-ordinary point ei-
ther decreases the difference above (in which case the number of non-ordinary
points might increase), or decreases the number of non-ordinary points. Since
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both numbers are non-negative, we obtain a curve with only ordinary singu-
larities after a finite number of transformations. This completes the proof over
a field of characteristic zero.

If char(k) ̸= 0, we might need additional steps. Suppose that everline through
p0 is tangent to C somewhere. Then the dual curve of C is the line dual to
p0. We claim, that after a general quadratic transformation q based at points
q0, q1, q2 outside C, the strict transform C′ of C, which now has degree 2d and
three more ordinary singular points of multiplicity d, has q(p0) ∈ C′ no longer
as a “strange point”. A line through q(p0) corresponds to a conic D through p0

and q0, q1, q2. We choose such a nowhere tangent conic D through p0 first and
then q0, q1, q2 ∈ D. Consider the blow-up of P2 at p0. That is the ruled surface
F of Example 7.2.8. A smooth conic through p0, which is nowhere tangent
to C, corresponds to a transversal hyperplane section of the strict transform
C′′ ⊂ F ⊂ P4 of C in F . Such hyperplane exists by Bertini’s Theorem 6.6.1.
Pick such D. Furthermore, pick a general line L transversal to C∪D. The two
intersection points q1, q2 of D∩L are not strange points of C, because C has at
most one strange point. So only finitely many lines through q1 respectively q2

are tangent to C, and we can choose one of the infinitely many points q0 ∈ D,
such that q0q1 and q0q2 are neither tangent nor pass through a singular point
of C. The quadratic transformation based on q0, q1, q2 satisfies the assertion
that q(p0) is no longer a strange point, because D is not tangent. The number
of non-ordinary singular points and the difference

(
d− 1

2

)
−
∑

p∈C

(
rp

2

)

remains unchanged under q. Indeed
(

d− 1
2

)
=
(

2d− 1
2

)
− 3
(

d

2

)
.

Thus, the induction goes through also for fields of characteristic ̸= 0. ⊓*

Proof of the resolution of singularities 7.2.13. We first treat the case of an
irreducible plane curve. The key is to compare the blow-up of P2 at a point p0

with a quadrtic tranformation q based on a triangle p0, p1, p2, which includes
p0. By Proposition 7.2.19, points on the exceptional curve E of the blow-up
of P2 at p0 correspond to the points on one of the fundamental lines in the
image of q with the exceptions of the two points on E, which correspond to
the direction of two fundamental lines p0p1 and p0p2. If the two lines p0p1 and
p0p2 are not tangent to C at p0 then every singularity of the strict transform
C′ of C in the blow-up is still visible under the quadratic tranformation. This
is satisfied in the Cremona resolution process. So we can keep track about
what happens at the succesive exceptional curves in a resolution process by
considering the corresponding fundamental lines in a Cremona resolution. The
additional quadratic transformation possibly needed, if char(k) ̸= 0, do not
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matter to us, because they only introduce ordinary singularities away from
our original singularities. By the theorem, we reach a situation where the
transformed curve has only ordinary singular points, and one more blow-up
for each remaining singular point will resolve these singularities. This proves
the resolution of singularities for irreducible plane curves.

If we have a reduced curve consisting of several components, then by the
preceeding result we may assume that all components are smooth after some
blow-ups. What remains, is to prove that two smooth curves C1, C2, which
intersect in a point p, can be separated by a sequence of blow-ups. We leave
it as an easy exercise to prove that two smooth curves which intersect with
multiplicity i(C1, C2, p) = m get separated after precisely m blow-ups. ⊓*

Exercise 7.2.24. Let C, D be two plane curve in A2, which are smooth in o.
Then ı(C, D; o) = m iff the strict transfoms C(k) and D(k) in X(k) intersect
exceptional curve E(k) of σk in the same point for k < m and in different
points for k = m, where

X(k) σk−→X(k−1) for 1 ≤ k ≤ m

denotes the blow up of the X(k−1) in the common point of C(k−1) and D(k−1)

on E(k−1) for k ≥ 2, and σ1 denotes the blow up of the point o ∈ X(0) = A2.

Corollary 7.2.25. k = k. The assertion of Theorem 7.2.23 holds for reduced
plane curves. ⊓*

Theorem 7.2.26 (Desingularization). Let C be a projective curve. There
exists a birational morphism

η : C̃ → C

from a smooth projective curve C̃. The smooth curve C̃ is unique up to an
unique isomorphism.

We call η : C̃ → C the desingularization of C and C̃ a smooth model
of the function field k(C).

Proof. We first assume that C is irreducible. By Theorem 3.5.2 C has bira-
tional map π : C !!" C′ ⊂ P2 onto a plane curve C′. Let σ : C̃ → C′ be an
embedded resolution of singularities 7.2.13. By Theorem 7.1.12, the birational
map π−1 ◦σ : C̃ !!" C extends to a morphism η : C̃ → C since C is projective.
For uniqueness, given two resolution of ηi : C̃i → C the morphism ϕ : C1 → C2

is the extension of the rational map η−1
2 ◦η1 : C1 !!" C2 according to Theorem

7.1.12. Hence this is the unique isomorphism which makes the diagram

C̃1

η1
,,+

++
++

++

ϕ !! C̃2

η2
&&&&

&&
&&

&

C
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commutative. Finally, if C is reducible, say C = C1 ∪ . . . ∪ Cr with irre-
ducible components Ci, then the disjoint union of their desingularizations
C̃ = C̃1 ∪ . . . ∪ C̃r with η : C̃ → C defined by η | eCi

: C̃i
ηi−→Ci ↪→ C is the

unique resolution of singularities. ⊓*

Corollary 7.2.27. Every curve is birational to a smooth projective curve.
⊓*

Exercise 7.2.28. Prove that the smooth model and the birational morphism
can be defined over the field of definition of the curve. ⊓*

Definition 7.2.29. Let C be a smooth projective curve and C′ ⊂ P2 a plane
curve birational to C of degree d with only ordinary multiple points. Then

g :=
(

d− 1
2

)
−
∑

p∈C′

(
rp

2

)

is called the geometric genus of C.

We will see later in Proposition 8.2.1, that the geometric genus of C is well
defined, i.e. independent of the choice of C′. To make the definition precise
at this point, we should speak of g as the geometric genus of the plane model
C′.

By Proposition 5.4.13 a curve with geometric genus g = 0 can be
parametrized by P1 (in case of an algebraically closed field).

Remark 7.2.30. Desingularization of higher dimensional varieties is much more
involved. The existence of a desingularization for varieties of any dimension
was proved by Hironaka ? over fields of characteristic char(k) = 0. His precise
result is that for any variety X there exists a birational morphism X̃ → X
from a smooth variety X̃ such that the restriction η : X̃ \ η−1(sing X) →
X \ sing X is an isomorphism. Resolution of singularities in positive charac-
teristic is known for dimension dim ≤ 3 and but open otherwise.

The first Computer Algebra implementation of Hironaka’s algorithm is due
to Bodnar and Schicho ?. A SINGULAR implementation was given by Frühbis-
Krüger and Pfister ? . These implementation are based on Villarmajor’s ?
variant of Hironaka’s algorithm.

For some application of the resolution of singularities the theory of alter-
ations due to Johan de Jong ?? is sufficient: There always exists a dominant
surjective morphism η : X̃ → X from a smooth variety X̃ of the same dimen-
sion as X . In other words, for a function field k(X) of any characteristic there
exists a finite field extension k(X̃) ⊃ k(X), which has a smooth projective
model.

Another feature that is different in higher dimension, is that there exist no
unique smooth model of a function field. We have seen that P2 and the cubic
scroll F from Example 7.2.8 are both smooth projective models of k(x1, x2).
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Indeed in dimension dim ≥ 2 we can always blow up a smooth point (or a
smooth subvariety of codim ≥ 2) to obtain a larger smooth model than a
given one. Castelnuovo ? proved that a surface has a smooth minimal model,
i.e. a smooth model, which does not arise as the blow up of a smooth surface,
and that this model is unique unless the the surface is birational to P2 or to
C × P1, see Beauville ? or Barth-Hulek-Peters-van de Ven ? .

For higher dimensional varieties starting with the work of Mori ? , the
search for suitable minimal models, known under the heading minimal model
program, is an important area of current research in birational geometry.
After an intense period of work on this program Birkar, Cascini, Hacon and
McKernan ? finally established the existence of minimal models. The minimal
model program is main tool to extend the so called Enriques classification of
surfaces to higher dimensions. All these topics are far beyond the scope of this
book.

7.3 Divisors and Rational Maps on Curves

Let C ⊂ Pn be a smooth projective curve. We want to describe morphisms
C → Pr. Key ingredient in our description is the concept of divisors.

Definition 7.3.1. Let C be a smooth projective curve. A divisor on C is a
formal finite sum

D =
s∑

j=1

nipi ,

where the ni ∈ Z are integers and the pi are points of C. The set of divisors

Div(C) = {D =
∑

p∈C

npp | all but finitely many np = 0}

is an abelian group, the free abelian group generated by the points of C. The
degree of a divisor D =

∑
npp is deg D =

∑
np. This make sense, because

only finitely many np are non-zero for a given divisor.

deg : Div(C) → Z

is a group homorphism. The support of a divisor D =
∑

npp is the set
supp(D) = {p ∈ C | np ̸= 0}

Example 7.3.2. Let f ∈ k(C) \ {0} be a rational function. Then the divisor
of zeroes and poles of f is

(f) =
∑

p∈C

vp(f)p .

Divisors of rational functions are called principal divisors.
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For a smooth curve C ⊂ Pn and a homogeneous polynomial h ∈ k[x0, . . . , xn]
which does not vanish on any component of C, we define the intersection in-
tersection divisor is

C.h =
∑

p∈C∩H

ı(C, h; p)p,

where ı(C, h, p) = lengthOC,p/hp = dimk OPn,p/(I(C) + h)OPn,p denotes the
intersection multiplicity. Here (I(C) + h)OPn,p denotes the ideal generate by
dehomogenization of I(C) and h in any affine chart of Pn which contains p.
If h is the defining equation of an hypersurface H then we write also

C.H = C.h

Remark 7.3.3. Note, that

deg(C.h) = deg C · deg h

holds by Bézout’s Theorem 6.4.33.
Since every rational function f on C is quotient of homogeneous polyno-

mials of the same degree f = g/h, every principal divisor is difference of two
intersection divisors:

(f) = C.g − C.h.

Hence principal divisors have degree 0. In particular, a rational function on a
smooth projective curve has as many poles as zeroes counted with multiplic-
ities.

Remark 7.3.4. The concept of divisors plays also a crucial role in higher di-
mension. The group of Weil divisors on a variety X of higher dimension
is the free abelian group generated by codimension 1 subvarieties. We will
make little use of this concept. However it is convienent to associate to an
homogeneous polynomial h ∈ k[x0, . . . , xn] the divisor

H = µ1H1 + . . . + µsHs ∈ Div(Pn)

in case that h = uhµ1
1 · . . . ·hµs

s is factorization in irreducibles and Hk = V(hk)
the corresponding subvarieties.

Since for a smooth curve all local rings OC,p are DVRs we have the identiy

C.h = µ1C.H1 + . . . + µsC.Hs.

It is natural to define C.H for a divisor H ∈ Div(Pn) as the right hand side
of this expression.

Example 7.3.5. Generalizing the intersection divisor, we define the pull back
divisor ϕ∗H as follows: For a morphism ϕ : C → Pr and a divisor H =
µ1H1 + . . . + µsHs ∈ Div(Pr) defined by a homogeneous polynomial h, with
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no component of H containing the image of a component of C, the pull back
divisor ϕ∗H as

ϕ∗H :=
∑

vp(h)p =
s∑

k=1

µkϕ
∗Hk,

where we regard h as a function in a neighborhood of p ∈ C by dehomogenizing
h '→ hϕ(p) in an affine neighborhood of ϕ(p) ∈ Pn and pullback hϕ(p) '→
ϕ∗(hϕ(p)) = hϕ(p) ◦ ϕ. Since dehomogenization is well-defined up to a unit in
Oϕ(p), the vanishing order vp(ϕ∗hp) is independent of the choice of hϕ(p).

Thus, ϕ∗H generalizes the intersection divisor C.H for C, H ⊂ Pn.

Definition 7.3.6. Two divisors D, D′ ∈ Div(C) are linearly equivalent,
D ≡ D′, if there is a function f ∈ k(C), such that D −D′ = (f).

Example 7.3.7. If C ⊂ Pn and g, h are homogeneous forms on Pn of the same
degree not containing C then

C.g ≡ C.h .

Indeed, we have (g/h) = C.g − C.h .

Definition 7.3.8. A divisor D =
∑

npp is effective, D ≥ 0, if all np ≥ 0.
If D ∈ Div(C) is a divisor then the complete linear system of divisors
linear equivalent to D is

|D| = {D′ ∈ Div(C) | D′ ≥ 0 and D ≡ D′}.

We will see, that either |D| is empty or that |D| carries the structure of a
projective space.

Definition 7.3.9. Let D ∈ Div(C). We call the vector space

L(D) = {f ∈ k(C)∗ | (f) + D ≥ 0} ∪ {0}

the space of rational functions with poles up to order D, or the Riemann-
Roch space of D.

ℓ(D) = dimL(D)

denotes its dimension.

The name Riemann-Roch space is motivated by the prominent role of
the Theorem of Riemann-Roch 8.3.2 in the theory of these function spaces. If
D =

∑
p∈C npp is not effective, say nq < 0 for some point q ∈ C then functions

f ∈ L(D) have a zero of order at least nq at q. So the name function with
poles up to order D is a bit misleading. Since by Corollary ?? we may assume
for most purposes that D is effective, we stick to this abuse of notation.
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Lemma 7.3.10. Let C be a smooth irreducible projective curve and let D ∈
Div(C) be a divisor on C. i) If p ∈ C is a point, then L(D − p) ⊂ L(D) is a
subspace of codimension at most 1.
ii) L(D) = 0 if deg D < 0. In case deg D = 0 the Riemann-Roch space L(D)
is one-dimensional iff D is a principal divisor.
iii) ℓ(D) ≤ deg D + 1

Proof. i) If p /∈ supp(D) then f ∈ L(D) lies in L(D − p) iff f vanishes at p.
Since f(p) = 0 gives one linear equation on L(D) the result follows. In case
p ∈ supp(D), the argument is similar. One more coefficient in the Laurent
expansion of f at p has to vanish.
ii) Since an effective divisor have degree ≥ 0, an f ∈ L(D)\{0} gives deg D =
deg(f)+deg D = deg((f)+D) ≥ 0. If equality holds then (f)+D = 0, hence
D = (1/f).
iii) Suppose L(D) ∋ f ̸= 0. If we pick a point p /∈ supp(D), where f does
not vanish then f /∈ L(D − p). Hence, ℓ(D − p) = ℓ(D)− 1. We can continue
substracting points until we reach ℓ(D− p1 − . . .− pr) = 1 after r = ℓ(D)− 1
steps. Then by ii) deg D − r ≥ 0, i.e, ℓ(D) − 1 ≤ deg D. ⊓*

Corollary 7.3.11. P(L(D)) ∼= |D| via f '→ (f) + D.

Proof. We apply ii). ⊓*

Corollary 7.3.12. If D ≡ D′ then L(D) ∼= L(D′) via f '→ fg where g ∈
K(C) is the rational function with (g) = D′ − D. The function g and the
isomorphism is unique up to a scalar factor λ ∈ k∗.

Proof. We apply ii). ⊓*

Definition 7.3.13. A linear system of divisors on a smooth projective
curve is a linear subspace P ⊂ |D| of a complete linear system. If a point p is
common to all divisors of a linear system P then p is called a base point of
P . A linear system without base points is called base point free.

Example 7.3.14. A complete linear system |D| is base point free iff L(D−p) ⊂
L(D) has codimension 1 for every point p ∈ C.

Theorem 7.3.15. Let C be a smooth projective curve. There is a bijection
⎧
⎨

⎩

base point free
linear systems
of dimension r

⎫
⎬

⎭←→

⎧
⎨

⎩

non-degenerate
morphisms
ϕ : C → Pr

⎫
⎬

⎭ / PGL(r + 1)

Proof. Given ϕ, then ϕ∗V(x), where x is a linear form on Pr, gives an r-
dimensional system without base points, because V(x0, . . . , xr) = ∅.

Conversely, given a linear system P ⊂ |D|, say with D ∈ P , we can consider
the subspace F ⊂ L(D) with
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F = {f ∈ L(D) | (f) + D ∈ P}

Then 1 ∈ F and if 1, f1, . . . , fr is a basis, then the rational map given by this
tuple gives a morphism defined at all points outside the support of D. If we
extend across these points, we see that D−ϕ∗V(x0) is precisely the divisor B
of base points of the system P . The base point free system of this morphism
is P −B = {D −B | D ∈ P}. The result follows. ⊓*

Corollary 7.3.16. Given a non-degenerate projective curve C ⊂ Pr, there
exists an n0 such that for n ≥ n0 every curve C′ ⊂ Pn, which can be projected
birationally onto C from linear subspace of dimension n− r − 1 disjoint from
C′, is degenerate.

Proof. Consider a desingularization η : C̃ → C and D = η∗H with H = V(x0)
a hyperplane. Then n0 = ℓ(D) has this property. ⊓*

Thus to describe morphisms C → Pr, we first consider complete linear sys-
tems |D| of divisors and their function spaces L(D). The second step amounts
to study projections from subspaces.

We denote by
ϕD : C → Pr

the morphism corresponding to a complete linear system |D|.
Note, that ϕD = ϕD−B where B denotes the divisor of base points of |D|.

Theorem 7.3.17. Let |D| be a base point free complete linear system of di-
visors of dimension r. ϕD : C → Pr is an embedding iff L(D− p− q) ⊂ L(D)
has codimension 2 for every pairs of points p, q ∈ C.

Definition 7.3.18. A divisor D (or better the divisor class of D) is called
very ample if D satisfies the equivalent conditions of the theorem.

Proof. Since |D| is base point free, every L(D − p) ⊂ L(D) has codimension
1. If p ̸= q and L(D − p − q) ⊂ L(D) has not codimension 2 iff L(D − p) =
L(D−p−q), which means that p and q have the same image. Thus codimension
2 for all p, q ∈ C with p ̸= q is equivalent to ϕD : C → Pr being injective.
However, injectivity does not imply, that C is isomorphic to the image.

Example 7.3.19. The map

P1 → P2, [1 : t] '→ [1 : t2 : t3]

is an injection but the image V(xz2 − y3) is not isomorphic to P1, due to the
cusp.

Our assumption is L(D − p − q) ⊂ L(D) has codimension 2 for every
p, q ∈ C including the case p = q.
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To conclude, that for an injective morphism C → C′ = ϕ(C) ⊂ Pr, the
inverse map ϕ−1 : C′ → C is a morphism, we need that ϕ∗ : OC′,ϕ(p) → Op is
surjective. (Injective is clear by definition of the image.)

For this we consider a rational functions f0 ∈ L(D) \ L(D − p) and f1 ∈
L(D−p)\L(D−2p) and suitable homogeneous coordinates [x0 : x1 : . . . : xr ]
on Pn. Since ϕ : C → C′ is dominant and injective we have k(C′) ∼= k(C)
and we may regard f0, f1 both as rational function both on C and C′. The
quotient t = f1/f0 = ϕ∗(x1/x0) is an element of mC′,ϕ(p) ⊂ OC′,ϕ(p) ⊂ OC,p

because in our coordinates x1/x0 ∈ mPn,ϕ(p) ⊂ OPn,ϕ(p). On the other hand,
t is a generator of the maximal ideal mp ⊂ OC,p.

Since C → C′ is a finite morphism, OC,p is a finite OC′,ϕ(p)-module by The-
orem ??. We compare generators of these modules. We have mC′,ϕ(p)OC,p =
mp, because t ∈ mC′,ϕ(p) ⊂ ⟨t⟩ = mp Hence

k ∼= OC′,ϕ(p)/mC′,ϕ(p) → OC,p/mC′,ϕ(p)OC,p
∼= OC,p/mp

∼= k

is an isomorphism. By Nakayama’s Lemma 4.2.19, the inclusion OC′,ϕ(p) ↪→
OC,p is an isomorphic of OC′,ϕ(p)-modules as well. Hence we have equality.

Conversely, if ϕ is an embedding, then the image is smooth at p and we
can find a hyperplane which passes through p but is not tangent. The pullback
of its equation gives a divisor D′ ∈ |D| with np = 1 and L(D−2p) ! L(D−p)
follows. ⊓*

7.4 Riemann’s Inequality

Let C ⊂ Pn be a smooth projective curve and let D =
∑

nipi ∈ Div(C) an
effective divisor of degree d. We want to compute the complete linear series
|D|, or equivalently, the space L(D). The idea is simple.

1. Let H be a hypersurface, which does not contain C, but passes through
the points pi with intersection multiplicity ı(C, H ; pi) ≥ ni.
2. Condider the residual part E = H.C − D. E is an effective divisor on C

of degree deg C · deg H − d.
3. Then any hypersurface H ′, which does not contains C but intersects C

in E, more precisely with H ′.C ≥ E, gives a divisor D′ = H ′.C −E, which is
linearly equivalent to D, because the quotiont of the equations h′/h ∈ L(D) ⊂
k(C).

Example 7.4.1. Consider the smooth projective space curve C, defined by the
affine equations

x2 + y2 − 1 = (x − 1)1 + z2 − 1 = 0.
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We compute divisors linearly equivalent to D = p1 + p2, where the points
have affine coordinates p1,2 = (1

2 ,− 1
2

√
(3),± 1

2

√
(3)). C has degree 4. The

hyperplane with the affine equations H = x − 1
2 passes D. The residual part

of the intersection C ∩ H is E = p3 + p4 with p3,4 = (1
2 , 1

2

√
(3),± 1

2

√
(3))

Thus, 1 and y+ 1
2

√
(3)

x− 1
2

are elements of L(D). The proof of the Theorem 7.4.2
below will give, that this is a basis of L(D) in particular ℓ(D) = 2.

In general, it is not true that this approach will give the complete lin-
ear series. However, if we choose the hypersurface H of degree larger than
a constant m0, which depend only on C, the methods works. A key fact is
the following theorem. For a linear form x not vanishing on (any component
of) C, we denote (abusing of notation) H = C.x ∈ Div(C) the intersection
divisor, and speak of the hyperplane class of C ⊂ Pr.

Theorem 7.4.2 (Completeness of hypersurface systems). Let C ⊂ Pr

be a smooth irreducible projective curve, and let H ∈ Div(C) be a divisor
representing the hyperplane class. Then, there exists a constant m0, such that
for m ≥ m0 the complete linear system |mH | is cut out by hypersurfaces of
degree m.

Proof. We may assume, that C ⊂ Pr spans Pr. Then Hi = C.xi is a divisor
in | H | for each coordinate function xi. Let D ∈ |mH |. Then D ≡ mHi, which
means that there exist a rational function fi ∈ k(C), such that
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(fi) = D −mHi.

The fractions fi/fj satisfy

(fi/fj) = D −mHi − (D −mHj) = m(Hj −Hi) = (xm
j /xm

i ).

Changing the fi by suitable constants, this gives

fi/fj = xm
j /xm

i for all i, j.

i.e. f = xm
i fi is a well defined homogeneous element in the field of fraction

of the homogeneous coordinate ring R = k[x0, . . . , xn]/IC of C. Since D is
effective, fi is regular on C \ V(xi). Thus, by Proposition 2.6.15, fi lies in
the affine coordinate ring of C ∩ Ui and fi = Fi/xN

i for some homogeneous
element Fi ∈ k[x0, . . . , xn]/IC of degree N . We may assume, that N is the
same for each i. Thus,

xN
i f = xN+m

i fi = xm
i Fi ∈ k[x0, . . . , xn]/IC .

The following proposition finishes the proof.

Proposition 7.4.3. Let R = k[x0, . . . , xn]/p be the homogeneous coordinate
ring of a variety. There exists an m0 such that for m ≥ m0

{
f ∈ Q(R)

xN
0 f, . . . , xN

n f ∈ RN+m

}
=⇒ f ∈ Rm

holds.

move *** the following defn

Definition 7.4.4. An element m ∈ M in a module over some ring A is a
torsion element if am = 0 for some non zero divisor a ∈ A. M is torsion free,
if 0 ∈ M is the only torsion element.

We actually proof a more general result. Consider a Noether normalization
k[y0, . . . , yr] ↪→ R = k[x0, . . . , xn]/p induced by linear forms yj . We may
assume that the yi are among the coordinates x0, . . . , xn This makes R into
a finitely generated graded torsion free k[y0, . . . , yr]-module.

Our proof works for torsion free S = k[y0, . . . , yr]-modules. Let M be a
graded finitely generated torsion free module over S = k[y0, . . . , yr], and let

MQ(S) = M [U−1]

denote the localization of M in U = S \ {0}. Then MQ(S) is a vector space
over the quotient field Q(S), and

M ↪→ MQ(S), g '→ g

1
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is injective, because M is torsion free.
Our element f is a homogeneous element of RQ(S), because f = fi/yN

i =
Fi/yN−m

i . Thus, Proposition 7.4.3 follows from the following more general
result.

Proposition 7.4.5. Let M be a finitely generated torsion free graded S =
k[y0, . . . , yr]-module. There exists an m0, such that for m ≥ m0

{
f ∈ MQ(S) and

∃N with yN
0 f, . . . , yN

r f ∈ MN+m

}
=⇒ f ∈ Mm

holds.

Proof. We first show, that M is a submodule of a finitely generated free S-
module. Let g1, . . . , gs be homogeneous generators of M . Then the elements
gj = gj/1 ∈ MQ(S) generate MQ(S). Thus, we may assume that g1, . . . , gt for
some t ≤ s form a basis of MQ(S). For the remaining ones, we have expressions
bigi =

∑
j≤t aijgj with homogenous elements bi, aij ∈ S.

Set b =
∏s

i=t+1 bi. The elements g′j = gj/b ∈ MQ(S) generate a graded free
submodule M ′ with

M ⊂ M ′ = ⊕t
j=1Sg′j ⊂ MQ(R).

As an intermediate step we claim

Claim. f ∈ MQ(S) and yN
i f ∈ M ∀i =⇒ f ∈ M ′

Indeed, if f =
∑t

j=1 ajg′j with aj ∈ Q(S) and bij = yN
i aj ∈ S then

yN
k bij = yN

i bkj ∈ S. Since S = k[y0, . . . , yr] is factorial, this implies yN
i

divides bij , i.e. aj ∈ S and f ∈ M ′, as claimed.
Consider now

M̃ = {f ∈ M ′ | ∃N such that yN
i f ∈ M ∀i},

Then M̃ is finitely generated as a submodule of M ′. Let g̃j be homogeneous
generators, and consider an integer Ñ , such that yÑ

i g̃j ∈ M for all i,j. Then
(y0, . . . , yr)(Ñ−1)(r+1)+1g̃j ⊂ M , since every monomial of degree (Ñ − 1)(r +
1) + 1 contains one of the yÑ

i as a factor. So (y0, . . . , yr)(Ñ−1)(r+1)+1M̃ ⊂ M
and

M̃m = Mm for m ≥ m0 = (Ñ − 1)(r + 1) + 1 + max{deg m̃j}.

⊓*

This completes the proof of Theorem 7.4.2.

Remark 7.4.6. If M is a free S-module, then M = M ′ = M̃ .
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Definition 7.4.7. The homogeneous coordinate ring R = k[x0, . . . , xn]/I(X)
of a variety X is called Cohen-Macaulay, if there exists a Noether normal-
ization k[y0, . . . , yr] ↪→ R, which makes R into a free k[y0, . . . , yr]-module.
The variety X ⊂ Pn is then called arithmetically or projectively Cohen-
Macaulay.

Remark 7.4.8. The Cohen-Macaulay property of a homogeneous coordinate
ring can be deduced from the initial ideal, if the homogeneous coordinates are
adapted to the Noether normalization by the same criterion as in the affine
case, compare Theorem 3.3.11.

The attribute arithmetic is used to avoid the conflict with the notion of
a Cohen-Macaulay variety, which means, that all local rings OX,p are Cohen-
Macaulay rings. See Eisenbud Eisenbud (1995) for a definition of Cohen-
Macaulay rings in general.

Exercise 7.4.9. Let C ⊂ P3 be a curve, whose homogeneous ideal I(C) =
⟨f, g⟩ is generated by two elements of degree d and e. Compute the degree and
the arithmetic genus of C. Prove that RC is Cohen-Macaulay by a Gröbner
basis argument analogous to the proof of Theorem 4.3.18.3. ⊓*

Corollary 7.4.10. If C ⊂ Pn is a smooth arithmetically Cohen-Macaulay
curve then hypersurfaces of degree m cut out a complete linear system for
every degree m.

Example 7.4.11. Hypersurfaces do not always cut out a complete linear series
as the following example shows. Let C ⊂ P1 × P1 ⊂ P3 be a smooth curve of
bidegree (2, 4). We prove, that the quadrics in P3 do not cut out the complete
system |2H | on C. There is a 10-dimensional vector space of quadrics in P3,
one of them is the equation of P1×P1, which vanishes on C. Thus quadric on
P3 give a 9-dimensional subspace of L(2H).

By Exercise 6.4.29, C has degree deg C = 6 and arithmetic genus pa = 3. A
quadric Q ̸= P1×P1 intersects C in 12 points. The residual intersection E of C
with a cubic through these points consists of 6 points. These points impose at
most 6 conditions on cubics in P3. So, there is a 20−6 = 14-dimensional vector
space of cubics through these points of which a four-dimensional subspace
consists of multiples of the equation of P1×P1. Thus we obtain that L(2H) =
L(3H − E) has dimension at least 14− 4 = 10, which is greater than 9.

Theorem 7.4.12 (Riemann’s inequality). Let D be a divisor on a smooth
projective curve of arithmetic genus pa. Then

ℓ(D) ≥ deg D + 1 − pa.

Proof. Let C ⊂ Pr be an embedding, and pC(t) = dt + 1 − pa the Hilbert
polynomial of this embedding. Suppose D = D1 −D2 is the difference of two
effective divisors. We consider a sufficient large degree m, such that hC(m) =
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pC(m) and (ID1 )m # (IC)m. Let Hm be a hypersurface of degree m, which
contains D1 but not C. Then

(Hm) = D1 + R

with deg R = md − deg D1. Now we consider all hypersurfaces H ′
m of degree

m which pass through R and D2. These hypersurfaces cut on C a system of
dimension ≥ dm + 1 − pa − (deg R + deg D2). There intersection with C is
C.H ′

m = D′ + R + D2. Since (H ′
m) − (Hm) is a principal divisor, we obtain

D′ + D2 ≡ D1, ie. D′ ≡ D. Thus, ℓ(D) ≥ dm + 1 − pa − (deg R + deg D2) =
dm− (dm−deg D1)−deg D2 +1− pa = deg D +1− pa by Bézout’s Theorem
6.4.33. ⊓*

Corollary 7.4.13. The arithmetic genus is independent from the embedding
C ↪→ Pr.

Proof. Let p(1)
a and p(2)

a be the arithmetic genera for different embeddings of
C. We want to prove p(1)

a = p(2)
a . By the completeness of hypersurface systems

of large degree (Theorem 7.4.2), the complete linear system |mH(1)| is cut out
by hypersurfaces of degree m, if m sufficiently large. So we have

ℓ(mH(1)) = m deg H(1) + 1 − p(1)
a

for large m. Riemann’s inequality based on the second embedding gives

ℓ(mH(1)) ≥ m deg H(1) + 1 − p(2)
a .

Thus p(2)
a ≥ p(1)

a . The opposite inequality follows by the same argument. ⊓*

Proposition 7.4.14. There exists a constant d0 = d0(C) such that

ℓ(D) = deg D + 1 − pa

holds for every divisor of degree deg D ≥ d0.

Proof. Let C ⊂ Pr be an embedding of the smooth curve, H the corresponding
hyperplane class. By Theorem 7.4.2 we know, that there exists an m > 0, such
that |mH | is cut out by hypersurfaces of degree m and ℓ(mH) = deg mH +
1 − pa. Consider any divisor D such that ℓ(D) ≥ deg D + 1 − pa > deg mH .
Then D is linear equivalent to a divisor D′ ≥ mH , because containing mH
imposes at most deg mH conditions. By the same argument, we have ℓ(mH) ≥
ℓ(D′) − (deg D′ − deg mH). Since ℓ(mH) = deg mH + 1 − pa, we obtain
deg D′ + 1 − pa ≥ ℓ(D′), and Riemann’s inequlity is an equality for D ≡ D′.
Thus, d0 = deg mH + pa − 1 is sufficient. ⊓*

Corollary 7.4.15. Every linear system |D| of degree d0 + 2 is very ample.

⊓*
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Corollary 7.4.16. Let C be a smooth irreducible projective curve and p1, . . . , pr ⊂
C a finite collection of points. Then C \ {p1, . . . , pr} is affine. In particular,
C \ {p} is affine for any point p ∈ C

Proof. Let d ≥ d0+2
r . The divisor D = dp1 + . . . + dpr is a very ample and

1 ∈ L(D) corresponds to the equation of a hyperplane H ⊂ P(L(D)), which
intersects C only in p1, . . . , pr (with multiplicity d in each point). ⊓*

Remark-Definition 7.4.17. A divisor D, where Riemann’s inequality is
strict is called special, the other divisors are called non-special.

The characterization of special divisors is the content of the Riemann-Roch
Theorem 8.3.2, which will also give the precise value d0.

The techniques so far give an algorithm to compute a complete linear
system, provided we know, how to choose m0. To obtain an honest algorithm
for the computation of complete linear series on smooth space curves, we need
to calculate m0. The Riemann-Roch Theorem 8.3.2 below implies that pa = g
and

ℓ(D) = deg D + 1 − g

for every divisor of degree deg D ≥ 2g − 1. Hence, d0 = 2g − 1 and we can
take m0, such that

1. m0 ≥ 2pa−1
d

2. hC(m) = dm + 1 − pa for m ≥ m0.

Note, that pa(C) and the smallest m0 satisfying 2.) can be calculated from
the Betti numbers of a free resolution via the formula

hC(m) =
∑

i

(−1)i
∑

j

βij

(
r + m− j

r

)
.

Exercise 7.4.18. Implement an algorithm with the following spezification in
your favorite computer algebra system.

Algorithm 7.4.19 (Computation of complete linear systems). .
Input: A smooth curve C ⊂ Pr and an effective divisor D on C given by their
ideal in Pr. Output: A basis for L(D).

⊓*

Example 7.4.20. Consider a smooth plane quartic C with 3 points. What is
the dimension of L(p1 + p2 + p3)?
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To give a concrete example, we take C, the
curve with the affine equation

2x(x2 − 1)(x− 2)+ x2y + y(y2 − 1)(y + 2) = 0

and the points p = (0,−1), q = (0, 0), r =
(0,−2) and s = (2, 0).

r

q
s

p

p

r

o

q

The space of rational functions
L(p + q + r) is two-dimensional,
because the 3 points lie on a line.
The pencil of lines through the
forth intersection point o = (0, 1)
cut out the complete linear sys-
tem and L(p + q + r) is spanned
by 1 and y−1

x ∈ k(C)

On the other hand, L(q + r + s)
is only one-dimenensional: The
conic E defined by the affine
equation

(x − 1)2 + 4(y + 1)2 = 5

intersects C in five further
points, and any conic, which
passes through these points, co-
incides with E by Bézout’s theo-
rem. Thus, L(q + r + s) = k . 4

s

r

q

5

3

2

1

2

Exercise 7.4.21. Let D be a divisor of degree deg D = d − 1 on a smooth
plane curve of degree d. Prove:

(1) 2 ≥ ℓ(D) ≥ 0.
(2) ℓ(D) = 2 holds iff D is linearly equivalent to d− 1 points on a line. ⊓*

Exercise 7.4.22. Let C ⊂ P1×P1 ⊂ P3 be a smooth curve of bi-degree (3, 3).
Describe all special effective D and their dimensions ℓ(D) on C. ⊓*
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Exercise 7.4.23. Compute m0 for a smooth curve of bi-degree (a, b) on P1×
P1 ⊂ P3. ⊓*

7.5 The δ-Invariant of Curve Singularities

In this section we study the δ-invariant of a curve singularity both from an
geometric and arithmetic point of view, and prepare the proof that these
invariants geometric and arithmetic delta invariant coincides. We start with
the geometric δ-invariant.

If C′ ⊂ P2 is an irreducible curve of degree d with non-ordinary sin-
gularities then the geometric genus might be strictly smaller than

(
d−1
2

)
−∑

p∈C′

(
rp

2

)
. In a sense, a non-ordinary singularity of multiplicity rp can con-

tribute more than
(rp

2

)
to the difference

(d−1
2

)
−g. We can calculate the precise

contribution of a singularity p ∈ C′ as follows.
Consider an embedded resolution of the singularity p ∈ C′ ⊂ P2

X(n) → X(n−1) . . . → X(1) → X(0) = P2

by a sequence of blow-ups.
A point q ∈ Xk, which is mapped to p, is called infinitesimally near

to p. More precisely, points on the exceptional curve E of X1 → X0 are
called infinitesimally near to the first order. Inductively, a point on the
exceptional divisor of the blow-up of an infinitesimally near point of k-th
order are called infinitesimally near to the k + 1-st order. p itself is called
infinitesimally near to p of order 0. The full contribution of p is then

δp :=
∑

q infinitesimally
near p

(
rq

2

)
,

where rq denotes the multiplicity of the strict transform of C′ at q. We call
δp the (geometric) delta invariant of the singularity (C′, p). Our proof of
resolution of singularities based on Theorem 7.2.23, shows the following:

Corollary 7.5.1. Let C′ ⊂ P2 be an absolutely irreducible curve of degree d
with arbitrary singularities. The geometric genus is

g =
(

d − 1
2

)
−
∑

p∈C′

δp =
(

d − 1
2

)
−

∑

all q, including
inf. near points

(
rq

2

)
.

Exercise 7.5.2. Prove: δp = 1 iff (C′, p) is an ordinary node or an ordinary
cusp. ⊓*

In the remaining part of this section we will give an arithmetic description
of the delta invariant, i.e. an interpretation in terms of functions. This also
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leads to an interpretation of intersection multiplicities of plane curves in terms
of vanishing orders on the desingularization of one of the curves. To start we
note that normalization yields a second approach towards desingularization
of curves.

**** fix ****perhaps move to Chapter 4, with some of the remarks.
Theorem Normalization of curves should stay here.**** fix ****

Definition 7.5.3. The normalization of a reduced ring R is the integral clo-
sure R̃ in its total fraction ring Q(R). R is normal if R = R̃

For a affine ring, being normal is a local property.

Theorem 7.5.4. Let R be a reduced ring, and Q(R) its total ring of fractions.
Then the following are equivalent

1. R is normal.
2. Rp is normal for all prime ideals p.
3. Rm is normal for all maximal ideals m.

Theorem 7.5.5 (Splitting of normalization). Let R be a reduce noethe-
rian ring, ⟨0⟩ = p1 ∩ . . . ∩ ps the primary decomposition into the minimal
primes. Then the normalization

R̃ ∼= R̃/p1 ⊕ . . .⊕ R̃/pr

splitts into the sum of the normalizations of the components of R. Moreover,
R̃/pj coincides with normalization of R/pi in the total quotient ring Q(R).

Theorem 7.5.6. A 1-dimension local ring R is normal, iff R is a discrete
valuation ring. In particular, normal 1-dimensional rings are domains.

Corollary 7.5.7. The coordinate ring of a smooth affine curve is normal.

Proof. By Corollary ?? the local ring of a smooth curve at a point is discrete
valuation ring. Hence the Corollary follows by combining Theorem 7.5.4 and
Theorem 7.5.6. ⊓*

Theorem 7.5.8 (Normalization of curves). Let η : C̃ → C be a resolution
of singularities and U ⊂ C and affine subset. Then Ũ = η−1(U) is affine
as well, and k[Ũ ] is the integral closure of k[U ] in the total fraction ring
k(C) = k(C1) ⊕ . . . ⊕ k(Cr) of C, where C = C1 ∪ . . . ∪ Cr denotes the
irreducible components of C. In particular, k[Ũ ] is a finite k[U ]-module.

Proof. Let C1, . . . , Cs be the irreducible components of C which intersect U ,
and let C̃1, . . . , C̃s denote their desingularizations. Then Ci \ U consists of
finitely many points, and Di = C̃i \ Ũ is a finite collection of points, which we
may regard as an effective divisor on Ci of positive degree. By Corollary 7.4.16
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the intersections C̃i ∩ Ũ are affine. Hence the disjoint union Ũ =
⋃s

i=1 C̃i ∩ Ũ
is affine as well, and its coordinate ring

k[Ũ ] =
s⊕

i=1

k[C̃i ∩ Ũ ]

is a finite k[U ]-module by Theorem ??. In particular k[Ũ ] is contained in the
normalization k̃[U ] of k[U ]. Since by k[Ũ ] is normal by Corollary 7.5.7, we
have equality, and the desired result follows with Theorem 7.5.5 ⊓*

Remark 7.5.9. 1. The integral closure R̃ of an integral domain R in its quo-
tient K = Q(R) is not always a finite R-module, even for Noetherian
rings, see Nagata ?. However for an affine domain the integral closure is
always an affine domain again. This Theorem due to Emmy Noether, is a
nice application of Noether normalization and Galois theory, and the rea-
son, why we attach the name Noether instead of Hilbert to the concept
of Noether normalization.

2. The normalization X̃ of an affine algebraic set X is defined to be the
affine algebraic set associated to the direct sum of the normalizations of
its irreducible components. For an projective algebraic set, can define the
normalization, either by gluing the normalization of its affine charts, or
by taking the projective algebraic set, associated to the normalization of
its homogeneous coordinate ring, which, as one can show, lies in some
weighted projective space. A variety is called normal, if the affine coordi-
nate rings for a affine covering are normal.

3. Various algorithm are known to compute the normalization of affine rings,
or weighted homogeneous rings. SINGULAR has an implementation of the
algorithm of Theo de Jong ?

4. The singularities sing X of a normal variety X have codimension at least
2. As a consequence, for an irreducible subvariety V of X all local rings
OX,V , defined as k[X∩U ]I(V ∩U) for an affine chart U ⊂ X which intersects
V , are discrete valuation rings. This allows to define the divisor of poles
and zeroes for a rational function f ∈ k(X) as

(f) =
∑

V ⊂X subvariety
codimX V =1

vV (f) ,

where vV : k(X) → Z denotes the discrete valuation associated to OX,V ⊂
k(X). Hence concept of linear equivalence of divisors can be extended
Div(X). We denote with

Cl(X) = Div(X)/ ≡

the divisor class group of a normal variety X .



7.5 The δ-Invariant of Curve Singularities 341

Exercise 7.5.10. Prove,
Cl(Pn) ∼= Z

with the isomorphism induced by the degree of a hypersurface, i.e. induced
by the map

Div(Pn) → Z, H =
s∑

k=1

µkHk '→
s∑

k=1

µk deg Hk

Let C be a curve, let p ∈ C be a point, and let η : C̃ → C be a desingular-
ization. Let U be an affine neighbarhood of p ∈ C′ such that U \{p} is smooth,
and let Ũ be the preimage of U in C. Then by Theorem ?? k[Ũ ] is a finite
k[U ]-module, and the inclusion k[U ] ↪→ k[Ũ ] is an isomorphism at every point
except possibly at p. Hence the cokernel ∆p = k[Ũ ]/k[U ] is finitely generated
k[U ] module with support at p. In particular ∆p is a module of finite length.
Localizing at p we find the exact sequence

0 → OC,p → ÕC,p → ∆p → 0

which we take as a definition of ∆p entirely in terms of the local ring OC,p.

Definition 7.5.11. Let p ∈ C be a point on a curve. Then we call

length∆p

the arithmetic δ-invariant

Remark 7.5.12. The arithmetic δ-invariant is zero, iff C is smooth at p.

Theorem 7.5.13 (Structure of artinian rings). Let R be an artinian ring
and let m1, . . . , mr denote its finitely many maximal ideals. Then

R ∼=
r⊕

j=1

Rmj

Exercise 7.5.14. Compute the arithmetic δ-invariant for the following curve
singularities

1. The Ak singularity y2 − xk+1 over an field with char k ̸= 2.
2. The singularity of the space curve defined by the ideal ⟨xy, xz, yz⟩

Proposition 7.5.15. Let η : C̃ → C be the desingularization of a possibly
reducible projective curve. Then

pa(C̃) = pa(C) +
∑

p∈C

length∆p.
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Proof. Since the arithmetic genus of a (possibly singular) curve does not
change under the Veronese embeddings by Exercise 6.4.28, we may assume,
that each component Ci of C ⊂ Pn has degree deg Ci ≥ d0(C̃i) + 2 with the
bound d0(C̃i) from Corollary 7.4.15. Then

C̃ → P(
s⊕

i=1

L(Hi)) = PN

is an embedding, where Hi = η|∗Ci
H denotes the pullback divisor to Ci of

a general hyperplane. Moreover, the map η : C → C′ is now induced by a
projection PN !!" Pn from a center disjoint from C. Choose a hyperplane H ⊂
Pn which intersects C′ transversally in smooth points. Then Caff = C \H∩C′

and C̃aff = η−1(Caff) are affine, and k[C̃aff ] is a finite k[Caff ]-module. Choose
m ≫ 0 large enough, such that:

1. The Hilbert function and Hilbert polynomial of C take the same value,
i.e. hC(m) = dm + 1 − pa(C).

2. The same for C̃, i.e. and h eC(m) = dm + 1− pa(C̃).
3. The composition

k[AN ]≤m → k[C̃aff ] → ∆ =
⊕

p∈C

∆p

from the space of polynomials of degree ≤ m is surjective.

Then the degree m piece (SC)m of the homogeneous coordinate rings of C
has codimension in (S eC)m equal to the length∆. Hence

md + 1 − pa(C̃) − length∆ = md + 1 − pa(C).

⊓*

Exercise 7.5.16. A singularity is called uni-branched, if p ∈ C′ has a single
preimage q ∈ C in a desingularization η : C → C′. Prove that

1. Γ = {vq(g) | g ∈ OC′,p} ⊂ N is a submonoid of (N, +),
2. The length∆p is the number of gaps N \ Γ .

We call Γ the value monoid of p ⊓*

Exercise 7.5.17. Give an example of a value monoid Γ ⊂ N which cannot
occur for a uni-branched plane curve. Prove, that the number of generators of
the value monoid Γ of a uni-branched plane curve singularity can be arbitrarily
large. ⊓*

Exercise 7.5.18. A monomial space curve is the image of

P1 → P3, [s : t] '→ [sd : satd−a : sbtd−b : td]

with gcd(a, b, d) = 1. Compute the arithmetic genus and the delta invariants
in examples. What is the maximal arithmetic genus possible for fixed d? ⊓*
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The resolution of singularities gives another way to compute intersection
multiplicites of hypersurfaces with curves.

Theorem 7.5.19. Let C ⊂ An be a curve, and let p ∈ C be a point. Let
η : C̃ → C be a resolution of the singularity of C at p. For q ∈ η−1(p), let
vq be the valuation on the function field of the irreducible component of C,
which contains q. Let g be a square free polynomial and H = V(g) ⊂ An the
corresponding hypersurface. Then

ı(C, H ; p) =
∑

q∈η−1(p)

vq(g).

Proof. We may assume, that g does not vanish on any component of C which
passes through p, because otherwise both sides give ∞. ??. The Snake Lemma
?? gives the following diagram of exact sequences

0

0 0 !! A

0 !! OC,p !! ÕC,p
!! ∆p !! 0

0 !! OC,p !! ÕC,p
!! ∆p !! 0

!!OC,p/gOC,p
!! ÕC,p/gÕC,p

!! B !! 0

0 0 0
)) )) ))

)) )) ))

)) )) ))

)) )) ))

))

We assume that the ground field k ∼= OC,p/mp is algebraically closed. Then
length coincides with dimk of vector spaces. By Exercise ?? and length∆p <
∞ we have

length A = lengthB

and hence

ı(C, H ; p) = lengthOC,p/gOC,p = length ÕC,p/gÕC,p

Now ÕC,p is an semi-local ring, whose finitely many maximal ideals are in
bijection with the points q ∈ η−1(p), because our ground filed is algebraically
closed. The residue ring R = ÕC,p/gÕC,p is artinian and its maximal ideals are
still in bijection with the points of η−1(p). By Structure Theorem of Artinian
rings

R =
⊕

q∈η−1(p)

Rmq .
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Since localization commutes with taking residue rings we have

Rmq = O eC,q/gO eC,q.

Hence
length R =

∑

q∈η−1(p)

lengthO eC,q/gO eC,q =
∑

q∈η−1(p)

vq(g).

⊓*

The local condition in Noether’s AF + BG Theorem 5.5.1 likewise allows
sometimes a formulation using valuations on the desingularization.

Proposition 7.5.20. Let C ⊂ P2 be a plane curve with defining equation
i(C) = ⟨f⟩ and let η : C̃ → C be a desingularization. Let g, h be two further
forms which do not vanish on a component of C. Suppose that p ∈ C is an
ordinary r-fold point. Then

hp ∈ ⟨fp, gp⟩Op

if vq(h) ≥ vq(g) + r − 1 for all q ∈ η−1(p).

Proof. Let C = C1∪. . .∪Cs be the decomposition into irreducible components.
We may assume that every component of C passes through p, so that

OC,p ⊂ ÕC,p ⊂ k(C1) ⊕ . . .⊕ k(Cs).

Let ηi : C̃i → Ci the normalization of Ci. We claim that
s⊕

i=1

⋂

q∈η−1
i (p)

{a ∈ k(Ci) | vq(a) ≥ r − 1} ⊂ OC,p.

This implies h/g ∈ OC,p as desired.
Since ∆p finite length we have that

⊕s
i=1

⋂
q∈η−1

i (p) mN
Ci,q

⊂ OC,p for N ≫
0. So it suffices to find for each q ∈ η−1

i (p) and each n with r − 1 ≤ n ≤ N
functions a ∈ OC,p such that vq(a) = n and vq′ (a) ≥ N for all q′ ̸= q.

We can approximate the smooth branch corresponding to q by a zero-locus
of a polynomial aq ∈ OP2,p, which is non-singular at p to arbitrary high order,
i.e. there are aq’s with vq(aq) ≥ N . Note that vq′ (aq) = 1 for q′ ̸= q, because
C has an ordinary singularity at p. Now let x ∈ mp be a linear form, whose
zero-locus is not tangent to C at p. Then the function

a = xn−r+1
∏

q′ ̸=q

aq′ ∈ OC,p,

has the desired vanishing property. ⊓*

In Corollary 8.2.6 we will prove g = pa for smooth irreducible curves.
Using this, we deduce the following Proposition.
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Proposition 7.5.21. Let p ∈ C be a plane curve singularity. Then

δp = length∆p

Proof. First, note that both values δp and length∆p depend only on the com-
pletion ÔC,p and, even better, only on OC,p/mN

C,p for an N ≫ 0 depending
on ÔC,p. For δp this is clear, because the location of the infinitesimally near
points and their multiplicities depend only on the the equation f mod mN

p

for N ≫ 0. An explicit value for N can be deduced from the embedded resolu-
tion (7.2.13). For length∆p this holds, because, as we just saw, the locations
of the points q ∈ η−1(p) ⊂ C depend only on OC,p/mN

C,p, and, because ∆p

is annihilated by a power mN
C,p. Thus, to compare arithmetic and geometric

delta invariant, we may add a general polynomial in mN
p of degree e ≫ N

to the affine equation f of C. The altered curve C′′ is irreducible and has
p as its only singularity by Bertini’s Theorem 6.6.1, applied to the image of
P2 under the rational map defined by L(e; Np) ⊕ kf , and by the irreducibil-
ity of a general hyperplane section (see 6.7.15 for the case char k = 0, for
char k > 0 see Remark 7.5.22 below). The geometric genus of the new curve
C′′ is g =

(e−1
2

)
− δp. On the other hand the arithmetic genus of a plane

curve of degree e is
(
e−1
2

)
, hence pa(C′′) =

(
e−1
2

)
− length∆p by Proposition

7.5.15. From g = pa(C′′), which we will prove in Corollary 8.2.6, we obtain
δp = length∆p. ⊓*

**** fix ****Improve–move parts to other sections, e.g. the upper bound
on the local contribution

Remark 7.5.22. In the special case of the proof above, one can deduce the
irreducibility of C′′ for e ≫ N ≫ 0 as follows: Suppose C′′ is reducible, say
C′′ = C′′

a ∪ C′′
b of curves degree a + b = e. Then the number of intersection

points of two pieces is a · b ≥ e− 1 counted with multiplicities. We argue that
some of the intersection points would be different from p, contradicting the
smoothness of C′′ away from p. Indeed, the contribution ı(C′′

a , C′′
b , p) to the

intersection is at most Na · Nb ≤ (N/2)2 because the degree N part of the
affine equation of C′′ at p is general. Since e ≫ N we have e − 1 > (N/2)2,
and we would have further intersection points.





Chapter 8

Riemann-Roch and Applications

The Riemann-Roch Theorem 8.3.2 is the starting point for the study of ge-
ometric properties of algebraic curves in their various embeddings. As we
have seen in the last Chapter, the Riemann-Roch spaces govern the study
of maps C → Pn. The Riemann-Roch Theorem identifies the difference
ℓ(D)−(deg D+1−g) in Riemann’s inequality 7.4.12 with the dimension of the
space of global differential forms on C with zeroes in D. Thus, in Section 8.1
we study differential forms. In Section 8.2 we compute the canonical divisor
class, i.e. the class of the divisor of poles and zeroes of a rational differential
form, in terms of a plane model of the curve and prove the completeness of
adjoint systems. Section 8.3 contains the proof of the Riemann-Roch Formula
and the most basic applications.

In the remaining section we illustrate some applications. Section 8.4 con-
tains Hurwitz’ formula, which relates for a non-constant morphism C → E
between smooth projective curves, the genus of C and E with the number of
ramification points. This gives usually the easiest method to compute the ge-
ometric genus. As a consequence we prove Lüroth’s Theorem, which says that
uni-rational curves are rational, and the famous Plücker relations between
the numerical invariants of a plane curve and their dual. In Section 8.5, we
compute the number of Weierstrass points on a curve of genus g and deduce
the finiteness of the automorphismen group in case g > 1. In the next Section
we make Riemann’s intuitive count: curves of genus g > 1 depend on 3g − 3
moduli. Of course, the count gives a rigorous argument, only if one establishes
the existence of the Picard group Pic0(C) and the moduli space as algebraic
varieties, for which we do not have the techniques.

In Section 8.7 we study the equations of curves in their canonical em-
bedding at some length. We prove Max Noether’s and Petri’s Theorem, and
comment on Green’s Conjecture about the connection between the syzygies
of canonical curves and their Clifford index.

In the final Section 8.8 of our book we present Stepanov’s proof of the
Hasse-Weil Formulas for curves over finite fields.
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Throughout this chapter C will denote an absolutely irreducible smooth
projective curve.

8.1 Differential Forms

Let C be a smooth irreducible projective curve over an algebraically closed
field k. We want to introduce differential forms on C.

In case of k = C, we can think of C as a Riemann surface, on which
we have the notion of meromorphic differential forms. In particular for any
rational function f , the rational differential form df is defined. Guided by this
and the obvious product rule, we define differential forms in general.

Remark-Definition 8.1.1. Consider the k(C)-vector space with a basis de-
noted by the symbols “[f ]” for each f ∈ k(C) and the subspace generated by
the expressions

1. [fg]− g[f ]− f [g] for any pair f, g ∈ k(C),
2. [f + g]− [f ] − [g] for any pair f, g ∈ k(C),
3. [λf ] − λ[f ] for any pair λ ∈ k and f ∈ k(C).

The quotient vector space

Ω(C) := ⟨[f ]⟩/⟨relations (1),(2),(3)⟩

is the space of rational differential forms. The natural map

d : k(C) → Ω(C), f '→ df,

where df denotes the class of [f ] in the quotient space, is k-linear due to the
relations (2) and (3). However, d is not k(C)-linear although both spaces are
k(C)-vector spaces. Instead d satisfies the product rule d(fg) = gdf +fdg due
to (1).

The quotient rule

d(
f

g
) =

gdf − fdg

g2

follows from the product rule applied to f = f
g g. Other rules familiar from

caculus follow as well: d(1) = d(12) = d(1) + d(1) ⇒ d(1) = 0, and k-linearity
implies

dλ = 0 ∀λ ∈ k
Repeated application of the product rule gives the chain rule

dF =
n∑

i=1

∂F

∂xi
dxi

for a polynomial expression F (x1 . . . , xn) ∈ k[x1, . . . , xn] in the coordinate
functions xi ∈ k(C).
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Proposition 8.1.2. Ω(C) is a 1-dimensional k(C)-vector space. If chark = 0
then df for any non constant rational function f ∈ k(C) is a basis. If char k =
p then df for any element in k(C) \ k(C)pk generates. Here, k(C)pk denotes
the k-subspace generated by pth powers.

Proof. Consider an affine plane model C′ of C given by an equation F ∈
k[x, y]. Using the product and quotient rule repeatedly, we see, that dx, dy
form a generating set. So Ω(C) is at most a 2-dimensional k(C) vector space.
Since C′ is smooth at a general point,

dF =
∂F

∂x
dx +

∂F

∂y
dy = 0 ∈ Ω(C)

gives us a non-zero relation among dx and dy. So, Ω(C) is at most 1-
dimensional. Thus, for the first statement it remains to prove, that Ω(C)
is not the zero vector space. In case k = C this is easy: There is a map

Ω(C) → {meromorphic differental forms on C},

because derivations of meromorphic functions satisfy C-linearity and the prod-
uct rule. Since image of df of a non-constant function f is non-zero we deduce
that Ω(C) ̸= 0 in this case. We postpone the general case to the end of this
section, Corollary 8.1.19 below.

To prove the second statement, we consider elements x = f and a primi-
tive element y ∈ k(C) of the field extension k(x) ⊂ k(C), which exists since
char k = 0. With the plane model defined by x and y, and the computation
of in first part, we obtain that dx = df is a k(C)-basis of Ω(C). In case of
characteristic p we note, that df = 0 for any k-linear combination of pth pow-
ers. On the other hand, if f /∈ k(C)pk then k(f) ⊂ k(C) is a finite separable
extension, **** fix ****ref or cite ?? or and there exists again a primitive
element y ∈ k(C). ⊓*

Definition 8.1.3. Let ω = gdf be a non-zero rational differential form, let
p ∈ C a (smooth) point, and let vp : k(C) \ {0} → Z be the discrete valuation
with valuation ring OC,p. If t ∈ mp ⊂ OC,p is a local parameter of C at p and
ω = hdt then

vp(ω) = vp(h)

is the vanishing order of ω in p.

K := (ω) :=
∑

p∈C

vp(ω)p

is called a canonical divisor on C.

Remark 8.1.4. 1. Every differential form ω can be written as ω = hdt for
some rational function h ∈ k(C), because Ω(C) is 1-dimensional and dt a
basis.
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2. If s ∈ OC,p is another local parameter then s = (λ+g)t with λ ∈ k, ̸= 0 and
g ∈ ⟨t⟩, because mp/m2

p is one-dimensional. Hence, ds = (λ+ g)dt+ tdg =
(λ + g + tg′)dt with g + tg′ ∈ mp. So ds

dt = λ + g + tg′ is a unit in OC,p

and the vanishing order of ω at p is independent of the choice of the local
parameter.

3. The function t − t(q) is a local parameter at q for q in a Zariski open
neighborhood of p. Since t(q) ∈ k, we have dt = d(t − t(q)). Hence, the
local expression ω = hdt is valid in the whole affine neighborhood. In
particular, the zeroes and poles of ω form a finite set, and (ω) is indeed a
divisor.

4. Since Ω(C) is a 1-dimensional k(C) vector space we have that the ratio of
two non-zero differential forms ω1

ω2
= f is a rational function. In particular

(ω1) = (ω2) + (f). Hence two canonical divisors are linearly equivalent.
What is really canonical is the divisor class of K.

We will compute the degree of a canonical divisor in Section 8.2. In the
rest of this section we establish Ω(C) ̸= 0 for arbitrary algebraically closed
fields k. In case k = C, we reduced the statement to the local computation of
the derivative of a meromorphic function. The proof in the general case is a
similar reduction to a local computation. First, we generalize the construction
of differential forms.

Definition 8.1.5. Let R be a k-algebra, and M an R-module. A k-derivation
of R with values in M is a k-linear map

∂ : R → M,

which satisfies the product rule

∂(fg) = ∂(f)g + f∂(g).

The R-module of all k-derivations of R with values in M is denote by
Derk(R, M) or briefly by Der(R, M), if the ground ring k is clear.

Example 8.1.6. For R = k[x1, . . . , xn] the partial derivatives ∂
∂xi

is an element
of Derk(R, R). We will see below that these elements generate the whole
module of derivations.

Derivations allow to define the Zariski tangent space in yet another way.

Proposition 8.1.7. Let R be a k-algebra and m ⊂ R a maximal ideal with
residue field R/m ∼= k. Then

Der(R, R/m) ∼= Homk(m/m2, k).

Proof. Let f0 denote the image of f under the composition

R → R/m ∼= k ↪→ R.
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The value ∂(f) of a derivation ∂ ∈ Derk(R, R/m) depends only on the class of
f−f0 in m/m2, since the k-linearity and the product rule imply ∂(k+m2) = 0.
On the other hand, the composition R → m → m/m2, defined by

f '→ f − f0 '→ f − f0 + m2,

is already a derivation with values in m/m2: fg − f0g0 = g0(f − f0) + f0(g −
g0)+(f−f0)(g−g0) ≡ g0(f−f0)+f0(g−g0) ≡ g(f−f0)+f(g−g0) mod m2.
The result follows. ⊓*

Definition 8.1.8. The universal derivation d : R → ΩR/k is an R-module
ΩR/k together with a k-derivation d ∈ Der(R,ΩR/k), such that any k-
derivation ∂ ∈ Derk(R, M) is obtained from d by composing with a unique R-
module homomorphism φ : ΩR/k → M . ΩR/k is called the module of Kähler
differentials of R over k.

Uniqueness of d : R → ΩR/k follows from the universal property. Existence
follows by mimicking the construction in Definition 8.1.1.

Example 8.1.9. Let S = k[x1, . . . , xn] be the polynomial ring. Applying the
product rule repeately we see that ΩS/k is generated by dx1, . . . , dxn. These
elements are actually R-linearly independent. From the derivation ∂

∂xi
∈

Derk(R, R) we obtain a R-linear map φi : ΩR/k → R, such that ∂
∂xi

= φi ◦ d.
It follows φi(dxj) = δij , and any relation g1dx1 + . . . + gndxn = 0 ∈ ΩR/k has
trivial coefficients gi = φi(g1dx1 + . . . + gndxn) = 0 ∈ R. Thus

ΩS/k =
n⊕

i=0

Sdxi
∼= Sn

and

Der(S, S) =
n⊕

i=0

S
∂

∂xi
.

If R is a finitely generated k-algebra, say R = k[x1, . . . , xn]/I then the
Kähler differentials dxi generate ΩR/k, as we can see from the product rule
applied repeatedly. Moreover each element f ∈ I defines a relation

n∑

i=1

∂f

∂xj
dxj = 0 ∈ ΩR/k.

Consider the maps
I → ΩS/k ⊗S R, f '→ df ⊗ 1

and
ΩS/k ⊗S R → ΩR/k, dxi ⊗ 1 '→ dxi



352 8 Riemann-Roch and Applications

Proposition 8.1.10. The sequence

I/I2 → ΩS/k ⊗S R → ΩR/k → 0

is an exact sequence of R = S/I modules.

Proof. Consider the R-modul

Ω =
ΩS/k ⊗S R

image (I)

and the derivation d : R → Ω defined by dg as the image of dg ⊗ 1 for a
representative g ∈ g = g + I.

Then d defines a derivation R → Ω and (Ω, d) is a universal derivation,
since for any derivation δ ∈ Der(R, M) and any f ∈ I the identity

n∑

i=1

∂f

∂xi
δ(xi) = 0 ∈ M

is satisfied. Finally, the map d : I → ΩS/k ⊗S R has I2 in the kernel, because
d(I2) ⊂ IΩS/k. ⊓*

Remark 8.1.11. Thus, for I = ⟨f1, . . . , fr⟩ ⊂ S = k[x1, . . . , xn] and R = S/I
the module of Kähler differential is the cokernel

ΩR/k ∼= coker (Rr → Rn)

where the map is defined by the jacobian matrix (∂fj

∂xi
). In particular the

module of Kähler differentials is defined over the field of definition of I.

Exercise 8.1.12. Compute ΩR/k and Derk(R, R) for

1. R = k[x, y]/⟨y2 − x3⟩,
2. R = k[x, y]/⟨y2 − x3 − x2⟩, and
3. R = k[x, y]/⟨y2 − x3 + x⟩.

Lemma 8.1.13. Let U be a multiplicative subset of an k-algebra R. The uni-
versal derivation d : R → ΩR/k extends uniquely to a derivation d : R[U−1] →
ΩR/k[U−1] by the formula

d(
r

t
) =

tdr − rdt

t2
.

In particular, the formation of Kähler differentials commutes with localization:
ΩR[U−1]/k ∼= ΩR/k[U−1].
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Proof. The map

R[U−1] → ΩR/k[U−1],
r

t
'→ tdr − rdt

t2

is well-defined, because

r1

t1
=

r2

t2
∈ R[U−1] ⇔ ∃t3 ∈ U with t3(t2r1 − t1r2) = 0 ∈ R

gives 0 = t23(t2r1−t1r2) ∈ R ⇒ 0 = t23(r1dt2−r2dt1+t2dr1−t1dr2) ∈ ΩR/k ⇒
0 = t23(t1t2(t2dr1 − t1dr2) − t22r1dt1 + t21r2dt2) ∈ ΩR/k ⇒

t1dr1 − r1dt1)
t21

=
t2dr2 − r2dt2

t22
∈ ΩR/k[U−1].

The product rule and k-linearity for the extension follow with a straight for-
ward computation. Uniqueness of the extension holds, because the commuta-
tivity of the diagram

R !!

))

ΩR/k

))
R[U−1] !! ΩR/k[U−1]

implies
dr

1
= d(

t

1
r

t
) =

r

t
dt + td(

r

t
)).

The universal property of d : R[U−1] → ΩR[U−1]/k induces an morphism
ΩR[U−1]/k → ΩR/k[U−1], whose inverse is induced by the map dr '→ d( r

1 ) ⊓*

A module M over a ring R is called locally free of rank r if Mf
∼= Rr

f
holds for each elements f ∈ T ⊂ R for a system T with ⟨T ⟩ = R.

Exercise 8.1.14. Let M be an R-module, and let r be a positive integer. The
following are equivalent

1. M is locally free of rank r.
2. Mp

∼= Rr
p for each prime ideal p or R.

3. Mm
∼= Rr

m for each maximal ideal m or R.

An R-module M is projective, if for each exact sequence

N → N ′′ → 0

of R modules, the induced sequence

HomR(M, N) → HomR(M, N ′′) → 0
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is exact as well. In other words, any morphism ϕ as below can be lifted to a
morphism Φ:

R

∃Φ--,,
,,

,,
,,

ϕ

))
N !! N ′′ !! 0

.

Exercise 8.1.15. Let M be a projective module. Prove:

1. M is projective, iff M is a direct summand of a free module
2. If M is finitely generated module over the coordinate ring of affine variety,

then M is projective iff M is locally free.

Exercise 8.1.16. Let R = C∞(S2, R) be the ring of C∞-function on the 2-
sphere and let M be the module of C∞ vector fields on S2. Prove that M is
a locally free, but not a free R-module. Hint: Use some algebraic topology.

Remark 8.1.17. Inspired by the corresponding statement in the C∞-category
and holomorphic category Serre [195x] ? conjectured that any locally free
k[x1, . . . , xn] module is actually free. This was indepently proved by Quillen
[197x] ? and Suslin ? [197x]. The commutative algebra book of Kunz Kunz
(1985) culminates with a proof of this result.

Theorem 8.1.18. Let R = k[X ] be the coordinate ring of an affine variety
X over an algebraically closed field k. X is smooth of dimension d iff ΩR/k is
locally free of rank d.

Proof. Since R is finitely generated, ΩR/k is a finitely generated module.
The images dxi of k-algebra generators xi generate. The minimal num-
ber of generators of the localization of ΩR/k in a small Zariski neighbar-
hood p ∈ X with maximal ideal m = IX(p) is dimkΩR/k/mΩR/k. Since
Derk(R, R/m) ∼= HomR(ΩR/k, R/m) = Hom(ΩR/k/mΩR/k, R/m), the num-
ber of generators coincides with dimk m/m2 by Proposition 8.1.7. Thus, ΩR/k
is locally minimally generated by dimk m/m2 ≥ dimOp many elements, and
it is locally free iff equality holds. ⊓*

Corollary 8.1.19. Let X be an affine variety of dimension d over an alge-
braically closed field k. Then Ωk(X)/k is a k(X)-vector space of dimension
d.

Proof. We may assume that X is affine. Then Ωk(X)/k ∼= Ωk[X]/k[U−1], where
U = k[X ]\{0} by Lemma 8.1.13. By Proposition 8.1.18 the modueΩk[X][f−1]/k
is free for rank d for a suitable f ∈ k[X ]. Hence, Ωk(X)/k is a vectorspace of
dimension d. ⊓*

Lemma 8.1.20. Suppose R is a finitely generated k-algebra. Then the for-
mation of the derivation modules commutes with localization: If U ⊂ R is a
multiplicative subset then

Derk(R, M)[U−1] ∼= Derk(R[U−1], M [U−1])
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Proof. We have to prove

HomR(ΩR/k, M)[U−1] ∼= HomR[U−1](ΩR/k[U−1], M [U−1]).

Since R is finitely generated algebra over k, the module of Kähler differentials
ΩR/k is finitely generated as an R-module. Consider a finite free presentation

F1 → F0 → ΩR/k → 0

Then HomR(Fi, M)[U−1] ∼= HomR[U−1](Fi[U−1], M [U−1] because the Fi are
finite free modules. The exact sequence

0 → Hom(ΩR/k, M) → Hom(F0, M) → Hom(F1, M)

localized at U yields an isomorphism

HomR(ΩR/k, M)[U−1] ∼= ker(Hom(F0[U−1], M [U−1] → Hom(F1[U−1], M [U−1])
∼= HomR[U−1](ΩR/k[U−1], M [U−1])

⊓*

Exercise 8.1.21. Let R be a k-algebra and r ∈ R an element, which is sepa-
rable algebraic over k. Prove dr = 0 ∈ ΩR/k. ⊓*

Exercise 8.1.22. Consider k = Fp(x) and L = k[t]/⟨tp − x⟩. Prove that

ΩL/k ∼= Ldt ∼= L,

although L/k an algebraic field extension. Hint: Observe that ∂
∂t gives a k-

derivation on L. ⊓*

Exercise 8.1.23. Let k be any field and L/k a finitely generated field ex-
tension of transzendence degree d. Prove that ΩL/k is an L-vector space of
dimension ≥ d, and equality holds iff L/k has a separable transzendence basis.
⊓*

8.2 Adjoint Curves

Let C be a smooth absolutely irreducible projective curve. Perhaps the sim-
plest way to calculate the degree of a canonical divisor is with the help of a
plane model. We choose a birational morphism η : C → C′ ⊂ P2 onto a plane
curve with only ordinary singularities. Recall 7.2.29, that the geometric genus
g of such plane model is defined as

g =
(

d − 1
2

)
−
∑

q∈C′

(
rq

2

)
.



356 8 Riemann-Roch and Applications

Proposition 8.2.1. Let C be an absolutely irreducible smooth projective curve.
A canonical divisor on C has degree

deg K = 2g − 2.

In particular, the geometric genus g of C is well-defined, i.e. independent of
the choice of the plane model with only ordinary singular points.

Proof. Let C′ ⊂ P2 a plane model of C with only ordinary multiple points. We
choose coordinates on P2 general, and compute the divisor of dx for x = x0

x2
.

Let f(x0, x1, x2) ∈ k[x0, x1, x2] be the homogeneous equation of C. The line
at infinity L = V(x2) intersects C′ in d = deg C′ points transversally, o =
[0 : 1 : 0] /∈ C′, and the point o does not lie on any tangent line to singular
points, since we have a general coordinate system. Since k(C′) ∼= k(C) we can
regard rational functions as functions both on C and C′. We do this freely.
Moreover for a smooth points p of C′ we denote with the same letter p the
corresponding smooth points on C, and we cidentify OC′,p

∼= OC,p.
The rational function w = 1/x is a local parameter at all points p on

the line at infinity, hence dx = d( 1
w ) = −1

w2 dw has a pol of order 2 at every
point at infinity and is regular elsewhere. At a smooth points p ∈ C′ the
differential form dx has a zero iff the line V(x0 − λx2) for λ = x0

x2
(p) is

tangent to C′, because these are the points where x − λ ∈ mC,p ⊂ OC,p is
not a local parameter. From our proof of Bézout’s Theorem on plane curves
(Section 5.4.8) we know, that these points are among the intersections of C′

with the curve defined by fx1 = ∂f
∂x1

. To compare multiplicities, we use affine
coordinates x = x0/x2 and y = x1/x2 around such an intersection point
p = [a : b : 1] ∈ C′. Then x − a defines the tangent line and y − b is a local
parameter of C′ at p. The affine equation fa(x, y) = f(x, y, 1) gives us the
relation dx = −(fa

y /fa
x )dy. Since fa

y = fx1/xd−1
2 and fa

x (p) ̸= 0, we obtain

vp(dx) = vp(fa
y /fa

x ) = vp(fa
y ) = i(f, fx1; p).

V(fx1) intersects C′ also at singular points. Let η : C → C′ be the bi-
rational morphism. For a point p ∈ C we denote by rp = mult(C′, q) the
multiplicity of C′ in q = η(p). Then

E =
∑

p∈C

(rp − 1)p

is called the divisor of multiple points of C′. Since C′ has only ordinary
singularities we have

deg E =
∑

q∈C′

(rq − 1)rq.

The final result of our computation will be

(dx) + 2η∗(x2) = η∗(fx1) − E.
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It remains to verify the formula at points p ∈ C over singular points q =
η(p) = [a : b : 1] of C′. Since V(x− a) is not a tangent line at q, we have that
x−a is a local parameter and so vp(dx) = 0. On the other hand vp(fx1) = r−1
for r = rq, because in a factorization of the tangent cone of f at q

fa ≡
r∏

j=1

lj mod ⟨x − a, y − b⟩r+1

precisely one factor lj is in ⟨x − a⟩2OC,p. Indeed, say lr is this factor, then

∂fa

∂y
≡ ∂lr
∂y

r−1∏

j=1

lj mod ⟨x − a⟩rOp

and the desired multiplicity follows, since ∂lr/∂y ∈ k and vp(lj) = 1 for j < r.
The degree formula follows now, since deg(dx) = deg η∗((fx1)−2 deg(x2))−

deg E = d(d − 1) − 2d −
∑

q∈C′ rq(rq − 1). Hence deg K = 2g − 2, since
g =
(
d−1
2

)
−
∑

q∈C′

(
rq

2

)
by the definition of the geometric genus of a plane

model 7.2.29. ⊓*

As a corollary of the proof we note

Theorem 8.2.2 (Adjuction formula). Let C be a smooth projective curve,
η : C → C′ ⊂ P2 a birational map to a plane model of degree d with only
ordinary singularities and E =

∑
p∈C(rp − 1)p the multiple point divisor. Let

H = η∗L for a general line L ⊂ P2, denote the hyperplane divisor. Then the
linear equivalence class of the canonical divisor is

K ≡ (d − 3)H − E.

Proof. η∗((fx1)− 2(x2)) ∈ |(d− 1)H | because (fx1)− 2(x2) ≡ (d− 3)L on P2

⊓*

Corollary 8.2.3.
ℓ(K) ≥ g

Proof. Let q1, . . . qs ∈ C′ denote the singular points. The divisor of a form
g ∈ L(d− 3; (r1 − 1)q1, . . . , (rs − 1)qs) pulls back to a divisor η∗(g) = D + E.
Hence the part D ∈| (d − 3)H − E |∼=| K |. Hence from

dim L(d− 3; (r1 − 1)q1, . . . , (rs − 1)qs) ≥
(

d− 1
2

)
−

s∑

j=1

(
rj

2

)
= g

we obtain a g-dimensional subspace of L(K). We will see later, that equality
holds. In particular, it will follows then that the singular points points impose
independent conditions on forms of degree d − 3. ⊓*
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Definition 8.2.4. Let C′ ⊂ P2 be an irreducible plane curve of degree d with
only ordinary multiple points q1, . . . , qs of multiplicity r1, . . . , rs. An adjoint
curve of C′ is a curve G ̸⊃ C′ of degree d− 3 + a with multiplicity ≥ rj − 1
in qj for j = 1, . . . , s and a ≥ 0.

Every adjoint curve cuts on C a divisor of class |K+aH | by the adjunction
formula 8.2.2. Notice, that a curve G ̸⊃ C′, such that (G)−E ≥ 0 is an adjoint
curve. Indeed, assume the contrary, that is, assume that mult(G, q) < rq − 1
at some singular point q of C′. Then (G) − E has a positive coefficient at
every point p ∈ η−1(q) ⊂ C iff each tangent line of C′ at q is also a tangent
to G at q. This is impossible, since C′ has rq different tangent lines and
mult(G, q) < rq − 1 < rq.

Theorem 8.2.5 (Completeness of the adjoint systems). Let C, C′ and
E be as above. Suppose D ≡ D′ are two effective linearly equivalent divisors.
Suppose G is an adjoint curve of degree b such that (G) = D + E + R for
some effective divisor R. Then, there exists an adjoint curve G′ of degree b,
such that (G′) = D′ + E + R.

In other words the linear system of adjoint curves with additional base
points in R cuts out the complete linear system |D|.

Proof. By definition of the rational function field and linear equivalence there
exist curves H, H ′ of the same degree, such that

D + (H) = D′ + (H ′).

Then (GH) = (H ′)+D′+E+R ≥ (H ′)+E. Let F be the equation of C′. We
apply Noether’s AF+BG Theorem 5.5.1 to F , H ′ and GH . The local condition
is satisfied by the above inequality on divisors and Proposition 7.5.20. Thus,
there exist A and B, such that AF + BH ′ = GH . So G′ = B is the desired
adjoint curve of degree b, because (B) = (GH) − (H ′) = D′ + E + R. ⊓*

Corollary 8.2.6. The geometric genus of a plane model C′ ⊂ P2 with only
ordinary singularities and the arithmetic genus of a smooth projective model
C ⊂ Pr coincide, i.e.

g = pa.

Proof. |mH − E| is cut out by adjoint curves by the theorem. We bound
ℓ(mH − E) for m ≥ d

ℓ(mH − E) ≥
(

m + 2
2

)
−
(

m− d + 2
2

)
−
∑

q∈C′

(
rq

2

)

= deg(mH − E) + 1 − g

with equality for m sufficiently large by Theorem 5.3.11, which says that
multiple points impose independent conditions on forms of sufficiently high
degree. On the other hand Proposition 7.4.14 says, that ℓ(mH − E) =
deg(mH − E) + 1 − pa for m sufficiently large. So g = pa. ⊓*
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Corollary 8.2.7 (Riemann’s inequality, second version).

ℓ(D) ≥ deg D + 1 − g.

Exercise 8.2.8. Give a proof of the second version of Riemann’s inequality,
which uses only the adjunction formula 8.2.2. ⊓*

8.3 The Riemann-Roch Formula

Remark-Definition 8.3.1. Let D be a divisor on C. Then

Ω(D) = {ω ∈ Ω(C)|(ω) + D ≥ 0}

denotes the k-vector space of differential forms with poles up to order D. If
K = (ω0) is a fixed canonical divisor then

L(K + D) ≡ Ω(D)

via f '→ fω0. In particular, we see that Ω(D) is finite-dimensional with the
dimension bounded by 0 ≤ ℓ(K + D) ≤ deg K + deg D + 1 by 7.3.10.

Theorem 8.3.2 (Riemann-Roch). Let C be a smooth projective curve of
genus g and D a divisor on C. Then

ℓ(D)− ℓ(K −D) = deg D + 1 − g

We will prove the Theorem at the end of this section. First we give some
applications.

The information on the dimension and the degree of the canonical system
is part of the Riemann-Roch theorem.

Corollary 8.3.3.
ℓ(K) = g.

Proof. This follows from the case D = 0, since L(0) = k. ⊓*

Thus, another way to define the genus is as the maximal number of k
linearly independent regular differential forms.

Corollary 8.3.4.
deg K = 2g − 2.

Proof. This follows from the case D = K and ℓ(K) = g. ⊓*

Corollary 8.3.5. ?? Let D be a divisor on C. Then

ℓ(D) = deg D + 1 − g

if deg D > 2g − 2. In particular,
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1. |D| is base point free, if deg D ≥ 2g.
2. |D| is very ample, if deg D ≥ 2g + 1.

Proof. L(K −D) = 0, because deg(K −D) < 0, c.f. 7.3.10. ⊓*

Corollary 8.3.6. Let k be algebraically closed. Then
(1) Every smooth projective curve of genus g = 0 is isomorphic to P1.
(2) Every smooth projective curve of genus g = 1 is isomorphic to a smooth

plane cubic.

Proof. Since k is algebraically closed, we can find a k-rational point on these
curves. |p| defines an isomorphism in case (1), |3p| an isomorphism onto a
plane cubic curve in case (2). ⊓*

Exercise 8.3.7. Let C be a curve of genus 0 over a not necessarily alge-
braically closed field. Prove:

1. C is isomorphic to a smooth plane conic by an isomorphism, which defined
over the field of definition.
2. A conic is rational, i.e. isomorphic to P1 iff it contains a k-rational point.

⊓*

Corollary 8.3.8. Let K be a canonical divisor on a smooth projective curve
C of genus g. Then

(1) |K| is base point free, if g ≥ 1.
(2) |K| is very ample, unless there exists a morphism C → P of degree 2

onto a curve P of genus 0.

Proof. (1) L(p) is one dimensional, because otherwise we get a morphismen
C → P1 of degree 1, which is necessarily an isomorphism. This contradicts
g ≥ 1. Hence L(K − p) ⊂ L(K) has codimension 1 for every p ∈ C. (2)
The space L(K − p − q) ⊂ L(K) has only codimension 1 iff L(p + q) is two
dimensional, equivalently, iff |p + q| defines a morphism C → P1 of degree 2.
⊓*

Exercise 8.3.9. Let C be a smooth projective curve, r ≥ 1 and p1, . . . , pr ∈ C
finitely many points. Prove that C \ {p1 . . . , pr} is an affine curve. ⊓*

Our proof of the Riemann-Roch Theorem is based on the following funda-
mental Lemma.

Lemma 8.3.10 (Noether’s Reduction Lemma). Let D be an effective
divisor and p a point on a smooth curve C. Then

ℓ(K − D − p) < ℓ(K −D)

implies
ℓ(D + p) = ℓ(D).
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We give two proofs, an analytic one, which works for k = C, and an
algebraic proof based on the completeness of the adjoint system, and hence
on Noether’s AF+BG theorem.

Proof (Proof in case k = C). Suppose ℓ(K−D−p) < ℓ(K−D) and ℓ(D+p) >
ℓ(D). Consider a rational differential form ω ∈ L(K −D) \L(K −D− p) and
a rational function f ∈ L(D + p) \ L(D). Then

fω ∈ L(K + p) \ L(K)

is a meromorphic differential form with a simple pole at p and otherwise
holomorphic. But this is impossible. Integration around a small disc ∆ around
p gives ∫

∂∆
fω = 2πi Resp(fw) ̸= 0

by the residue theorem. On the other hand,
∫

∂∆
fω = −

∫

C\∆
d(fω) = 0

by Stokes, because d(fω) = ∂̄(fω) = 0, since fω is a holomorphic form on
C \∆. This is a contradiction. ⊓*

Proof (General case). Consider a plane model C′, which has only ordinary
singularities disjoint from the support of D and p, cf. Theorem 7.2.23. Let d
denote the degree of the plane curve and E =

∑
p∈C(rp − 1)p be the divisor

of multiple points. Let H = C.L1 =
∑d

i=1 pi be a hyperplane section of C′

through distinct smooth points. Since the statement depends only on the
linear equivalence class of K, we may assume

K = (d − 3)H − E

by the adjunction formula 8.2.4, and then L(K −D) ⊂ L((d − 3)H − E).
By assumption, there exists an h ∈ L(K − D) with h /∈ L(K − D − p).

The rational function h is a restriction

h = g/zd−3
1 ,

where g defines an adjoint curve and z1 is the defining equation of L1 by the
completeness of the adjoint system 8.2.5. Then (g) = D + E + A with A ≥ 0
but A ̸≥ p. We take a line L2 = V (z2) through p, such that L2.C′ = p + B
consists of d distinct smooth points. Then

(z2g) = (D + p) + E + (A + B).

Given now f ∈ L(D+p), we have to show f ∈ L(D). If we write (f)+D = D′

then this means that we have to prove, that D′ is effective. The only possible
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negative term in D′ is the coefficient of p. Since D + p ≡ D′ + p and both are
effective divisors, we can apply the completeness of the adjoint systems 8.2.5.
There exists a curve M of degree d− 2 with M.C′ = (D′ + p) + E + (A + B).
But B consists of d−1 collinear points and M is a curve of degree d−2. Thus
by Bezout’s Theorem 5.4.8, L2 is a component of M . Thus, (M − L2).C′ =
D′ +A+E is effective. Since A− p and E− p are not effective, the coefficient
of p in D′ is non negative, and D′ is effective. This proves the Reduction
Lemma. ⊓*

Proof of the Riemann-Roch theorem. We have to prove the equation

(∗)D ℓ(D) = deg D + 1 − g + ℓ(K −D)

for every divisor D.
Case 1: ℓ(K−D) = 0. (Non-special divisors). Induction on ℓ(D). If ℓ(D) =

0 then Riemann’s inequality 8.2.7 for D and K−D gives 0 = ℓ(D) ≥ deg D +
1 − g and 0 = ℓ(K − D) ≥ deg(K − D) + 1 − g = 2g − 2 − deg D + 1 − g ≥
−(deg D + 1 − g). For the second inequality we used deg K = 2g − 2 proved
Proposition 8.2.1. Combining both inequalities give the the desired formula.
If ℓ(D) = 1, we may assume that D is effective. Then

ℓ(K) ≤ ℓ(K −D) + deg D = deg D

by 7.3.10 and our assumption ℓ(K −D) = 0. Moreover

g ≤ ℓ(K)

by 8.2.4. This implies g ≤ deg D. So Riemann’s inequality 1 ≥ deg D + 1 − g
is an equality. If ℓ(D) > 1 then we can choose a point p such that ℓ(D− p) =
ℓ(D)−1. By the Reduction Lemma, this implies ℓ(K−D+p) = ℓ(K−D) = 0
and the formula (∗)D follows from (∗)D−p, which we know by induction.

Case 2: ℓ(K − D) > 0 (special divisors). If ℓ(D) = 0 then the formula
follows from case 1 applied to (∗)K−D: K−D is non-special, since ℓ(K−(K−
D)) = ℓ(D) = 0. So (∗)K−D holds, and ℓ(K − D) = deg(K − D) + 1 − g =
g − 1 − deg D. This is equivalent to (∗)D, because ℓ(D) = 0. If ℓ(D) > 0,
we may assume that D is effective. We apply induction on ℓ(K −D) and the
Reduction Lemma. Choose p such that ℓ(K − D − p) = ℓ(K −D) − 1. Then
ℓ(D + p) = ℓ(D) by 8.3.10 and (∗)D+p, which we know by induction, implies
(∗)D. ⊓*

Corollary 8.3.11. Let D be any divisor and p any point. Then, either

ℓ(K −D − p) = ℓ(K −D)− 1 and ℓ(D + p) = ℓ(D)

or
ℓ(K −D − p) = ℓ(K −D) and ℓ(D + p) = ℓ(D) + 1

holds. ⊓*
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8.4 Hurwitz’s Formula

Definition 8.4.1. Let ϕ : C → E a morphism of curves of degree d, i.e.
[k(C) : k(E)] = d. ϕ is called separabel respectively purely inseparable if
the field extension k(C) ⊃ k(E) is separable respectivley purely inseparable.

An arbitrary dominant morphism C → E factors through a separable
morphism C′ → E and a pure inseparable morphism C → C′. This follows
from Corollary 7.1.13, because the corresponding statement holds algebraic
field extensions.

We want to calculate, how the genus changes under a morphism. We treat
the separable case first. Along the computation of the degree of a canonical
divisor we performed such a calculation in a special case of a projection C →
P1.

Definition 8.4.2. Let ϕ : C → E be a morphism. Let p ∈ C, q = ϕ(p) ∈ E
and t ∈ mq ⊂ OE,q a local parameter. The ramification index of ϕ at p is
defined as

ep = vp(ϕ∗t).

ϕ is unramified at p if ep = 1 and ramified otherwise. The ramification is
called tame if char k does not divide ep and wild otherwise. If ϕ is separable
then we define furthermore the differential index as

ρp = vp(dt),

where we regard dt as a rational differential form on C, and we call

R =
∑

p∈C

ρpp

the ramification divisor of ϕ. A point in supp(R) is called a ramification
point, the image in E a branch point.

Remark 8.4.3. 1. ep is independent from the choice of a generator t ∈ mq.
For a different generator, say t′ = ut with u ∈ Oq a unit, we have vp(ϕ∗t′) =
vp(ϕ∗t), because ϕ∗u ∈ Op is also a unit.
2. ρp ≥ ep − 1 and equality holds iff the ramification is tame. Indeed is

t = use with u ∈ Op a unit, then dt = (uese−1 + u′se)ds and vp(dt) = e − 1
iff char k ̸ |e. Hence,

R =
∑

p∈C

(ep − 1)p,

if ϕ has only tame ramification.
3. Since ϕ is separable, R is indeed a divisor. t /∈ k/C)pk because k(E) ⊂

k(C) is separable, Hence, vp′(dt) = vp′d(t − t(p′)) = 0 for all but finitely
many points, and the assertion follows since t − t(q′) for q′ = ϕ(p′) is a local
parameter for points q′ in a Zariski open neighborhood of q.
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Exercise 8.4.4. Prove that the ramification divisor is defined over the field
of definition of ϕ. ⊓*

It is convenienent to introduce pullback and pushforward of divisors.

Definition 8.4.5. Let ϕ : C → E be a morphism between smooth projective
curves. Then we define

ϕ∗ : Div(E) → Div(C),
∑

q∈E

nqq '→
∑

p∈C

epnϕ(p)p

and
ϕ∗ : Div(C) → Div(E),

∑

p∈C

npp '→
∑

p∈C

npϕ(p).

Note, that ϕ∗ϕ∗D = dD for every divisor D ∈ Div(E), because
∑

p∈ϕ−1(q) ep =
d for every point q ∈ E. By the same reason, we have degϕ∗D = d deg D for
D ∈ Div(E) and degϕ∗D′ = deg D′ for D′ ∈ Div(C).

Theorem 8.4.6 (Hurwitz’s formula). Let ϕ : C → E be a separable mor-
phism of degree d between smooth irreducible curves of genus gC and gE. Then

KC ≡ ϕ∗KE + R,

in particular
2gC − 2 = d(2gE − 2) + deg R,

where R =
∑

p∈C ρpp denotes the ramification divisor of ϕ.

Proof. Since ϕ is separable, a non-zero rational differential form ω = fdg on
E pullsback to a nonzero rational diferential from ϕ∗ω, defined as

ϕ∗ω = (g ◦ ϕ) d(f ◦ ϕ).

We choose ω such that the support of the divisor (ω) contains no branch
point. Then ϕ∗ω has zeroes and poles with the same multiplcity at each of the
d point over a point in the support of the divisor (ω) and additional zeroes at
the points p in the support of R with multiplicity ρp. Hence KC = ϕ∗KE +R
and 2gC − 2 = deg KC = d(deg KE) + deg R = d(2gE − 2) + deg R. ⊓*

Hurwitz’s Theorem allows us to give a purley topological interpretation
of the genus of smooth projective curves over C. This explains the attribute
“geometric” in the notion “geometric genus”.

Corollary 8.4.7. Let C be a smooth projective curve over C and consider the
underlying real 2-dimensional topological manifold, that is C equipped with the
Euclidean topology. Then

2 − 2g = euler(C)

where g is the geometric genus and euler(C) denotes the Euler number of the
underlying surface.
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Proof. The Euler number is the alternating sum of the number of i-simplices
in any triangulation. Euler observed the independence from the triangulation
and calculated the value for S2,

euler(S2) = v − e + t = 2,

for v, e, t the number of vertices, edges and triangles in an arbitrary triangula-
tion of S2. Since P1 has genus 0 the formula holds for P1. In general, consider
a dominant morphism ϕ : C → P1. Refining the triangulation of S2 we may
assume, that every branch point is among the vertices, and that the preimage
of each triangle is homoemorphic to a union of triangles, which intersect at
most in common ramification points. Then the preimages of the triangulation
of S2 give a triangulation of C. With d = degϕ we obtain t̃ = td triangles
and ẽ = ed edges in the induced triangulation of C. However, the number of
vertices is only ṽ = vd − deg R because of the ramification. Hence, the Euler
number is

euler(C) = ṽ − ẽ + t̃ = (v − e + t)d − deg R = 2d− deg R = 2 − 2g,

by Hurwitz’s formula. ⊓*

Example 8.4.8. Consider the elliptic curve E = V(y2 − x3 + x) and the pro-
jection onto the x-axis ϕ : E → P1. Then ϕ has degree 2 and branch points
in {0, 1,−1,∞}. We triangulate P1 ∼= S2 like an octahedron.

The induced triangulation of E has 8 vertices, namely the 4 ramification
points, which have now each valence 8 in the 1-skeleton, and the 2·2 preimages
of ±i, which remain vertices of valence 4.

Exercise 8.4.9. In the example above assume that ∞ ∈ P1 correspond to
the north pol, that 1 ∈ P1 and its preimage in E correspond to the right most
points. Describe a possibility for the identification of the ramification points
on E in the illustration and the curve of real points. ⊓*

Corollary 8.4.10 (Lüroth’s Theorem, first version). Let ϕ : P1 → E be
a separable morphism to a smooth curve E. Then E ∼= P1.
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Proof. The only way how the left hand side in Hurwitz’s formula can be
negative, is when gE = 0 and deg R = 2d − 2. So E has genus 0, and since
it contains a point, defined over of field of definition of ϕ, it is rational by
Theorem 5.4.13. ⊓*

We now come to inseparable morphisms. Let k be a field of characteristic
p > 0.

F = Fk : k → k, a '→ ap

is a monomorphism of fields, which is called the Frobenius morphism. In
case k is algebraically closed or k is finite, it is an automorphism, i.e. also
surjective.

Inseparable morphisms C′ → C of curves are closely related to the Frobe-
nius morphism on the function field

F = Fk(C) : k(C) → k(C).

However, F does not correspond to a morphism of curves in the sense of
Corollary 7.1.13, because F is not k-linear. To make F k-linear we change the
k-algebra structure on the right k(C). We define

k × k(C) → k(C)

by
(a, f) '→ apf.

With this new structure k(C) becomes the function field of a new curve Cp,
and the map F induces a morphism

F ′ : Cp → C,

which we call the geometric Frobenius morphism. To describe equations
of Cp, we consider the ring homorphism

F−1 : k[x0, . . . , xn] → k[x0, . . . , xn],

defined by applying F−1
k to the coefficients. Suppose C ⊂ Pn is defined over

k by the ideal I = ⟨f1, . . . , fr⟩. Then Cp has k1/p as the field of definition and
F−1(f1), . . . , F−1(fr) as defining equations. More over, F ′ is the morphism
induced by

Pn → Pn, xi '→ xp
i ,

on Cp. Indeed, fj(xp
0, . . . , x

p
n) = (F−1(fj)(x0, . . . , xn) )p vanishes on Cp for

every defining equation fj ∈ I(C). Similarly, on the level of function fields,
we have (F ′)∗(f) = (F−1(f))p ∈ k(Cp) for any f ∈ k(C). Hence, F ′ is purely
inseparable and k(Cp) = k(C)1/p. Since the ramification index eq = eq(F ′) =
p and F ′ is bijective as a map on sets, we have deg F ′ = p.
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Theorem 8.4.11. Let ϕ : C′ → C be a purely inseparable morphism of
smooth curves. Then ϕ is a composition of geometric Frobenius morphisms.
In particular gC′ = gC.

Proof. degϕ = pr is a pth power, because the field extension is purely insep-
arable. Hence,

k(C′)pr

⊂ k(C)

or equivalently,
k(C′) ⊂ k(C)1/pr

.

On the other hand, if we define inductively Cpj+1 = (Cpj )p then the compo-
sition

Cpr
F ′

!! Cpr−1
F ′

!! . . . F ′
!! Cp

F ′
!! C

is another morphism of degree pr and k(Cpr ) = k(C)1/pr
. Hence k(C′) =

k(C)1/pr
for degree reasons. We conclude that C′ = Cpr and that ϕ is the

composition of the geometric Frobenius morphism from Corollary 7.1.13. ⊓*

Exercise 8.4.12. Suppose, C is defined over the finite field Fpr . Prove that
(F ′)r is an automorphism of C. Is the converse true?

Hint: To answer the question, consider F4 = F2[a] and the plane curve,
defined by ax3 + (a + 1)y3 + z3. ⊓*

Theorem 8.4.13 (Lüroth’s Theorem, final version). Let k be a not nec-
essarily algebraically closed field, and let k ⊂ L ⊂ k(t) be a field of transzen-
dence degree trdegk L = 1. Then L ∼= k(s) is also a purely transzendental
extension of k.

Proof. L ⊂ k(t) corresponds to a morphism P1 → C of curves defined over k.
We decompose P1 → C in a purely inseparable part P1 → C′ and a separable
part C′ → C. Then, we see gC′ = 0 from Theorem 8.4.11 and gC = 0 by
Corollary 8.4.10. Since C contains a k-rational point, we obtain C ∼= P1 over
k and hence, L = k(C) ∼= k(s) for some transzendental element s ∈ L. ⊓*

Our second application of Hurwitz’ formula is the proof of the Pücker’s
formulas: Let chark = 0, and let C ⊂ P2 be a smooth pojective curve of degree
d. We want to compute the degree d∗ of the dual curve Č ⊂ P̌2. Intersection
points of Č ∩ L with a line L correspond to tangent lines of C, which pass
through the point p ∈ P2 dual to L. Thus, applying the Hurwitz formula to the
projection from p allows to compute d∗. The dual curve Č usually has double
points and cusps corresponding to bitangents and flex tangents respectively.
To arrive at formulas which are symmetric in the data from C and Č, we
allow ordinary double ppints and cusps also for C.

Theorem 8.4.14. Let C ⊂ P2 and Č ⊂ P̌2 a pair of dual curves with only
ordinary nodes and cusps. Let δ,κ, b and f denote the number of nodes, cusps,
bitangents and flexes of C, respectively. Then the corresponding numbers of
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Č are δ∗ = b,κ∗ = f, b∗ = δ and f∗ = κ. The degrees d and d∗ of C and C∗

and their common geometric genus g are related by

g =
(

d − 1
2

)
− δ − κ =

(
d∗ − 1

2

)
− b− f,

d∗ = d(d − 1)− 2δ − 3κ,

d = d∗(d∗ − 1) − 2b− 3f.

Moreover,
f = 3d(d− 2) − 6δ − 8κ,

κ = 3d∗(d∗ − 2) − 6b− 8f,

and

b =
d(d − 2)(d2 − 9)

2
− d(d − 1)(2δ + 3κ) +

(2δ + 3κ)2

2
+

20δ + 25κ
2

.

Proof. The first formula is the genus formula for curves with nodes and cusps.
The second formula follows from Hurwitz ’formula by considering the pro-
jection from a point: The d∗ intersection points of C∗ with a general line
Lp ⊂ P̌2 correspond to tangent lines of C passing through the correspond-
ing point p ∈ P2. These are also ramification points of the morphism on the
desingularization η : C̃ → C induced by the projection from p:

πp ◦ η : C̃ → P1.

The cusps give further ramfication points, and no other points are ramified.
Thus,

d∗ = deg R − κ = 2g − 2 + 2d = d(d − 1) − 3κ− 2δ.

To compute the number of flexes, we intersect C with the Hessian curve
H and apply Proposition ??. Recall from Exercise ??, that the intersection
multiplicity of the Hessian and C in a node is 6. In a cusp it is 8. Thus,

f = 3d(d− 2) − 6δ − 8κ.

The formulas for d and κ are dual to the preceeding ones. Finally, the formula
for the bitangents follows from the previous formulas by a simple substitution.
2b = d∗(d∗ − 1)− d− 3f = (d(d− 1)− 2δ− 3κ)(d(d− 1)− 2δ− 3κ− 1)− d−
9d(d − 2) + 18δ + 24κ = d(d − 2)(d2 − 9) + . . .. ⊓*

8.5 Weierstrass Points and Automorphism

8.6 Riemann’s Count

The Riemann-Roch Theorem allows to get a rough overview of all possible
morphisms C → Pn of a curve to some projective space. By Theorem ??
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such morphism corresponds to a base point free linear system V ⊂ L(D) for
some divisor class D ∈ Div(C), and linear equivalent divisors D ≡ D′ give
isomorphic function spaces L(D) ∼= L(D′) and equivalent embeddings. The
main missing piece in our description is thus the quotient group

Pic(C) = Div(C)/ ≡

called Picard group or divisor class group of C. The degree of a divisor
induces a group homomorphism

deg : Pic(C) → Z.

Let Picd(C) denote the preimage of d ∈ Z, i.e. the set of divisor classes
of degree d. Not so obvious is, that each Picd(C) carries the structure of a
projective variety defined over the field of C. We do not prove this fact in this
book. However granted this, Riemann-Roch allows to compute its dimension.

Let C(d) = C × . . . C/Sd be the d-th symmetric product of C. Since C
is 1-dimensional, the variety C(d) is smooth. To prove this fact, one uses the
fundamental theorem on symmetric functions. For example, the symmetric
product (P1)(d) is isomorphic to Pd via the map, which assigns to a collection
of d points their defining equation up to a factor. In general we interprete C(d)

as the variety of effective divisors p1 + . . . + pd of degree d on C. Consider the
Abel-Jacobi map

ud : C(d) → Picd(C),

which associates to an effective divisor D its divisor class [D] ∈ Picd(C). The
fiber of ud over the point represented by a divisor D is the complete linear
system |D|, which is a projective spaces of dimension ℓ(D)− 1 or empty.

Thus, if C has genus g and d ≥ g, then the map ud is onto by Riemann’s
inequality, and for d ≥ 2g − 1 all fibers are projective spaces of the same
dimension d− g by the Riemann-Roch Theorem 8.3.2. In particular, Picd(C)
is irreducible, and the theorem on the fiber dimension ?? gives

dim Picd(C) = dimC(d) − dim |D| = d − (d − g) = g,

for all d ≥ 2g − 1. If E ∈ Div(C) is any divisor of degree d− e then

D '→ D + E

induces an isomorphism
Pice(C) ∼= Picd(C),

which is defined over the field of definition of E. We conclude

Proposition 8.6.1. Let C be a smooth projective curve of genus g. Then
dim Picd(C) = g holds for every component of the Picard variety of C.
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Let Mg denote the set of isomorphism classes of smooth projective curves
of genus g. It was used by Riemann intuitively, that Mg carries the structure
of a variety. A rigorous construction of Mg and even better a geometric inter-
pretation of a suitable projective closure was given by Mumford ? in his fields
medail winning work on geometric invariant theory.

The Riemann-Roch Theorem and Hurwitz’s formula allow to compute the
dimension of Mg at least if k = C.

By Riemann’s inequality a general effective divisor D ∈ C(d) has ℓ(D) ≥ 2,
if d ≥ g + 1. From any 2-dimensional subspace W ⊂ L(D) we obtain a
morphism

ϕW : C → P1, p '→ [f0(p) : f1(p)],

once we choose a basis f0, f1 of W . Assume d ≥ 2g + 1. Then |D| is base
point free by Cororllary ?? and P(W ) ⊂ |D| will be base point free as well
for a general choice of W ∈ G(2, L(D)) in the Grassmannian of 2-dimensional
subspaces of L(D). Thus, degϕW = d for general choice of W and the rami-
fication divisor R has degree

deg R = 2g − 2 + 2d

by Hurwitz’s formula. Moreover, the map ϕW : C → P1 for general choices has
only simple branch points. The last fact is confirmed also by the dimension
count below.

Let us consider

Ad,g = {(C, [D], W ) | C ∈ Mg, [D] ∈ Picd(C), W ∈ G(2, L(D))}

for d ≥ 2g + 1 and

Ãd,g = {(C, [D], W, f0, f1) | (C, [D], W ) ∈ Ad,g and f0, f1 ∈ W a basis}.

One can equip Ad,g and Ãd,g with the structure of a variety in a natural way.
All fibers of the projection Ãd,g → Ad,g are isomorphic to GL(2, C), thus
4-dimensional. Let

M(P1, d)g = {(C,ϕ) | C ∈ Mg and ϕ : C → P1 of degree degϕ = d}

denote the variety of morphisms of degree d from curves of genus g to P1. By
Theorem 6.5.1 a general linear subspace of codimension 2 in Pd−g does not
intersect the image of C under ϕD. Hence there is a dominant rational map

Ãd,g !!" M(P1, d)g

defined by
(C, [D], W, f0, f1) '→ (C, p '→ [f0(p) : f1(p)]).

The fibers of this morphism are all isomorphic to C∗, because (f0, f1) and
(λf0,λf1) define the same map. We conclude
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dim Ãd,g = dimM(P1, d)g + 1.

To compute the dimension of M(P1, d)g, we consider the map

M(P1, d)g → (P1)(2g−2+2d), (C,ϕ) '→ B = ϕ∗R,

which associates to a morphism ϕ the branch divisor B.

Proposition 8.6.2 (on branched coverings). Suppose k = C. Given an
effective divisor B ∈ (P1)(2g−2+2d), there are only finitely many isomorpohism
classes of smooth projective curves C of genus g and maps ϕ : C → P1, which
have B as branch divisor. If B consists of 2g−2+2d distinct points, then the
set of {(C,ϕ) | ϕ∗R = B} is non-empty.

The proof is based on topological and analytic arguments, which require
that the reader is familiar with the notion of Riemann surfaces, and the fol-
lowing fundamental result:

Theorem 8.6.3 (Riemann). For each compact connected Riemann surface
Can there exists a smooth irreducible projective algebraic curve C defined over
C, which has Can as underlying complex analytic manifold. C is determined
by Can up to isomorphisms.

Remark 8.6.4. The hardest part in the proof of this theorem is to establish that
there exists a non-constant meromorphic functions on a compact Riemann
surface. This is clearly satisfied in our applications below. We outline a proof
of the theorem under this additional assumption in Exercises ??-?? below.

For higher dimensional compact complex manifold, the analogous result is
not true. There are complex manifolds which have only constant meromorphic
functions. A complex manifold might even differ considerably in its topology
from any possible Euclidean topology of a complex projective variety. We refer
as a start for further reading to Barth-Hulek-Peters-Van de Ven for the case
of 2-dimensional complex manifolds.

Proof of the Proposition on branched coverings 8.6.2. Assume that ∞ ∈ P1

is not a point of B and choose an ordering b1, . . . , br+1 of the points in the
support of B such that the line segments Li = {sbi + (1 − s)bi+1 | s ∈
[0, 1]} ⊂ A1(C) ⊂ P1(C) form a polygon L = L1 ∪ L2 ∪ . . . ∪ Lr−1 with no
self-intersections.

The underlying real 2-manifold of C is obtained from d copies, called
sheets, of P1 \ L by suitable gluings across the Li. We fix an enumeration
of the sheets. For each branch point bi path, lifting to C(C) of a small loop
around bi ∈ P1(C) induces a permutation of the d sheets. Let σi ∈ Sd be the
corresponding element. Then we can recover the underlying Riemann surface
of C as follows. Glue the d sheets across Li according to the permutation
σi ◦ . . . ◦ σ1. Thus, the underlying Riemann surface Can depends only an B
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and the finite set of additional data, given by the permutations σi. The first
statement follows now from Riemann’s Theorem 8.6.3.

For the second, we note that for given B, L and permutation σi the glueing
leads to a connected Riemann surface iff the following conditions are satisfied:

1. σr ◦ . . . ◦ σ2 ◦ σ1 = id,
2. σ1, . . . ,σr generate a transitive subgroup of Sd.

Indeed, the first condition simply says, that a loop around the whole polygon
induces the trivial permutation, the second is needed to obtain a connected
surface. If these conditions are satisfied then we can give the surface the
structure of a complex manifold: Away from the ramification points we take
as local analytic coordinates preimage of coordinates on P1. At a ramification
point pij over bi ∈ B, we take the function (z − bi)1/eij as a local coordinate,
where eij is the ramification index, i.e. the length of the corresponding orbit
of σi. Note, that although (z− bi)1/eij is a multi-valued function on P1, it will
be single-valued in a small neighbarhood of pij .

We obtain a reduced ramification divisor B iff each σi is a transposition.
Thus, in case of 2g − 2 + 2d (≥ 2d) simple branch points, we can choose
for example the transposition σ2i−1 = σ2i = (i, i + 1) for i = 1, . . . , d and
σ2i−1 = σ2i = τi an arbitrary transpositions for i = d + 1 . . . d + g − 1. Then
condition 1.) is satisfied because τ2 = id holds for any transposition τ , and
2.) holds because (1, 2), . . . , (d − 1, d) generate Sd. ⊓*

Exercise 8.6.5. With the notion as in the first part of the proof above, show
that the Galois group of C(C) ⊃ C(P1) = C(x) is isomorpic to the subgroup
generated by σ1, . . . ,σr. (c.f. Theorem 6.7.1 for a related topic). ⊓*

We are now ready to count the number of moduli of curves of genus g.

Theorem 8.6.6 (Riemann). For g ≥ 2 the moduli space Mg has dimension

dimMg = 3g − 3,

i.e. curves of genus g depend on 3g − 3 moduli.

Proof. The result is actually true without any assumption on the ground field.
However, we prove this only for k = C, because we will apply the result on
branched coverings. By Theorem ?? any curve of genus g ≥ 2 has a finite
automorphism group. Thus, by the Proposition 8.6.2 on branched coverings
dimM(P1, d)g = 2g−2+2d, and hence dim Ad,g = 2g−2+2d−3. The fibers
of

Ad,g → {(C, [D]) | C ∈ Mg, [D] ∈ Picd(C)}

are Grassmanians G(2, L(D)) of dimension 2(ℓ(D)− 2) = 2(d + 1− g − 2) by
Riemann-Roch and Exercise 6.3.39. Finally, the fibers of

{(C, [D]) | C ∈ Mg, [D] ∈ Picd(C)} → Mg



8.6 Riemann’s Count 373

are g-dimensional by Proposition 8.6.1. Thus,

dimMg = dim Ad,g − 2(d + 1 − g − 2)− g = 3g − 3.

⊓*

Remark 8.6.7. If the genus g = 1 then dim Aut(C) = 1 with the connected
component of the identity given the action of Pic0(C) on Pic1(C) ∼= C. This
leads to Hom(1, P1)d = 2g− 2 + 2d + dim Aut(C) and we obtain dim M1 = 1.
Similarly, dim M0 = 0, because Aut(P1) = PGL(2, C) is 3-dimensional, which
is consistent with the fact, that P1 is the only curve of genus 0 over C.

Remark 8.6.8. A famous result of Bély says that a complex projective curve
over C can be defined over an algebraic number field iff it can be described as a
branched cover of P1 with only three branch points. Clearly, the proposition on
branched coverings 8.6.2 says, that such curves do not depend on continuous
parameters, because we can choose 0, 1,∞ as fixed branch points for such
coverings.

Our next dimension count concerns the dimension of the space

Hd,g = {C ⊂ P3 | C is a smooth curve of genus g and degree d}.

Again, this set carries naturally the structure of an algebraic set.

Corollary 8.6.9. The space of smooth curves of genus g and degree d in P3

has dimension
dimHd,g = 4d

for d ≥ max(2g + 1, g + 3).

Proof. To obtain a space curve we choose

1. a curve C ∈ Mg,
2. a divisor class [D] ∈ Picd(C),
3. a 4-dimensional subspace W ⊂ L(D), which defines a very ample linear

system, and
4. a basis of W up to a common scalar factor.

Thus,

dimHd,g = dim Mg + dim Picd(C) + dim G(4, L(D)) + dim PGL(3, k)
= 3g − 3 + g + 4(d + 1 − g − 4) + 15 = 4d.

⊓*
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Remark 8.6.10. The Proposition 8.6.9 is true in a larger range of degrees.
For example also the space of lines in P3, i.e. the Grassmannian G(2, 4), has
dimension 4 = 4 · 1. However, for 3 ≤ d ≤ 2g − 4 the situation can be quite
complicated because we do not know the dimensions and the behavior of the
spaces of special divisors

W r
d (C) = {[D] ∈ Picd(C) | dim |D| ≥ r}

in this range precisely. Their dimensions vary with the curve upper semi-
continuously. The following is known:

Theorem 8.6.11 (Brill-Noether,ACGH).

dim W r
d (C) ≥ g − (r + 1)(g + r − d),

and equality holds for general curves.

For special curves, the dimension dimW r
d (C) can be larger. We refer to

ACGH and HM for further reading on the subject of moduli of curves and
special linear series.

Remark-Definition 8.6.12. The following notation is widely used in this
context of studying special divisors: A gr

d on a curve C denotes an r-
dimensional linear system of divisors of degree d, possibly with base points.

Thus morphisms of C to P3 amounts to study g3
d, while rational functions

are related to g1
d. Any g1

d gives a non-constant rational function of degree ≤ d.
The degree might be smaller, because the g1

d might have base points.

Exercise 8.6.13. Compute the dimension of the space of smooth curves of
degree 2 in P3. ⊓*

Corollary 8.6.14. A general smooth projective curve of genus g has no non-
constant rational functions of degree

d <
g + 2

2
.

Proof. A rational function of degree d has at most 2g− 2 + 2d branch points.
Hence, by Proposition 8.6.2 the family of curves with such functions form a
family of dimension at most 2g−2+2d−3. The result follows from Riemann’s
count of moduli, Theorem 8.6.6, because

2g − 2 − 2d− 3 < 3g − 3 ⇔ d <
g + 2

2
.

⊓*

Remark 8.6.15. The result is sharp. One can show, that every curve of genus
g has a rational function of degree ≤ d = ⌊ g+3

2 ⌋. To prove this by a dimension
counting argument we would need the following:
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Theorem 8.6.16 (Deligne-Mumford). Mg is an irreducible variety.

This combined with the following special piece of Brill-Noether theory
would prove the assertion in Remark 8.6.15.

Proposition 8.6.17. There exists a smooth projective curve C of genus g
such that W 1

d (C) for d = ⌊ g+3
2 ⌋ has dimension = 0 respectively = 1, if g is

even respectively odd.

However, both results are way beyond the techniques developed so far.
Again we refer to [HM] and [ACGH] for further reading.

Definition 8.6.18. Let C be a smooth curve of genus g. The gonality of C
is defined to be the smallest degree d of a non-constant rational function on C,
in other words, the smallest number, such that k(C) is an algebraic extension
of k(t) of degree

[k(C) : k(t)] = d.

The smallest possible gonality of a curve of genus g ≥ 2 is two. These
curves got an extra name:

Definition 8.6.19. A curve of genus g ≥ 2 is hyperelliptic, if there exist a
morphism

π : C → P1

(possibly defined only over the algebraic closure of the ground field k).

Example 8.6.20. A smooth curve of bi-degree (2, g + 1) on P1 × P1 is an hy-
perelliptic curve of genus g by Exercise 6.4.29.

Hyperelliptic curves of genus g are related to the study of hyperelliptic
integrals ∫

dx√
p(x)

with p(x) =
∏

i(x−ai) ∈ C[X ] a polynomial of degree 2g+1 or 2g+2 without
multiple roots. (If deg p = 2g + 1 then the Riemann surface associated to the
analytic function

√
p(x) has at ∞ ∈ P1 another branch point.)

From an algebraic point of view, the gonality would seem to be the most
basic invariant of a curve. Instead the genus plays this role. The genus stays
constant in families of smooth projective curves, while the gonality is just
upper semi-continues.

Example 8.6.21. Consider the family of curves

Ct = V(ft) ⊂ P2

defined by the affine equations ft = xy(x+ y− 2t)− 3(x5 + y5)− 2(x6 + y6)+
t(12(x4 + y4) + x3y + xy3 − 20x2y2 + 8(x5 + y5) − 12(x4y + xy4) + 6(x3y2 +
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x2y3)− 5(x5y + xy5)− 2(x4y2 + x2y4) + 14x3y3) + t2(−12(x3 + y3)− 2(x2y +
xy2)−8(x4 +y4)+24(x3y+xy3)−44x2y2 +10(x4y+xy4)+20(x3y2 +x2y3)+
10(x4y2 + x2y4) + 24x3y3).
The curve Ct for a general value t has four ordinary double points in p0 =
(0, 0), p1 = (2t, 0), p2 = (0, 2t) and p3 = (−1,−1), and no further singularities.

t = −0.1 t = 0

However, the curve C0 is irreducible with an ordinary tripel point in p = (0, 0)
and a double point in p3 = (−1,−1). Hence, this is a family of curves of genus
g = 6. Projection from the triple points yields a g1

3 on C0, hence, the curve C0

is trigonal. On the other hand, the curve Ct for general values t ̸= 0 is only
4-gonal. We will show this for the value t = − 1

10 in Exercise 8.7.25 below.
The projection from each of the 4 double points yields a g1

4 on Ct. A fifth g1
4

is obtained from the pencil of quadrics through the four double points. One
can show that Ct has precisely five g1

4 .

8.7 Canonical Curves

Out of the many linear series on a curve only the canonical series is canonically
given.

Theorem 8.7.1. Let C be a smooth projective curve of genus g ≥ 2. Then
the canonical linear system |K| is base point free. It is very ample unless C is
hyperelliptic.

Proof. This is an immediate application of the Riemann-Roch Theorem. ℓ(K−
p) = ℓ(K) − 1 since L(p) = k, as C ≁= P1 has no rational function of degree
1. This gives base point freeness. Very ampleness means, that ℓ(K − p− q) =
ℓ(K)− 2 for any pair of points on C. If this is not satisfied then ℓ(p + q) = 2,
which means that there exists a rational function of degree 2. ⊓*

So the canonical morphism ϕK is either an embedding

ϕK : C ↪→ Pg−1

as a curve of degree 2g − 2, or C is hyperelliptic and the map factors
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C
2:1−→P1 ↪→ Pg−1

over the hyperelliptic map followed by the (g − 1)-uple embedding of P1. In
particular, we see that the hyperelliptic map is uniquely determined.

Example 8.7.2. A curve of genus g = 2 is always hyperelliptic, hence, a double
cover of P1 branched at 6 points. Curves of genus 3 are either isomorphic to
a plane quartic, or they are double covers of a smooth plane conic.

Note, that above we were bit sloppy. For arbitrary ground fields, the image
of the canonical map is just a curve of genus 0, which is isomorphic to P1 over
the ground field k, iff it contains a k-rational point.

Curves of genus 4 are either hyperelliptic or the intersection of a quadric
and a cubic in P3, as we shall see below.

Exercise 8.7.3. Let C be an absolutely irreducible curve of genus 0. Prove
that C is isomorphic to a plane conic over its field of definition.

Hint: Study the map given by the anticanonical system |−K|. ⊓*

Remark-Definition 8.7.4. A smooth canonical curve is an absolutely ir-
reducible, smooth and non-degenerate curve of genus g and degree 2g − 2 in
Pg−1. On such a curve the hyperplanes cut out the complete canonical system.

Proof. To see H ≡ K, we note that since deg(H − K) = 0, Riemann-Roch
gives ℓ(H) = g iff ℓ(K − H) = 1 iff K ≡ H . The ℓ(H) = g is satisfied, iff
C ⊂ Pg−1 is non-degenerate. ⊓*

Recall that an effective divisor D is special, if L(K − D) ̸= 0. Since the
hyperplanes cut out the complete linear series |K| on a canonical curve, we can
compute |D| for an effective special divisor D as follows: Take a hyperplane
H ⊂ Pg−1 which passes through D ⊂ C Consider the residual divisor E =
C.H −D. Then the hyperplanes through E cut out |D|+E = {D′ +E | D′ ∈
|D|}.

Translated into a statement about secants to the canonical curves the
Riemann-Roch formula takes an amusing form.

For D an effective divisor on a curve C, we denote by

D =
⋂

{H|ϕ∗
KH−D≥0}

H ⊂ Pg−1

the linear span of D in the canonical space.

Theorem 8.7.5 (Geometric version of Riemann-Roch). Let D be an
effective divisor on a curve of genus g ≥ 2. Let D ⊂ Pg−1 be the linear span
of D. Then

dim |D| = deg D − 1 − dim D.
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Proof. By the Riemann-Roch formula

dim |D| + 1 = ℓ(D) = deg D + 1 − g + ℓ(K − D).

The result follows by interpreting ℓ(K −D) as the codimension of D in Pg−1.
⊓*

Example 8.7.6. If a canonical curve C ⊂ Pg−1 has one trisecant line then C
has infinitely many trisecants lines spanned by a pencil |D| of divisor degree
3. In general a complete gr

d with d ≤ g − 1 corresponds to an r-dimensional
family of d-secant (d − r − 1)-planes.

Our next goal is to prove, that canonical curves are projectively Cohen-
Macaulay.

Lemma 8.7.7 (Base point free pencil trick). Let C be a smooth projective
curve and P ⊂ |D| a base point free pencil spanned by two functions f1, f2 ∈
L(D). Let H be a further divisor. The kernel of the map

µ : L(H)⊕ L(H) → L(H + D), (g1, g2) '→ g1f1 + g2f2

is isomorphic to L(H −D).

Proof. For h ∈ L(H − D), we have (f2h,−f1h) ∈ kerµ which proves one
direction.

For the other inclusion, consider Di = (fi) + D ∈ |D|. By assumption,
supp(D1) ∩ supp(D2) = ∅. Moreover, choosing a different basis for P if nec-
essary, we may assume in addition that the support of D1 and D2 is disjoint
from the support of D. Now, if (a1, a2) ∈ kerµ, then a1f1 = −a2f2, and the
assumption about the support of (f1) and (f2) implies that all points of D2 are
zeroes of a1 with the appropriate multiplicity. Hence a1

f2
= −a2

f1
∈ L(H − D)

as desired. ⊓*

Corollary 8.7.8. Let C ⊂ Pr be a smooth irreducible curve. C is projectively
normal iff C is arithmetically Cohen-Macaulay.

Proof. Suppose C is projectively normal, i.e (S/IC)m
∼= L(mH) for every m.

Consider a base point free pencil P = P(U) ⊂ L(H). The sequence

0 → L((m − 1)H) → U ⊗ L(mH) → L((m + 1)H)

is exact for all m, which implies, that for ⟨u0, u1⟩ ∈ U ⊂ S1 the coordinate
ring SC = S/IC is a free k[u0, u1]-module. The converse implication follows
from Remark ??. ⊓*

Theorem 8.7.9 (Max Noether). A canonical curve C ⊂ Pg−1 is projec-
tively normal.
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Proof. We have to prove that the map

k[x0, . . . , xg−1] → ⊕mL(mK)

is surjective. Equivalently, we have to prove that the multiplication maps

L(K)⊗ L((m− 1)K) → L(mK)

are surjective for all m ≥ 2. The most difficult case is m = 2. Consider g
general points p0, . . . , pg−1 on C ⊂ Pg−1. Then, these points will span Pg−1.
The sum of any g − 2 of these points, say E = p1 + . . . + pg−2, is a divisor,
such that its span E intersects C only in the given g − 2 points transversally.
In other words, the linear system L(K − E) is base point free.

(For example, we could take a p1, . . . , pg−2 as g − 2 points of a general
hyperplane section of C by 6.7.9.)

Choose a basis ω0, . . . ,ωg−1 of L(K) dual to these points, that is ωi has a
zero at pj for j ̸= i. Since deg 2K−E = 4g−4−(g−2) > 2g−1, the subspace
L(2K − E) ⊂ L(2K) has codimension deg E = g − 2. Actually, ω2

1 , . . . ,ω
2
g−2

represent a basis of the quotient space L(2K)/L(2K−E). Thus to prove that
the multiplication map

L(K)⊗ L(K) → L(2K)

is onto, it is enough to prove that

L(K − E)⊗ L(K) → L(2K − E)

is surjective. By the base point free pencil trick, Lemma 8.7.7, the kernel of
this map is isomorphic to L(K − (K −E)) = L(E), which is one-dimensional.
Hence the image has dimension 2g− 1. Since ℓ(2K −E) = 4g − 4− (g − 2) +
1 − g = 2g − 1 by Riemann-Roch, surjectivity follows. For arbitray m ≥ 3,
we argue similarly: ωm

1 , . . . ,ωm
g−2 represent a basis of L(mK)/L(mK − E)

and L((m − 1)K) ⊗ L(K − E) → L(mK − E) is surjective, since the kernel
L((m− 2)K + E) has dimension

ℓ((m− 2)K + E) = (m − 2)(2g − 2)− 1,

which equals

2ℓ((m− 1)K)− ℓ(mK − E) = (2m− 1)(2g − 2)− (m(2g − 2)− 2g + 3).

⊓*

Corollary 8.7.10. The Hilbert function of a canonical curve of genus g takes
values

(1, g, 3g − 3, 5g − 5, . . . , m(2g − 2) + 1 − g, . . .).
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We go a bit further in the analysis of Max Noether and compute a Gröbner
basis of the ideal IC in coordinates x0, . . . , xg−1 of Pg−1, such that xi '→ ωi.
We use the reversed lexicographic order in the following order of our variables

x1 > x2 > . . . > xg−1 > x0.

Since ωiωj ∈ L(2K − E) for 1 ≤ i ̸= j ≤ g − 2, they are contained in the
image of L(K − E) ⊗ L(K).

This means, that IC contains elements of type

Fij := xixj −
g−2∑

i=1

ar
ijxr − bij , for 1 ≤ i < j ≤ g − 2

with ar
ij , bij ∈ k[xg−1, x0] of degree 1 and 2, respectively. Note L(Fij) =

xixj . Since dim(IC)2 =
(g+1

2

)
− 3g + 3 =

(g−2
2

)
, these quadrics span (IC)2.

However, these are not enough elements for a Gröbner basis for IC , because
dim⟨L(Fij |1 ≤ i < j ≤ g − 2⟩3 = 6g−8 = 5g−5+g−3. If we run Buchberger’s
test on the Fij , we obtain a division expression

Fij,k = xkFij−xjFik+
∑

r ̸=k

ar
ijFrk−

∑

r ̸=j

ar
ikFrj+ak

ijx
2
k−aj

ikx2
j+lower order terms.

Let us take a closer look at the ak
ij : All terms in Fij vanish at pk to the

second order. Hence,
ak

ij = ρijkαk,

where αk ∈ ⟨xg−2, x0⟩ defines the unique hyperplane in the pencil, which
vanishes at pk to order ≥ 2 and ρijk ∈ k. αkx2

k maps to an element of L(3K−
2E).

Lemma 8.7.11. The image of L(K−E)×L(2K−E) in L(3K−2E) spans a
space of codimension 1. Moreover, for a general choice of of p0, . . . , pg−1 each
of the elements αkx2

k represents a basis of this one dimensional cokernel

Proof. Since ⟨xg−1, x0⟩ = L(K − E) is base point free pencil, the trick 8.7.7
identifies the kernel of L(K − E) ⊗ L(2K − E) → L(3K − 2E) with L(K).
Hence the image has dimension

2ℓ(2K − E) − ℓ(K) = 2(3g − 3 − g + 2)− g = 5g − 5 − 2g + 4− 1.

This is codimension 1 in L(3K − 2E).
For the second statement, we note that if αkx2

k does not span the cokernel,
then we find an equation of type αkx2

k −
∑g−2

r=1 cr
kxr −dk in the ideal IC . Since

there are precisely g−3 further Gröbner basis elements of degree three, at least
one of the g − 2 elements αkx2

k spans. But then all of them span for general
choices: The spanning of αkx2

k is satisfied for the choice of (p0, . . . , pg−1) in a
Zariski open subset Uk ⊂ Cg = C×C . . .×C. If one of these sets is non-empty,
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then by symmetry of the problem, all Uj are non-empty and Zariski dense.
So we can choose (p0, . . . , pg−1) ∈

⋂g−2
j=1 Uj , which is non-empty, because Cg

is irreducible. ⊓*

Note also, that for general choices αk ̸∈ ⟨x0⟩, so that L(αk) is a multiple of
xg−1. Adjusting αk with a scalar multiple, we can achieve that the images of
the αkx2

k in the one-dimensional space L(3K−2E)/ im(L(K−E)×L(2K−E))
coincide. With this adjustment we get elements

Gkl = αkx2
k − αlx

2
l −

g−2∑

r=1

cr
klxr − dkl

in the ideal, where cr
kl, dkl ∈ k[xg−1, x0]. Note, that Gkl + Gln = Gnl. This

gives us g − 3 cubics for the Gröbner basis, which have as initial forms scalar
multiples of xg−1x2

k for k = 1, . . . , g − 3. The last Gröbner basis element is a
quartic,

Hg−2 = αg−2x
3
g−2 + lower order terms

obtained from any of the S-polynomials of the pairs (Gi,g−2, Fi,g−2) in Buch-
berger’s test.

Proposition 8.7.12. The polynomials Fij , Gk,g−2, Hg−2 form a minimal Gröbner
basis for IC .

Proof. The monomial ideal, which is generated by xixj , 1 ≤ i < j ≤
g − 2, xg−1x2

k, k = 1, . . . , g − 3, and xg−1x3
g−2, has the same Hilbert func-

tion as IC . ⊓*

Theorem 8.7.13 (Petri). Let C ⊂ Pg−1 be a smooth irreducible canonical
curve of genus g ≥ 4. The homogeneous ideal of C is generated by quadrics
and cubics. It is generated by quadrics alone, unless C is trigonal, or C is
isomorphic to a smooth plane quintic, which has genus g = 6.

In the exceptional cases, the ideal IC needs in addition g− 3 cubic genera-
tors, and the quadrics generate the ideal of a surface X of degree g− 2, which
is either the surface

X =
⋂

D∈g1
3

D,

spanned by the tricecant lines, or the Veronese surface

P2 ↪→ P5.

Proof. It is easy to see that the exceptional curves cannot have the ideal
generated by quadrics: A curve with a g1

3 has infinitely many trisecant lines,
which will lie in the intersecion of all quadrics containing C by Bezout’s Theo-
rem 6.4.33. Similarly, a curve with a g2

5 has infinitely many 5-secant 2-planes.
Since 5 points in a plane lie on a unique conic, the intersection of the quadrics
containing C will contain these conics.
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In any case, by the Proposition on the Gröbner basis 8.7.12, the ideal is
generated by quadrics and cubics, since the quartic in the Gröbner basis is a
linear combination of these. Buchberger’s test gives us syzygies

Fij,k = xkFij − xjFik +
∑

r ̸=k

ar
ijFrk −

∑

r ̸=j

ar
ikFrj + ρijkGkj .

In particular, we see that for ak
ij = αkρijk and aj

ik = αjρikj the factors

ρijk = ρikj

coincide. Otherwise, we would get a contradiction to Lemma 8.7.11 above. So
Petri’s coefficients ρijk are symmetric in all three indices. We argue now
similarly as in the proof of the Lemma. By the symmetry of the situation and
the observation, that the vanishing of a coefficient ρijk defines an algebraic
subset for choices of points (p0, . . . , pg−1) ∈ Cg, we can assume that either
all ρijk are non-zero or all are zero, because Cg irreducible. If all are non-
zero then quadrics generate the cubics by the syzygies above, and the ideal is
generated by quadrics alone.

On the other hand, if all ρijk = 0 then the additional g − 3 cubics of
the Gröbner basis are needed for generation. The same syzygies as above tell
us this time, that the Fij form a Gröbner basis. Hence, they define a two-
dimensional algebraic set X . Since C is irreducible and

V({Fij | 1 ≤ i < j ≤ g − 2}) ∩ V(xg−1, x0) = {p1, . . . , pg−2} ⊂ C ⊂ Pg−1,

this algebraic set is an irreducible surface X of degree g − 2. By Bertini’s
classification of surfaces of minimal degree, see Exercise ??, this is either a
rational surface ruled by lines or the Veronese surface P2 ↪→ P5. In the first
case, the geometric version of Rieman-Roch 8.7.5 gives that the lines are
trisecant to C: A rational family of 2-secant is exclude because otherwise the
curve would be hyperelliptic, 4-secants are excluded, because the ideal of C is
generated by quadrics and cubics. In the second case, we see that the preimage
of C in P2 is a smooth quintic, canonically embedded by the adjoint system
|(5 − 3)L| on P2. ⊓*

Example 8.7.14. A non-hyperelliptic curve of genus g = 4 is the complete
intersection of a quadric and a cubic in P3. The curve is trigonal and has either
one or two g1

3 , depending on whether the quadric is a cone or isomorphic to
P1 × P1.

A non-hyperelliptic curve of genus g = 5 is either a complete intersection
of three quadrics, or it is trigonal, and C ⊂ P4 lies on a cubic scroll X ⊂ P4.

Petri’s Theorem got much attention due to the conjectural generalization
to higher syzygies of canonical curves due to Mark Green 1984. To explain
Green’ conjecture, we introduce a short notation for the numerical type of a
free resolution. Let
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F0 ← F1 ← . . . ← Fc ← 0

be a free complex of graded S-modules with Fi =
⊕

j S(−j)βij . We summarize
the numerical information in a table indexed by i and k = i− j:

0 1 . . . i . . . c
0 β00 β11 βii . . .
1 β10 β12 βii+1
...

...
...

...
...

k β0k β1k+1 βii+k
...

...
m . . . βii+m βcc+m

which we call the Betti table of the complex F∗.
A few invariants of the numerical data have special names. The integer

m + 1 = min{k | βij = 0∀i, j with j ≥ i + k}

is called the Castelnouvo-Mumford regularity of the complex. For the
minimal free resolution F of a ring S/I as an S-module, this is the number of
rows occuring, and we say that S/I is m + 1-regular. The largest homological
degree c is called the length of the complex.

Example 8.7.15. The twisted cubic curve P1 ↪→ P3 is defined by three quadric
equations, among which there are two linear syzygies. Hence, the correspond-
ing Betti table of the coordinate ring is

0 1 2
0 1 - -
1 - 3 2

The length of this resolution is c = 2 and S/I is 2-regular.
An easy encription rule for the Betti table runs as follows: Two numbers,

standing in the same row next to each other, correspond to map between free
modules of corresponding rank with linear entries. Entries in the corners of a
square correspond to a map with quadratic entries.

The minimal complex of Example ?? 2.86 has Betti table

0 1 2 3
0 1 - - -
1 - 5 5 -
2 - - - 1

that is, the complex has maps with quadratic entries in the end and in the
beginning, and a map with linear entries in the middle.
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Exercise 8.7.16. Let P1 ↪→ Pd be the rational normal curve of degree d.
Prove that its coordinate has the following Betti table

0 1 2 . . . i . . . d − 1
0 1 - - . . . - . . . -
1 -
(
d
2

)
2
(
d
3

)
. . . i

(
d

i+1

)
. . . d − 1

⊓*

Here is what is known about the Betti numbers of the minimal free resolu-
tion of canonical curves of genus 5 ≤ g ≤ 9. To include the case of hyperelliptic
curves, we consider the resolution of R = ⊕dL(dK) as an S = k[x0, . . . , xg−1]-
module. The tables below includes all possible Betti tables of smooth canonical
curves defined over field of characteristic chark = 0, and the interpretation in
terms of existence of special linear series.

g = 5 g = 6

general ∃ g1
3 ∃ g1

2

0 1 2 3
0 1 - - -
1 - 3 - -
2 - - 3 -
3 - - - 1

0 1 2 3
0 1 - - -
1 - 3 2 -
2 - 2 3 -
3 - - - 1

0 1 2 3
0 1 - - -
1 - 6 8 3
2 3 8 6 -
3 - - - 1

general ∃ g1
3 or g2

5 ∃ g1
2

0 1 2 3 4
0 1 - - - -
1 - 6 5 - -
2 - - 5 6 -
3 - - - - 1

0 1 2 3 4
0 1 - - - -
1 - 6 8 3 -
2 - 3 8 6 -
3 - - - - 1

0 1 2 3 4
0 1 - - - -
1 - 10 20 15 4
2 4 15 20 10 -
3 - - - - 1

g = 7

general ∃ g1
4 ∃ g2

6

0 1 2 3 4 5
0 1 - - - - -
1 - 10 16 - - -
2 - - - 16 10 -
3 - - - - - 1

0 1 2 3 4 5
0 1 - - - - -
1 - 10 16 3 - -
2 - - 3 16 10 -
3 - - - - - 1

0 1 2 3 4 5
0 1 - - - - -
1 - 10 16 9 - -
2 - - 9 16 10 -
3 - - - - - 1

∃ g1
3 ∃ g1

2

0 1 2 3 4 5
0 1 - - - - -
1 - 10 20 15 4 -
2 - 4 15 20 10 -
3 - - - - - 1

0 1 2 3 4 5
0 1 - - - - -
1 - 15 40 45 24 5
2 5 24 45 40 15 -
3 - - - - - 1

g = 8
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general ∃ g1
4 ∃ g2

6

0 1 2 3 4 5 6
0 1 - - - - - -
1 - 15 35 21 - - -
2 - - - 21 35 15 -
3 - - - - - - 1

0 1 2 3 4 5 6
0 1 - - - - - -
1 - 15 35 25 4 - -
2 - - 4 25 35 15 -
3 - - - - - - 1

0 1 2 3 4 5 6
0 1 - - - - - -
1 - 15 35 35 14 - -
2 - - 14 35 35 15 -
3 - - - - - - 1

∃ g1
3 ∃ g1

2

0 1 2 3 4 5 6
0 1 - - - - - -
1 - 15 40 45 24 5 -
2 - 5 24 45 40 15 -
3 - - - - - - 1

0 1 2 3 4 5 6
0 1 - - - - - -
1 - 21 70 105 84 35 6
2 6 35 84 105 70 21 -
3 - - - - - - 1

g = 9

general ∃ g1
5 ∃ two g1

5

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 - - - -
2 - - - - 70 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 4 - - -
2 - - - 4 70 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 8 - - -
2 - - - 8 70 64 21 -
3 - - - - - - - 1

∃ three g1
5 ∃ g2

7 ∃ g1
4

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 12 - - -
2 - - - 12 70 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 70 24 - - -
2 - - - 24 70 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 75 24 5 - -
2 - - 5 24 75 64 21 -
3 - - - - - - - 1

∃ g1
4 × g1

5 ∃ g2
6 ∃ g1

3

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 75 44 5 - -
2 - - 5 44 75 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 64 90 64 20 - -
2 - - 20 64 90 64 21 -
3 - - - - - - - 1

0 1 2 3 4 5 6 7
0 1 - - - - - - -
1 - 21 70 105 84 35 6 -
2 - 6 35 84 105 70 21 -
3 - - - - - - - 1

∃ g1
2

0 1 2 3 4 5 6 7
1 - - - - - - -
- 28 112 210 224 140 48 7
7 48 140 224 210 112 28 -
- - - - - - - 1

Remark 8.7.17. The proof, that these are all possible cases and that they have
the corresponding interpretation, can be found in Schreyer [1986] for g ≤ 8
and Sagraloff [2005] for g = 9. The interpretation in case of genus 9 in terms
of the existence of several g1

5 ’s has to be taken as a count with multiplicity.
It is true, that a general curve in this strata defined by these Betti numbers
have that many g1

5 ’s precisely.
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The length c = g − 3 and regularity m = 4 of the free resolution of a
canonical curve can be deduced from the Gröbner basis 8.7.12 and the syzygy
algorithm 2.8.11. The fact, that the alternating sums

∑
i(−1)iβij for fixed j

depends only the Hilbert function follows from the formula

hC(t) =
c∑

i=0

(−1)i
∑

j

βij

(
t + j + g − 1

g − 1

)
,

relating the Betti numbers to the Hilbert function, c.f. the proof of Theorem
??.

The symmetry of the Betti table of a canonical curve

βi,j = βg−2−i,g+1−j

follows from the fact, that RC is a so called Gorenstein ring. More general,
the following is true

Proposition 8.7.18. Let C ⊂ Pn be a smooth arithmetically Cohen-Macaulay
curve, such that the canonical divisor class is a multiple of the hyperplane class
K ≡ kH for some integer k. Then SC is a Gorenstein ring and the minimal
free resultion F∗ is self-dual:

Hom(Fi, S(−n− 1)) ∼= Fn−2−i(k)

and the matrices in the resolutions can be choosen to be transposed of each
other possibly upto a sign.

For a proof and the definition of Gorenstein rings, we refer to Eisenbud
[1995].

No one has yet formulated a precise statement of how much a configuration
of extra special linear series on a canonical curve of genus g contribute to extra
syzygies, and to answer the question, whether the Betti numbers depend only
on the configuration of the special linear series.

However Mark Green [1984] formulated a precise conjecture concerning
the range non-zero βij . We need the notion of the Clifford index of a curve.

Theorem 8.7.19 (Clifford). Let D be a special divisor of degree deg D > 0
on a smooth irreducible projective curve of genus g. Then

d ≥ 2r,

where r = dim |D|, and equality holds, iff either D ≡ K or C is hyperelliptic
and D ≡ kH for |H | the hyperelliptic pencil and k an integer 1 ≤ k ≤ g − 2.

We need a Lemma.
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Lemma 8.7.20. Let D,E be effective divisors on a smooth irreducible projec-
tive curve C. Then

dim |D| + dim |E| ≤ dim |D + E|.

Proof. Consider the multiplication map

L(D)× L(E) → L(D + E).

We may interprete this map as an ℓ(D) × ℓ(E) matrix ϕ with entries in
the vector space L(D + E). Since the multiplication of two non-zero rational
functions on a irreducible curve is non-zero, the matrix ϕ has no zero entry for
arbirtrary choices of bases for L(D) and L(E). Matrices of linear forms with
this property are called 1-generic. They are studied for example in Eisenbud
et al. . From a different point of view, we may interprete ϕ as a linear subspace
Pn of the Segre space Pℓ(D)ℓ(E)−1, containing Pℓ(D)−1×Pℓ(E)−1 of codimension
≤ ℓ(D+E). The condition on 1-genericity says that this Pn does not intersect
Pℓ(D)−1 × Pℓ(E)−1. So

ℓ(D)− 1 + ℓ(E) − 1 ≤ ℓ(D + E)− 1

by the dimension bound on intersections 6.5.1. This is the desired formula. ⊓*

Proof of Theorem 8.7.19. If ℓ(D) = 0 then there is nothing to prove. So
we may assume, that ℓ(D) ≥ 1 and ℓ(K −D) ≥ 1. By Lemma 8.7.20, we have

ℓ(D)− 1 + ℓ(K −D) − 1 ≤ ℓ(K)− 1 = g − 1.

Adding this inequality to the Riemann-Roch formula

ℓ(D) − ℓ(K −D) = deg D + 1 − g,

we obtain the desired
2(ℓ(D)− 1) ≤ deg D.

This proves the first statement.
It is clear, that in case D ≡ K equality holds and that no other divisor

class of degree ≥ 2g − 2 achieves equality. So suppose, equality holds for a
divisor D of necessarily even degree d with 2 ≤ d ≤ 2g− 4. We have to prove,
that C is hyperelliptic. If d = 2 then D itself is the hyperelliptic pencil. In
general, we proceed by induction on d. Suppose d ≥ 4 and hence dim |D| ≥ 2.
Choose a divisor E ∈ |K − D| and two points p, q ∈ C with p ∈ SuppE
and q /∈ SuppE. Since dim |D| ≥ 2, we can choose the divisor D ∈ |D|, such
that D − p− q is effective. Consider now D′ = min(D, E), the divisor whose
coefficients are the minimum of those of D and E. We will show that we can
apply to D′ the induction hypothesis.

Since Q ∈ SuppD and Q /∈ SuppE, we have deg D′ < deg D. On the other
hand, deg D′ > 0, because p ∈ SuppD′.
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By definition of of D′, we have an exact sequence

0 → L(D′) → L(D) ⊕ L(E) → L(D + E −D′),

defined by the diagonal inclusion and subtraction. Hence,

ℓ(D) + ℓ(E) ≤ ℓ(D′) + ℓ(D + E −D′).

Since E ≡ K − D, the left hand side has dimension g + 1 = ℓ(K) + 1 by
Riemann-Roch and the induction hypothesis ℓ(D) − 1 = 1

2 deg D. Since D +
E −D′ ≡ K −D′ holds as well, we obtain from Lemma 8.7.20

ℓ(D′) + ℓ(K −D′) ≤ ℓ(K) + 1 = g + 1.

Thus, equality holds everywhere and deg D′ = 1
2 dim |D′| holds as well. With

the induction hypothesis, we conclude that C is hyperelliptic.
Finally, we prove D ≡ kH for H the hyperelliptic series and k = d

2 . By
the Lemma dim |D|+ dim |K − kH | ≤ dim |K − kH + D|. Since the left hand
side is g − 1, we conclude ℓ(K − kH + D) ≥ g. Since deg D − kH = 0, this is
only possible if D ≡ kH . ⊓*
Definition 8.7.21. Let C of genus g ≥ 3. The Clifford index of a divivsor D
is

Cliff(D) = d − 2r,

where d = deg D and r = dim |D|. The Clifford index of C is

Cliff(C) = min{Cliff(D)| dim |D| ≥ 1 and dim |K −D| ≥ 1}.

Divisor classes with dim |D| ≥ 1 and dim |K − D| ≥ 1 are said to contribute
to the Clifford index.

Thus,
Cliff(C) = 0 ⇔ C is hyperelliptic.

Furthermore
Cliff(C) = 1 ⇔ C is trigonal, or

C is isomorphic to a smooth plane quintic and g = 6,
Cliff(C) = 2 ⇔ C is 4-gonal,or

C is isomorphic to a smooth plane sextic and g = 10,
Cliff(C) = 3 ⇔ C is 5-gonal, or

C is isomorphic to a smooth plane septic and g = 15, or
C is isomorphic to a smooth complete intersection of
two cubics in P3 and g = 10,

...
For more information on the Clifford index we refer to [ELMS]. From [CM]

it is known, that

gon(C) − 3 ≤ Cliff(C) ≤ gon(C) − 2.

Thus, we may regard the Clifford index as a slight modification of the gonality
of a curve.
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Conjecture 8.7.22 (Green, 1984). Let C be a smooth projective curve defined
over C of genus g. Let βij be the Betti numbers of R = ⊕nL(nK) as S =
C[x0, . . . , xg−1]-module, and let p ≥ 0 be an integer. Then

βpp+2 ̸= 0 ⇔ Cliff(C) ≤ p.

Thus, the conjecture says, that a curve of Clifford index p has a non-zero
Betti numbers in the following range:

0 1 . . . p-1 p . . . . . . g-2-p g-1-p . . . g-3 g-2
0 1 - - - - - - - - - - -
1 - β12 . . . βp−1p βpp+1 . . . . . . βpp+2 - - - -
2 - - - - βpp+2 . . . . . . βpp+1 βp−1p . . . β12 -
3 - - - - - - - - - - - 1

Remark 8.7.23. We may interprete Noether’s Theorem as the case p = 0.
Petri’s Theorem is the case p = 1. The case p = 2 was proved in Voisin [198x]
for g ≥ 11 and in Schreyer [1991] in general. The direction ⇐, that is from
geometry to syzygies, which is the easier one, was established by Green and
Lazarsfeld [1984].

For the other direction, Voisin [2002], [2004] proved, that a general curve
of genus g satisfies Green’s conjecture using the theory of K3-surfaces and
more. Her result combined with the work of Teixidor [199x] implies, that the
conjecture holds for a general curve of any given gonality. (The set of curves
of gonality p + 2 and genus g can be equipped with the structure of a variety,
baptised Hurwitz scheme. In particular, they form one irreducible family.)

Note that the conjecture for curves of odd genus g = 2k + 1 says, that a
for a general curve the middle matrix in the free resolution has only quadratic
entries, since such a curve has no g1

k+1, (a fact, which is known from Brill-
Noether theory). It follows from Voisin result, that for odd genus, curves with
extra syzygies form a pure codimension 1 algebraic subset in Mg. Hirschowitz
and Ramanan [199x] proved, that this subset coincide with the closure of
curves with g1

k. This is a very strong evidence for the conjecture.
On the other hand, the conjecture does not hold for curve defined over a

field of char(k) > 0, the first case occurs for curves of genus g = 7 over a field
k of characteristic char(k) = 2, in which case β24 = β34 = 1 holds for a general
curve. Other examples are g = 9, char(k) = 3, C general, where β35 = β45 = 6
holds, and g = 10, char(k) = 3, C general, where β35 = β56 = 1. The last
example was only established experimentally, a rigorous proof is still waiting.
For this and further examples see Schreyer [2003].

Remark 8.7.24. Let C ⊂ P2 be a absolutely irreducible curve of geometric
genus g and degree d with only ordinary singularities p1, . . . , ps of multiplicity
r1, . . . , rs. Then the canonical curve is contained in the image of the rational
map P2 !!" Pg−1 defined by the adjoint system L(d− 3; (r1 − 1)p1, . . . , (rs −
1)ps).
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Exercise 8.7.25. Compute the image of the curves in Remark 8.6.21 under
the canonical map for t = 0 and t = −1/10 using a Computer algebra system.
Conclude, that the curve for t = 0 is trigonal, and that the curve for t = −1/10
is not. ⊓*

Exercise 8.7.26. Compute the canonical image and the syzygies of the fol-
lowing curves of genus g = 9 in examples constructed by yourself.

1. An irreducible octic plane curve with 12 ordinary double points.
2. An irreducible octic plane curve with 1 ordinary triple point and 9 ordi-

nary double points.
3. An irreducible octic plane curve with 2 ordinary triple points and 6 ordi-

nary double points.
4. An irreducible octic plane curve with 3 ordinary triple points and 3 ordi-

nary double points.
5. An irreducible septic plane curve with 6 ordinary double points.

Can you find a curve of genus g = 9 with three g1
5? ⊓*

Exercise 8.7.27. Compute the dimension of the family of curves in Exercise
8.7.26 and compare this with the dimension of

1. the space of all curves of genus 9,
2. the space of 5-gonal curves of genus 9,
3. the space of curves of genus 9 with two g1

5 ,
4. the space of curves of genus 9 with a g2

7 .

⊓*

8.8 The Hasse-Weil Formulas

In this section Fq denotes a finite field with q elements. Given a variety X
defined over Fq, we ask how many Fq-rational points are contained in X .

Example 8.8.1. For the projective space we have

|Pn(Fq)| = qn + qn−1 + . . . + q + 1 =
qn+1 − 1

q − 1
.

Indeed, the vector space Fn+1 has qn+1 − 1 non-zero elements and precisely
q − 1 vectors represent the same point in P(Fq).

Exercise 8.8.2. How many Fq rational points are contained in the Grass-
mannian G(k, n)? ⊓*

The number of points might vary for different curves of the same genus.
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Exercise 8.8.3. Show by examples that a smooth projective curve of genus
g = 4 defined over F3 can have any number of F3-rational points between
0 and 10 points. Prove, that the bound is sharp using the structure of the
canonical curve 8.7.2 Hint: The ideal of all Fq-rational points in Pn is given
by the 2 × 2 minors of the matrix

(
x0 x1 . . . xn

xq
0 xq

1 . . . xq
n

)
.

For very small q, this ideal is small enough for explizit computations. ⊓*

To get an idea about the range for curves in general, Hasse compared
the coordinate ring R = Fq[x1, . . . , xn]/I(C) of a (affine) curve C defined
over Fq with the ring of integers OK of a number field K. Both rings are
one-dimensional Dedekind domains.
In number theory, the Dedekind zeta-functions

ζ(K, s) =
∑

a

N(a)−s

encodes fundamental information about the number field. Here the sum runs
over all non-zero ideals a ⊂ OK , and N(a) = |OK/a|, the absolute norm,
denotes the number of elements in the residue ring. The series converges for
complex s = x + iy with x = Re s > 1. The fundamental facts about this
function are the following, see e.g. [Neukirch, 199x]:

1. Euler product. The zeta-function has a product expansion

ζ(K, s) =
∏

p

(1 −N(p)−s)−1.

2. Functional equation. ζ(K, s) has a meromorphic continuation to the
whole complex plane with a single simple pole at s = 1 and satisfies the
functional equation

ζ(K, 1 − s) = |dK |s− 1
2 (cos

πs

2
)r1+r2(sin

πs

2
)r2(2(2π)−sΓ (s))r1+2r2ζ(K, s),

where r1, r2 denote the number of real respectively pairs of complex em-
bedding σi : K ↪→ C, dK denotes the discriminant of the number field,
and Γ (s) =

∫∞
0 e−xxs dx

x the Gamma-function. In particular, ζ(K, s) has
zeroes at s = −2,−4,−6, . . ., i.e. at the even strictly negative integers,
since Γ (s) has simple poles at these points. These zeroes are called trivial
zeroes of ζ(K, s).

3. The class number formula. ζ(K, s) has at s = 1 a simple pole with
residue

lim
s→1

(s − 1)ζ(K, s) =
2r1(2π)r2

w|dk|1/2
Rh,
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where w is the number of roots of unity in K, and R the regulator is the
size of a fundamental mesh of the lattice of units, im(O∗

K → Rr1+r2−1),
under the map

u '→ (log |(σ1(u)|, . . . , log |(σr1+r2(u)|) ∈ {x ∈ Rr1+r2 |
∑

xi = 0}.

Finally, h is the class number of K, i.e. the order of the group

Cl(OK) = { fractional ideals }/{ principal ideals }.

4. The generalized Riemann Hypothesis. The only nontrivial zeroes of
the zeta function lie on the critical line Re s = 1/2

Remark 8.8.4. The Euler product in case of Q
∑ 1

ns
=
∏

p

1
(1 − p−s)

implies unique factorization for the integers. The class number h measures
the deviation from unique factorization in OK . The (generalized) Riemann
hypothesis is perhaps the most famous conjecture im mathematics. The hy-
pothesis in case of K = Q implies the optimal assymptotic expansion for the
density of primes

|{p prime number | p ≤ x}| =
∫ x

2

dt

log t
+ O(x1/2 log x),

as Riemann pointed out. The much weaker statement, that the nontrivial
zeroes of ζ(Q, s) lie in the critical strip {s | 0 < Re s < 1}, already implies the
Prime Number Theorem

|{p prime number | p ≤ x}| ∼ x

log x
,

see for example Patterson [1988].

Guided by the analogy

number theory curves over finite fields
K Fq(C)

ideals a divisors D ≥ 0
in OK on C defined over Fq

valuations prime divisors
of K defined over Fq

N(a) N(D) = qdeg D

Hasse made the following definition.
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Definition 8.8.5. Let C be a smooth projective curve defined over a finite
field Fq. The function

ζ(C, s) =
∑

D≥0

N(D)−s,

where the sum runs over all effective divisors on C defined over Fq, is called
the (congruence) ζ-function of C over Fq.

Our first goal is to prove, that the sum converges absolutely for Re s > 1.
Let e > 0 be the smallest integer, such that there exists a divisor D ∈ Div C
defined over Fq. We will see later that e = 1. For the moment, we note that
e|2g − 2, because there are canonical divisors defined over Fq.

Lemma 8.8.6. Let C be a smooth absolutely irreducible projective curve of
genus g defined over Fq.

1. Let D1, D2 ∈ Divd(C) be two divisor classes of the same degree defined
over Fq. If D1 ≡ D2 then there exists a rational function f ∈ Fq(C)
defined over Fq, such that (f) = D1 −D2.

2. There exist only finitely many divisor classes [D] ∈ Pic0(C) defined over
Fq.

Proof. By definition D1 ≡ D2 ⇔ L(D1 − D2) ̸= 0. Now, if D is defined over
Fq then L(D) = {f ∈ Fq(C) | (f) + D ≥ 0} is defined over Fq, which means,
that it has a basis of functions f ∈ Fq(C). This implies the first statement.
For the second, consider the integer e as defined above and some divisor E of
degree e defined over Fq. Let D be a divisor of degree 0. Consider an integer
n > 0 such that ne > g− 1. Then, by Riemann-Roch L(D + nE) ̸= 0. Choose
a divisor D′ ∈ |D + nE| defined over Fq. Then D ≡ D′ − nE. The second
assertion follows, because there are only finitely many divisors defined over Fq

for any given degree d, in this case degree d = ne. Indeed, an effective divisor
of degree d defined over Fq is simply a Fq-rational point of the symmetric
product C(d). ⊓*

Definition 8.8.7. The order h of the group Pic0(C)(Fq) of divisor classes of
degree 0 defined over Fq is called the class number of C over Fq.

Remark 8.8.8. Note, that h = 1 for curves of genus g = 0. Indeed, by Riemann-
Roch any two divisors of the same degree are linearly equivalent.

Proposition 8.8.9 (Rationality of the congruence ζ-function, prelim-
inary version). Let C be an absolutely irreducible smooth projective curve
of genus g defined over Fq. Let e be the minimal degree of strictly effective
divisors on C, and let h denote the class number. The ζ-function

ζ(C, s) =
∑

D≥0

N(D)−s
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converges absolutely in the domain Re s > 1 and is in this domain a rational
function of q−s of the form

ζ(C, s) = F (q−s) +
hq1−gq(1−s)max(0,2g−2+e)

(q − 1)(1 − qe(1−s))
− h

(q − 1)(1 − q−es)
,

where F is a polynomial of degree at most 2g − 2.

Proof. We only treat the case g ≥ 1 leaving the easier case g = 0 as an exercice.
We partition the effective divisors by their degree deg D = ne refined by the
h divisor classes [nE + H1], . . . , [nE + Hh], where H1, . . .Hh represent the
different Fq-rational divisor classes of degree zero. Since

|D| = Pℓ(D)−1 = Pdeg D−g

for any of these divisors, |D| contains precisely

qℓ(D) − 1
q − 1

different Fq-rational divisors by Example 8.8.1. Thus, we have the difference

∑

D≥0

(q−s)deg D =
∑

n≥0

h∑

j=1

qℓ(nE+Hj)−sne

q − 1
−
∑

n≥0

h∑

j=1

q−nes

q − 1
.

The second sum is a geometric series, which has the limit

∑

n≥0

h∑

j=1

q−nes

q − 1
=

h

(q − 1)(1 − q−es)

as |q−s| < 1. The first sum becomes a geometric series, if we ignore the
beginning terms, since once ne > 2g − 2 we know the value ℓ(nE + Hj) =
ne + 1 − g precisely. This gives a contribution

∑

n>(2g−2)/e

h∑

j=1

qne+1−g−nes

q − 1
=

hq1−gq(2g−2+e)(1−s)

(q − 1)(1 − qe(1−s))
,

as |q1−s| < 1 by our assumption Re s > 1. The remaining finite sum

F (q−s) =
(2g−2)/e∑

n=0

h∑

j=0

qℓ(nE+Hj)−sne

q − 1
=

(2g−2)/e∑

n=0

( h∑

j=0

qℓ(nE+Hj)

q − 1

)
(q−s)ne

is a polynomial of degree ≤ 2g − 2 in q−s. ⊓*

Exercise 8.8.10. Prove Proposition 8.8.9 in case g = 0. ⊓*
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Corollary 8.8.11. ζ(C, s) extends to a meromorphic function on the complex
plane, which has with simple poles at the points s ∈ { 2πin

e log q | n ∈ Z} ∪ {1 −
2πim
e log q | m ∈ Z} and no other singularities.

Our next goal is an Euler product.

Definition 8.8.12. Let C be an absolutely irreducible smooth projective
curve defined over Fq. An (Fq-rational) prime divisor P is an Fq-rational
strictly effective divisor, which cannot be decomposed in a sum of strictly
effective Fq-rational divisors.

It is easy to see, how a prime divisor look like. Suppose C ⊂ Pn. If a ∈
C(Fq) is a point in the support of P , say a is defined over Fqd , with d minimal.
Then deg P = d and P constitutes of the orbit

P =
d−1∑

i=0

F i(a)

of a under the Frobenius morphism

F : C → C, a = [a0 : . . . : an] '→ [aq
0 : . . . : aq

n].

From another point of view, prime divisors are simply prime ideals of dimen-
sion one in the two-dimensional homogeneous coordinate ring Fq[x0, . . . , xn]/I(C).

Like the decomposition of positive integers into a product of primes, the
decomposition of an effective divisor into a sum of prime divisors is unique.

Theorem 8.8.13 (Euler product). Let C be an absolutely irreducible smooth
projective curve defined over Fq. Then

ζ(C, s) =
∏

P

(1 − q−s deg P )−1

for Re s > 1.

Proof. For any given bound M , there are only finitely many prime divisors
P with deg P ≤ M . Suppose, these are P1, . . . , PN . Since (1 − q−s deg P ) =∑∞

n=0 q−s deg nP , the product
∏

P, deg P≤M

(1 − q−s deg P ) =
∑

D′

q−s deg D′

where the last sum runs over all Fq-rational effective divisors D′ = n1P1 +
. . . + nNPN , i.e. divisors with no prime summand of degree > M . Thus, the
absolute convergence of ζ(C, s) =

∑
D q−s deg D implies

ζ(C, s) = lim
M→∞

∏

P, deg P≤M

(1 − q−s deg P )−1,

which is the desired formula. ⊓*
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Corollary 8.8.14. Any absolutely irreducible smooth projective curve C over
a finite field Fq has an Fq-rational divisor E of degree e = 1. In particular,

1. if C has genus g = 0, then C ∼= P1 over Fq, and,
2. if C has genus 1, then C has an Fq-rational point, and hence C(Fq) carries

the structure of an abelian group.

Proof. Suppose the minmal degree e > 1. We will derive a contradiction by
comparing the the ζ-function ζ(C, s) = ζ(C/Fq, s) with the ζ(C/Fqe , s) of
C as a curve defined over Fqe . Let P an Fq-rational prime divisor of degree
deg P = d, say

P =
d−1∑

i=0

F i(a),

where a ∈ C(Fq) is a point in the the support of P . By assumption e|d.
Let k = d

e denote the quotient. As Fqe -rational divisor, P decomposes into e
distinct Fqe -rational prime divisors

Pj =
k−1∑

i=0

F ei+j(a) for j = 0, . . . , e− 1

of degree k. Conversely, any Fqe-rational prime divisor P ′ gives rise to a sin-
gle Fq-rational prime divisor P =

∑e−1
j=0 F j(P ′). Hence, we have a bijection

of a single Euler factor of (1 − q−s deg P )−1 of ζ(C/Fq, s) with the product
of e conjugated Euler factors

∏e−1
j=0(1 − (qe)−s deg Pj )−1 of ζ(C/Fqe , s). Since

e deg Pj = deg P , we conclude that

ζ(C/Fqe , s) = ζ(C/Fq, s)e.

But this is impossible, since by Corollary 8.8.11 the meromorphic continua-
tions of both ζ-functions have a simple pole at s = 1. Thus e = 1.

For the further statements, we note that for a curve C of genus 0, any
Fq-rational divisor E of degree 1 and any choice of a Fq-rational basis of L(E)
gives an isomorphism

ϕE : C → P1

over Fq. For the second item, we note that a divisor E of degree deg E = 1 >
2g − 2 = 0 on a curve of genus g = 1 has ℓ(E) = 1 by Riemann-Roch. Hence,
|E| = {p} is non-empty, which gives us the Fq-rational point p. ⊓*

Exercise 8.8.15. Prove by example, that a smooth cubic plane curve over
Fq might contain only one Fq-rational point, if q + 1 − 2√q < 1(⇔ q < 4). ⊓*

Now knowing e = 1, we can simplify Proposition 8.8.9.
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Theorem 8.8.16 (Rationality of ζ(C, s)). The congruence ζ-function ζ(C, s) =∑
D≥0 q−s deg D converges in the domain Re s > 1 absolutely towards a ratio-

nal function of q−s of type

ζ(C, s) =
P (q−s)

(1 − q−s)(1 − qq−s)
,

where
P (t) = 1 − a1t + . . .− a2g−1t

2g−1 + qgt2g

is a polynomial with integer coefficients of degree 2g with constant term a0 = 1
and leading coefficient a2g = qg.

Proof. We treat only the case g ≥ 1. From Proposition 8.8.9 and its proof we
know

ζ(C, s) = F (q−s) +
hq1−gq(2g−1)(1−s)

(q − 1)(1 − q1−s)
− h

(q − 1)(1 − q−s)
,

where

F (q−s) =
h∑

j=1

qℓ(Hj)

q − 1
+

2g−3∑

d=1

h∑

j=1

qℓ(dE+Hj)−sd

q − 1
+

h∑

j=1

qℓ((2g−2)E+Hj)−(2g−2)s

q − 1

=
h − 1 + q

q − 1
+

2g−3∑

d=1

h∑

j=1

qℓ(dE+Hj)

q − 1
q−sd +

(h− 1 + q)qg−1

q − 1
q−(2g−2)s,

since precisely one class of degree 0 is effective, and only one class of degree
2g − 2, namely the canonical, is special. Taking all terms to the common
denominator

1
(1 − q−s)(1 − q1−s)

,

we get as numerator a polynomial of degree ≤ 2g in q−s with rational coef-
ficients. The contribution to the constant term arizes from the first term of
F (q−s) and the principal part of ζ(C, s). More precisely,

a0 =
h− 1 + q

q − 1
− h

q − 1
= 1.

Similary,

a2g =
(h − 1 + q)qg−1

q − 1
q +

hq1−gq2g−1

q − 1
(−1) = qg.

Finally, to see that all coefficients of P are integers, we note that the power
series expansion of ζ(C, s) in the variable t = q−s has only integral coefficients,
since it is the generating function for effective divisors Z(C, t) =

∑
D≥0 tdeg D.

Hence all the coefficients P (t) have to be integers as the denominator (1 −
t)(1 − qt) is an integer polynomial. ⊓*
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Theorem 8.8.17 (Functional equation). The congruence ζ-function of an
absolutely irreducible smooth projective curve C defined over Fq satisfies the
functional equation

ζ(C, 1 − s) = q(g−1)(2s−1)ζ(C, s).

Proof. We decompose

ζ(C, s) = ζ1(C, s) + ζ2(C, s) + ζ3(C, s)

into three summands which satisfy the functional equation individually. We
take

ζ1(s) =
h − 1 + q

q − 1
(1 + qg−1−(2g−2)s) =

h − 1 + q

q − 1
(1 + q−(g−1)(2s−1))

ζ2(s) =
h

q − 1
(
qg−(2g−1)s

(1 − q1−s)
− 1

(1 − q−s)
)

and

ζ3(s) =
2g−3∑

d=1

h∑

j=1

qℓ(dE+Hj)

q − 1
q−sd.

For the first two summands the functional equation is an easy computation:

ζ1(1 − s) =
h− 1 + q

q − 1
(1 + q−(g−1)(1−2s))

= q(g−1)(2s−1) h− 1 + q

q − 1
(q−(g−1)(2s−1) + 1) = q(g−1)(2s−1)ζ1(s)

and

ζ2(1 − s) =
h

q − 1
(
qgq−(2g−1)(1−s)

1 − qs
− 1

1 − qs−1
)

=
q(g−1)(2s−1)h

q − 1
(

1
q−s − 1

− q1−s+(1−g)(2s−1)

q1−s − 1
) = q(g−1)(2s−1)ζ2(s).

The functional equation for ζ3(s) follows from the Riemann-Roch Theorem:
In ζ3(s), the sum runs over all divisor classes with

1 ≤ deg D ≤ 2g − 3.

The classes of K − D run through the same set. We compare the summand
corresponding to K − D in ζ3(C, 1 − s) with the summand corresponding to
D in q(g−1)(2s−1)ζ3(C, s). The term in (q − 1)ζ3(C, 1 − s) is
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qℓ(K−D)−(1−s) deg(K−D) = qℓ(D)−deg D+g−1−(1−s)(2g−2−deg D)

by Riemann-Roch,

= q(g−1)(2s−1)+ℓ(D)−s deg D,

which is the corresponding term in (q − 1)q(g−1)(2s−1)ζ3(s). This proves the
Theorem. ⊓*

Frequently, the ζ-function is studied via the substitution t = q−s as the
generating function

Z(C, t) =
∑

D≥0

tdeg D,

where the sum runs over all effective divisors on C defined over Fq. Since
ζ(C, s) converges for Re s > 1, the formal power series Z(C, t) converges in
the disc |t| ≤ q−1

This function enumerates also the number of points in C over all fields Fr
q

as follows.

Proposition 8.8.18. Let C be a smooth absolutely irreducible curve defined
over Fq. Let Nr = |C(Fqr )| denote the number of points on C defined over
Fqr . Then

ζ(C, s) = exp(
∑

r≥1

Nr
tr

r
),

where t = q−s.

Proof. We use the Euler-product

ζ(C, s) =
∏

p

(1 − q−s deg p)−1 =
∏

p

(1 − tdeg p)−1.

Taking the logarithm

log Z(C, t) =
∑

p

∞∑

r=1

tr deg p

r
,

we see that we have to prove

Nr =
∑

deg p|r

deg p.

This holds, because any prime divisor p defined over Fq with deg p | r gives
rise to deg p points, with each point defined over Fqdeg p ⊂ Fqr . Conversely,
C(Fr

q) is partitioned into the points of such prime divisor classes. ⊓*

The last formula for the Z(X, t) makes sense for any variety over Fq.
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Definition 8.8.19. Let X be a variety defined over Fq, and let Nr = X(Fr).
The Weil zeta-function is defined as

Z(X, t) = exp(
∑

r≥1

Nr
tr

r
).

As the definition stands, Z(X, t) ∈ Q[[t]] is just a formal power series. Weil
conjectured, that Z(X, t) is a rational function. This was proved by Dwork []
using p-adic analysis and later by Grothendieck using his étale cohomology []
again:

Theorem 8.8.20 (Dwork, Grothendieck). If X is projective of dimension
n, then

Z(X, t) =
P1(t)P3(t) . . . P2n−1(t)
P0(t)P2(t) . . . P2n(t)

for certain integral polynomials Pi(t) ∈ Z[t].

Exercise 8.8.21. Compute the Weil zeta-function of Pn and of G(k, n)! ⊓*

The proof of Theorem 8.8.20 is far beyond the techniques of the book,
however, we have established this for curves.

Corollary 8.8.22. If C is a smooth absolutely irreducible curve of genus
gdefined over Fq then

Z(C, t) =
P (t)

(1 − t)(1 − qt)

where P (t) = 1 − a1t + a2t2 − . . . + qgt2g ∈ Z[t].

Proof. This is just a reformulation of Theorem 8.8.16. ⊓*

With the Weil zeta-function, we obtain a nice closed formula for the num-
ber of rational points over Fqr . Let

P (t) =
2g∏

j=1

(1 − αjt).

We call the algebraic intergers αj the reciprocial roots of the numerator
P (t) of the Weil zeta-function.

Corollary 8.8.23. Let αj denote the reciprocal roots of the numerator of the
Weil zeta-function of a smooth projective absolutely irreducible curve of genus
g defined over Fq. Then the number of points on C defined over Fqr is

Nr = qr + 1 − αr
1 . . .− αr

2g.
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Proof. We take the logarithm on both sides in the formula

exp(
∑

r≥1

Nr
tr

r
) =

(1 − α1t) . . . (1 − α2gt)
(1 − t)(1 − qt)

and obtain

∑

r≥1

Nr
tr

r
= log(1 − qt) + log(1 − t) −

2g∑

j=1

log(1 − αjt).

Now use the power series expansion of the logaritm log(1−x) =
∑∞

r=1
xr

r and
compare coefficients. ⊓*

Theorem 8.8.24 (Hasse-Weil). Let C be a smooth projective absolutely
irreducible curve of genus g defined over Fq. The number Nr of Fqr -rational
points on C is bounded by

|Nr − qr − 1| ≤ 2g
√

q.

This theorem is, using Corollary 8.8.23, an immediate consequence of the
following more precise result.

Theorem 8.8.25 (Analog of the Riemann hypothesis). The reciprocal
roots αj of the numerator P (t) of the Weil zeta-function of a smooth projective
absolutely irreducible curve defined over Fq satisfy

|αj | =
√

q.

In other words, the only zeroes of ζ(C, s) = Z(C, q−s) have real part Re s =
1/2. This explains the name of the theorem. To prove the theorem, we consider
the logarithmic derivative of Z(C, t) and subtract the parts coming from the
denominator:

Z ′(X, t)
Z(X, t)

− 1
1 − t

− q

1 − qt
=

2g∑

j=1

αj

1 − αjt
.

Thus, |αj | ≤
√

q holds, iff the radius of convergence R of the power series

Z ′(X, t)
Z(X, t)

+
1

1 − t
+

1
1 − qt

=
∞∑

r=1

(Nr − qr − 1)tr−1

is bounded from below by R ≥ 1/
√

q. So an inequality of type

Nr − qr − 1 ≤ cqr/2,

holding for almost all r with a constant c independent from r, will imply half
of the claim in Theorem 8.8.25. The other half, |αj | ≥

√
q, or equivalently,

ζ(C, s) has no zeroes s with Re s < 1/2, will follow from the first half using
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the functional equation 8.8.17. We conclude, that basically the Hasse-Weil
Theorem and the Theorem on the Riemann hypothesis of the congruence
zeta-function are equivalent.

To prove the desired bound on the number of Fqr -rational points we follow
an ingenious argument of Stepanov [1974]. In view of the formula for Nr

rational points, Corollary 8.8.23, it suffices to prove such bound after passing
from Fq to some larger field Fqρ . So we may assume, that C has an Fq-rational
point and that q = p2τ is an even power of the characteristic p = char(Fq).

Lemma 8.8.26 (Stepanov). Let C be a smooth projective absolutely irre-
ducible curve of genus g defined over Fq. Suppose, that C contains an Fq ratio-
nal point, that q = p2τ is an even power of p = char(Fq) and that qr > (g+1)4.
Then

Nr ≤ qr + 1 + (2g + 1)qr/2.

Proof. Let a ∈ C be an Fq-rational point. The basic idea of Stepanov’s proof
is to construct a rational function f on C which has only a pole in a and
which vanishes at all Fqr rational points except a with fairly high multiplicity.
The bound for Nr will follow from the fact, that the number of poles and the
number of zeroes of a rational function counted with multiplicity is the same.
We are thus led to study the Riemann-Roch spaces L(ma). For m > 2g−2, this
space has dimension ℓ = ℓ(ma) = m+1−g. There exist a basis f1 = f1, . . . , fℓ
of L(ma), such that 0 = va(f1) > va(f2) > . . . > va(fℓ).

Each fj = fj(x) is a rational function of degree zero in the homogeneous
coordinates x = [x0 : . . . : xk] of some projective embedding C ↪→ Pk. Hence,
fj(xqr

) is a rational function as well, with va(fj(xqr

) = qrva(fj(x)), and the
same values on all points of C(Fqr ), because [x0 : . . . : xk] = [xqr

0 : . . . : xqr

k ]
holds on the points of Pk(Fqr ). We will construct our desired function f as a
linear combination

f(x) = upk

1 (x)f1(xqr

) + . . . + upk

ℓ (x)fℓ(xqr

),

where the uj are functions in L(na) (for a suitable n), which we choose in
such a way, that

upτ

1 (x)f1(x) + . . . + upτ

ℓ (x)fℓ(x) = 0 ∈ L((npτ + m)a),

holds.
Claim 1. Suppose that m, n > 2g − 2 and that

(n + 1 − g)(m + 1 − g) > npk + m + 1 − g

holds. Then there exists a non-trivial expression

upk

1 (x)f1(x) + . . . + upk

ℓ (x)fℓ(x) = 0 ∈ L((npk + m)a)

Indeed, for each function uj ∈ L(na), we have qn+1−g many choices, because
L(na) is a vector space of dimension n + 1 − g defined over Fq. So, there
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are q(n+1−g)(m+1−g) many choices for the expression. On the other hand,
L(npk + m) contains only qnpk+m−1−g functions defined over Fq. So two of
these expressions give the same function and their difference can be written
in the same form, because upk

j − ũpk

j = (uj − ũj)pk
.

Claim 2. Suppose npk < qr then any non-trivial expression

f(x) = upk

1 (x)f1(xqr

) + . . . upk

ℓ (x)fℓ(xqr

)

is a non-trivial function in L((mqr + npk)a).

Indeed, since va(fj(x)) ≥ va(fj+1(x)) + 1, we have

va(fj(xqr

) − va(fj+1(xqr

) ≥ qr,

and the coefficients uj(x)pk
cannot fill the gap to make the pole order at a of

two consecutive summands to agree. Thus, the pole order of these expression
is attained at the summand upk

j fj(xqr
) with j = max{i | ui ̸= 0 ∈ L(na)}. In

particular, the expression is non-trivial.
Suppose the conditions of both Claims are satisfied. Then f of Claim 2

constructed with the coefficients uj as in Claim 1 is a function with a pole of
order −va(f) ≤ mqr+npk and, which vanishes in all other Fqr rational points,
because fj(x) = fj(xqr

) holds for such points and because of the choice with
Claim 1. Moreover, since fj(xqr

) = (fj(x))qr

and pk | qr the function f(x) is
the pk-th power of the function g(x) = u1(x)fp2τr−k

1 (x) + uℓ(x)fp2τr−k

ℓ (x). So
the vanishing order in each of these points it at least pk. We conclude, that

(Nr − 1)pk ≤ npk + mqr,

since the number of poles and zeroes of a rational function counted with
multiplicities coincide.

Choose pk = qr/2, i.e. k = τr, and take n = qr/2 − 1 and m = qr/2 + 2g.
The condition of Claim 2 npk = (qr/2−1)qr/2 < qr is satisfied. The inequality
(n+1− g)(m+1− g) = (qr/2− g)(qr/2 +1+ g) = (qr − (g +1)2 +m+1− g >
nqr/2 + m + 1 − g = qr − qr/2 + m + 1 − g holds, since qr/2 ≥ (g + 1)2 holds
by the assumption on r in the Lemma. Finally, m = qr/2 + 2g > 2g − 2 and
n = qr/2 − 1 ≥ (g + 1)2 − 1 = g2 + 2g > 2g− 2 are also satisfied. We therefore
may apply both Claims and obtain

(Nr − 1)qr/2 ≤ (qr/2 − 1)qr/2 + (qr/2 + 2g)qr ⇔ Nr ≤ qr + (2g + 1)qr/2.

This proves Stepanov’s Lemma 8.8.26, and hence the Riemann hypothesis
for the congruence ζ-function 8.8.25 and the Hasse-Weil Theorem 8.8.24. ⊓*

Inspired by the result on curves, Weil made a series of very important
conjectures about the nature of the Weil zeta-function in general, which were
proved later by Grothendieck and Deligne.
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Theorem 8.8.27 (Grothendieck, Deligne). Let X be a variety defined
over a finite field Fq, and let

Z(X, t) = exp(
∑

r≥1

Nr
tr

r
)

with Nr = |X(Fqr)| be the corresponding zeta-function. Then

1. Rationality. Z(X, t) is a rational function

Z(X, t) =
P1(t)P3(t) . . . P2n−1(t)
P0(t)P2(t) . . . P2n(t)

with the Pi(t) are integral polynomials with constant term 1.
2. Topology. Suppose X is defined by reduction mod p of a system of

equations with Z coefficients. Let X(C) be the corresponding analytic vari-
ety equipped with the Euclidean topology. Then

deg Pi(t) = bi = dim Hi(X(C), Q)

is the i-th (topological) Betti number of X(C).
3. Functional equation. Suppose X is smooth projective and absolutely

irreducible. Then
Z(X,

1
qnt

) = ±qne/2teZ(X, t),

where e =
∑2n

i=0(−1)i deg Pi. (The number e coincides with the Euler number
of X(C) if X arizes by reduction mod p.)
4. Analog of the Riemann-Hypothesis. The reciprocal roots of Pi(t) =∏bi

j=1(1 − αijt) are algebraic integers of absolute value

|αij | = qi/2.

Weil also outlined an approach to the proof of his conjecture. He explained,
that if one has a cohomology theory for algebraic varieties, which coincides
in case of the ground field C with ordinary cohomology, but which also works
for finite ground fields, then one could get the number of Nr of Fqr -rational
points, which are the fix points of the geometric Frobenius automorphism F r

via a Lefschetz fix point formula. The Pi(t) could then be interpreted as the
characteristic polynomials of the induced action of the Frobenius F on the
i-th cohomology group.

It was quickly clear, that the Zariski topology is too rough for this purpose.
Grothendieck developed his étale topology and ℓ-adic cohomology theory pre-
cisely for this purpose, and proved the first three parts of the conjecture. The
final step, the proof of the analog of the Riemann Hypothesis was taken by
Deligne [1974].

Current interest in arithmetic geometry is concerned with the question
how the polynomials Pi(t) vary with the prime p, if we consider the reduction
mod p of a variety defined by equations with integer coefficients. This leads
to the study of L-functions as already mentioned in Chapter 5.
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8.9 What to read next?

The next step in mastering algebraic geometry after reading this book, is to
get familiar with the concept of coherent sheaves and their cohomology. The
standard text for this topic is Hartshorne book, Chapter II and III, for which
this book is a good preparation.

We plan to write a different more computational approach to this topic in
a further textbook.
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Sturmfels, B. (1996): Gröbner bases and convex polytopes. University Lecture Series,

8. AMS, Providence, RI.
Zariski, O.; Samuel, P. (1975–1976). Commutative Algebra. Vols. I and II. Corr. 2nd

printing of the 1958–1960 edition. Springer-Verlag.



Index

An 89
An(k) 6
G(k, W ) 274
H(M,d) 276
K[A] 260
L(I) 59
L(D) 327
O(A) 267
OA,p 152
bOA,p 199
PM (t) 277
Pn 218, 223
Pn(k) 211
S+ 258
V 11, 213, 265, 266
Va 215
ℓ(D) 327
A 12
Asing 141, 144
DA(f) 40
D(f) 12, 213
dimp A 143
dom(f) 83, 151
dpf 140
dpϕ 147
f 14
I(A) 17, 259
IA(B) 39
IA(p) 147
I : g 13
I : g∞ 29
I : J 13, 34
I : J∞ 29

I(p) 24
k[A] 39
k[A] 38
Mp 182
U−1M 182
M [U−1] 182
OA,p 152
φp 184
ϕ∗ : 41
Rp 150
R[U−1] 149
TpA 140, 142, 224
U−1R 149
VA(J) 39
vC,p 161
V(I) 259
⟨T ⟩ 13
⟨X⟩ 33

group
projective

general linear 212

Abel-Jacobi 369
absolutely

prime 89
absoulute

norm 391
adjunction formula 357
AF+BG Theorem 243
affine

algebraic set 11, 268
change of coordinates 44
chart 220, 225



412 Index

cone 214
coordinates 214
domain 38
k-algebra 38
line 6
plane 6
plane curve 7
ring 38
space 6
variety 23

algebra 37
finitely generated 38
graded 306, 307
homomorphism 37
relation 76, 77

algebraic set
affine 11, 268
algebraic subset 40
irreducible 23, 213
projective 213
quasi-affine 268
reducible 23
subvariety 40

algebraically independent 76
algorithm

Buchberger 62, 177
determinate division 55
elimination 74

Hilbert function driven 289
Euclid 52
Ext 101
Hom(M,N) 99
homology 100
ideal intersection 71
Mora division 174
parametrization of rational curves

240
submodule membership 68
syzygy module 70
Tor 102

analytically
isomorphic 201

annihilator 34, 285
arithmetic genus 283
arithmetic genus 283
Artinian

modull 187
monomial order 54
ring 187

assigned base point 228
associated prime 28, 285

embedded 28
minimal 28

automorphism
defined over k 218, 223
of an affine algebraic set 44

Barth 325
sextic 10

base point 228, 328
assigned base 228
free 328

basis theorem 15, 16
Beauville 325
Bertini

theorem 295
Betti

diagram 278
number 281

graded 278, 281
betti table 383
Bézout

second version 285
theorem 235

bidegree 263
bihomogeneous

coordinate ring 266
polynomial 263

bihomogenous
ideal 266

bilinear map 35
binomial 63

Gröbner basis 63
ideal 63

birational 311
equivalence 86
equivalent 86
map 86

birationally equivalent 311
Birch and Swinnerton-Dyer

Conjecture 253
Birkar 325
blow-up 313
Bodnar 324
branch point 363
Buchberger

algorithm 62, 177
criterion 61, 65, 66, 176
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test 61, 177

canonical
curve 377

Cascini 325
Castelnouvo-Mumford regularity

of a complex 383
Castelnuovo 325
C(d) 369
chain

of prime ideals 130
length 130
maximal 130

chain condition
descending 187

change of coordinates 44, 212
affine 44
linear 44
triangular 44

chart
affine 220, 225
coordinate 216

class number
formula 391
of a curve over a finite field 393
of a number field 392

Clebsch
diagonal cubic 10

closed
map 118
embedding 268

closure
projective 215

codimension 261
of algebraic set 134
of ideal 133

coefficient 50
Cohen-Macaulay 129, 194
cokernel 32
collinear 228
complete 168
complete linear system 327
completion 198
complex 90

graded 277
component

embedded 28
isolated 28
of a polynomial 164

primary 28
components

homogeneous 4, 258
irreducible 25, 259

composition
of dominant rational maps 86

composition series 186
condition

ascending chain 16
maximal 16
minimal 187

cone
affine 214

congruent modulo I 14
conic 7, 217
conjecture

Jacobian 45
conjugate

points 25
coordinate

chart 216
function 7
points 214
ring 39

coordinate ring
bihomogeneous 266
homogeneous 260

coordinate system 44
coordinates

affine 214
homogeneous 212
of point 6
Plücker 275

coprime 15
Cremona resolution 321
criterion

Buchberger 61, 65, 66, 176
cubic 214, 218, 223

group law 246, 250
scroll 315

cubic curve 8
curve 127, 261

affine plane 7
conic 7, 217
cubic 8
exceptional 313
projective plane 213, 226
rational

normal 263
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twisted cubic 11, 17, 124, 262
cusp 166

d-uple embedding 269
de Jong

Johann 324
Theo 340

decomposition
primary 27

defined over k 89, 218, 223
degenerate 305
degree 266

of a divisor 325
of a homogeneous element 258, 275
of a hypersurface 218, 223
of a morphism 363
of an algebraic set 283
of monomial 4
of polynomial 4

degree-anticompatible order 166
degree-compatible order 73
dehomogenization

of a homogeneous polynomial 4
delta invariant

arithmetic 341
geometic 338

denominators
ideal 83

derivation 350
universal 351

desingularization 317, 323
determinantal variety 264
differential

Kähler 351
differential forms

rational 348
differential at p 140, 147, 153
differential index 363
dimension 130

embedding 200
local 143
of a projective algebraic set 261
of algebraic set 124

direct product
of modules 33

direct sum
of modules 33

discrete valuation 160
discrete valuation ring 160

discriminant 88
distinguished open set 12, 40, 213
divisible 50
Division

with remainder
determinate version 54

division
Euclidean 51
in a free module 58

divisoe
Weil 326

divisor 325
class group 340
degreef 325
effective 327
intersection 326
of multiple points 356
principle 325
pull back 326, 327
special 336
support 325

domain
affine 38
of definition

of a rational function 83, 151
of a rational map 84

dominant 86
dominat 310
double point 158

ecart 173
effective divisor 327
elementary divisors 93
elimination

fundamental theorem 272
ideal 74
order 75

embedded
associated prime 28
prime 285

embedded
component 28

embedding
closed 268
d-uple 269
dimension 200
Plücker 275
Segre 265
Veronese 269
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epimorphism 32
equidimensional 127, 261
Euclid

GCD algorithm 52
division 51
extended GCD algorithm 52

Euler
rule 6

Euler number 364
Euler product

congruence ζ-function 395
ζ-function of a number field 391

Euler relation 248
exact 91

functor 183
sequence 91

exceptional curve 313
Ext 98, 101
extension

finite 112
of finite type 112

extension of rings 112
integral 112

factor
of a composition series 186

fiber
of an morphism 293

field
of definition 89, 218, 223
quotient 83
rational function 83, 218, 224
residue 14

finite
extension 112
morphism 118, 274
over R 112

finite free
resolution 92

finitely generated
algebra 38
ideal 13
module 33

flex 247
form 214

linear 214
quadratic 214

formal
power series 6

formal partial derivative 5
Frühbis-Krüger 324
free

generators 33
module 33
presentation 92
resolution 92

minimal 279
Frobenius morphism 45

geometric 366
Frobenius morphismus 366
function

coordinate 7
polynomial 7, 38
rational 5, 83, 151
regular 156, 267

Functional
equation 391

functor
exact 183

fundamental group 301
fundamental point 318
fundamental theorem

of elimination theory 272

generators
free 33
minimal 50, 51

genus
arithmetic 283
geometric 324

geometric genus 324
geometric series

formal expansion 167
germ

of functions 148
given by generators and relations 92
global

monomial order 54
going down 121
going up 118
gonality 375
Gordan

Hilbert basis theorem 59
Gordon

Lemma 49
Gröbner

basis
minimal 67
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reduced 67
Gröbner basis

binomial 63
Gröbner fan 76
Gröbner walk algorithm 76
graded

algebra 306, 307
Betti number 278
Betti numbers 281
complex 277
free module 276
free resolution 277
homomorphism 275
homomorphism of complexes 277
module 275, 306
ring 258, 306
submodule 275

Grassmannian 274
gr

d 374
greatest common divisor 49
Gröbner basis 48, 59, 171, 176
group law 246, 250

Hacon 325
Hasse-Weil

Theorem 401
Hd,g 373
Hermann

Grete 47
Hessian 248
Hilbert 278

basis theorem 15, 16
-Burch theorem 278
function 276
Nullstellensatz

strong version 20
weak version 20

polynomial 277, 282
series 289
syzygy theorem 94, 172
syzygy theorem 90

Hironaka 324
Hom 99
homogeneous

components 4, 258
coordinate ring 260
coordinates 212
element 258, 275
ideal 258

polynomial 4, 266
homogenization

of a polynomial 4
of an ideal 261
of ideals 262

homology 91, 100
homomorphism

algebra 37
graded 275
of modules 31
substitution 4, 169

homomorphism of complexes
graded 277

homomorphy theorem 14, 32
Hopf

fibration 222
Hulek 325
hyperelliptic 375
hyperplane 7, 214
hypersurface 7, 213

of bidegree (d,e) 265

ideal 13
absolutely prime 89
bihomogeneous 266
binomial 63
elimination 74
finitely generated 13
generated by T 13
homogeneous 258
irrelevant 260
maximal 13
membership 47, 52, 68
monomial 49
of denomonators 83
p-primary 26
primary 26
prime 13
product 13
proper 13
quotient 13
radical 19
set of generators 13
sum 13
unmixed 128
vanishing 17, 39, 259

image 32
improper node 204
independent
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algebraically 76
infinitesimally near 338
initial

ideal 59
module 59

initial term 53
integral

closure 113
equation 112
extension 112
over I 112
over R 112

integrality criterion for affine rings
114

intersection
divisor 326
multiplicity 162, 163, 188, 219, 224,

285
transversal 164

irreducible components 25, 259
irrelevant ideal 260
isolated

component 28
isomorphic

affine algebraic sets 42
analytically 201
modules 32
quasi-projective algebraic sets 268

isomorphism
of affine algebraic sets 42
of modules 32
of quasi-projective algebraic sets

268
isomorphy theorems 33

Jacobian
conjecture 45
criterion 144
matrix 45, 143

join 292

k-algebra
affine 38

k-rational point 89, 218, 223
kernel 32
k-linear map 36
Krull

intersection theorem 155
prime existence lemma 115

Krull dimension 130

L(I) 59
leading

coefficient 53
ideal 59, 171, 176
module 59
monomial 53

leading term 53, 169, 176
least common multiple 49, 50
Lefschetz principle 304
Lemma

5- 104
Gordon 49
Nakayama 154

graded 279, 306
lemma

prime existence 115
length

of a chain of prime ideals 130
of a complex 383
of a module 186
of a normal series 186
of resolution 92

lexicographic
order 52

limes 168
line 214
linear

change of coordinates 44
form 214
map 31
subspace 214
system 228

linear equivalence 327
linear span

of an divisor 377
linear system

of divisors 328
loal

monomial order 167
local

monomial order 167
property 157, 182
reverse lexicographic order 166
ring 14

at a point 152, 219, 224
local dimension 143
local ring
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along a subvariety 152
localization 149, 152, 182

universal property 149
locus of zeros 7, 11, 39, 213, 259
lying over 114–116

Macaulay
theorem 60, 171, 176

m-adic
topology 168

map
bilinear 35
birational 86, 311
closed 118
dominant 310
k-linear 36
linear 31
open 213
rational 84, 310

matrix
Jacobian 45, 143
Sylvester 231

maximal
chain of prime ideals 130
ideal 13

Mayr and Meyer 47
Mazur 252
McKernan 325
membership

ideal 68
subalgebra 77
submodule 68

Mg 370
minimal

associated primes 28
decomposition into irreducible

components 25
free resolution 279
generators 50, 51
Gröbner basis 67
primary decomposition 27
prime 28, 285
prime decomposition 26, 28
set of generators 155

minmally
embedded 200

minor 61
model 311

smooth 323

module 31
Artinian 187
finitely generated 33
free 33
graded 275, 306
homomorphism 31
Noetherian 34
of finite length 186
simple 186

modules
direct product 33
direct sum 33

monic 51
monodromy group 300
monomial 4, 49, 50

ideal 49
in a free module 50
order 52

degree-anticompatible 166
degree-compatible 73
global 54
induced 64
local 167
on free modules 57

ortder
local 167

submodule 51
monomial curve 342
monomorphism 32
Mora

division 173
Mordell 251
Mori 325
morphism 41, 267

degree of an 363
finite 118, 274
Frobenius 45
inseparable 363
proper 272
separable 363

multiplicatively closed 115
multiplicity

at a point 158, 180, 219, 224
intersection 162, 163, 188, 219, 224,

285
of a component 164
of a tangent line 159

Nakayama
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Lemma 154, 279, 306
net 228
nilpotent 19
nilradical 19
node 159

improper 204
Noether normalization 122, 123, 130
Noether, Emmy 16
Noether, Max 243
Noetherian

module 34
ring 16

non-degenerate 305
nonsingular

at p 143
point 140

nonsingular point 143
norm

absolute 391
normal 120

form 60, 172
normal series 186

length 186
normalization 120
Nullstellensatz

in k[A] 40
projective 259
proof of weak version 109
strong version 20
weak version 20

of finite type 112
over R 112

open
map 213

order
block 76
degree reverse lexicographic 73
elimination 75
lexicographic 52
local degree reverse lexicographic

166
monomial 52
product 76
weight 53

ordinary multiple point 159

p-primary
ideal 26

parameter space 226
parametrization

of rational curves 239
polynomial 81
rational 87

partial derivative
formal 5

Pascal’s theorem 244
pencil 228
Peters 325
Pfister 324
Picd(C) 369
Picard group 369
Plücker

coordinates 275
embedding 275

plane 214
point 6, 211

base 228
circle 230
coordinate 214
coordinates 6
infinitesimally near 338
k-rational 89, 218, 223
nonsingular 140, 143
scaling 214
singular 140, 143, 219, 224
smooth 140, 143, 219, 224

pole 160, 161
polynomial

bihomogeneous 263, 266
function 7, 38
homogeneous 4
map 41
monic 51
nature 276
parametrization 81

power series
formal 6

preimage
of a rational map 84

presentation
free 92
matrix 92
of a homomorphism 99

primary
component 28
decomposition 27

minimal 27
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ideal 26
prime

associated 28, 285
avoidance 14
embedded 28, 285
ideal 13
minimal 285
minimal associated 28
prime 28

prime decomposition 26, 28
prime divisor

prime divisor
Fq-rational 395

prime existence lemma 115
principal 13
principal divisor 325
principal ideal domain (PID) 15
product

of algebraic sets 39, 41
of ideals 13

product order 76
projection

canonical 14, 32
from a linear subspace 269
from a point 234
stereographic 82

projection theorem 106
projective

algebraic set 213
closure 215
general linear group 212
line 213
plane 213
plane curve 213, 226
space 211, 212
variety 213

projectively equivalent 213
proper ideal 13
proper morphism 272
Puiseux expansion 317
Pythagorean triple 90

quadratic
form 214

quadratic transformation 318
quadric 218, 223

nondegenerate 90, 217
rank of 217

quadruple point 158

quartic 214, 218, 223
quasi-affine

algebraic set 266, 268
quasi-projective

algebraic set 266
quasi-projective variety 306
quasicompact 41
quintic 214, 218, 223
quotient 50

field 83
module 32
ring 14

radical 19
membership 22

radical ideal 19
ramification index 363
ramification points 363
rank 34, 278

of quadric 217
rational

curve
parametrization 239

function 5, 83, 151
defined at a point 83
defined over k 89
field 83, 218, 224

map 84
normal curve 263
parametrization 87
variety 88

rational function
domain of definition 83, 151

rational map 310
reciprocal roots

of the Weil zeta-function 400
reduced 19

Gröbner basis 67
reduced ring 19
regular

at a point 83
function 83, 156, 267
local ring 154, 155
sequence 194
system of parameters 194

regulator 392
remainder 55, 57, 170, 173
residue

field 14
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residue class 14
resolution 92

finite free 92
free 92
graded free 277
injective 99
length 92
of singularites 323
projective 99

resolution of singularities
embedded 317

resultant 232
reverse lexicographic order 73
Riemann hypothesis

for number fields 392
Riemann-Roch space 327
ring

affine 38
Artinian 187
Cohen-Macaulay 129, 194
coordinate 39
discrete valuation 160
extension 112
formal power series 6

is local 168
is Noetherian 171

graded 258, 306
local 14
Noetherian 16
of finite length 186
reduced 19

ruled surface 315

S-polynomial 61
S-vector 61
saturation 29
scaling point 214
Schicho 324
scroll

cubic 315
rational normal 316

Segre
embedding 265
product 265
variety 265

sequence
Cauchy 168
convergent 168
exact 91

short exact 91
series

convergent 168
set of generators 13

minimal 155
Severi

theorem 299
short exact sequence 91
simple

module 186
singular

point 140, 143, 219, 224
singular at p 143
singular locus 144
singularity 143

uni-branched 342
Smith normal form 93
smooth

algebraic set 144
at p 143
point 140, 143, 219, 224

smooth model 323
solvability 22
span 214
special divisor 336
square-free 19

part 19
standard

basis 169
expression 57, 173

Grauert 170
monomials 60, 171, 176

Steiner
Roman surface 80
roman surface 222

stereographic projection 82
strange curve 297
strict transform 314
structure theorem

for Artinian rings 191
for modules over PID’s 93

subalgebra 37
membership 77

submodule 32
generated by X 33
graded 275
membership 68
monomial 51
quotient 34



422 Index

sum 33
substitution homomorphism 4, 169
subvariety 23, 40, 213
sum

of ideals 13
of submodules 33

support
of a divisor 325
of a module 285

surface 127, 261
ruled 315
Verones 270
Whitney umbrella 81, 141

Sylvester
matrix 231

system
linear 228
of parameters 194

system of equation
triangular 104

syzygy 64, 92
matrix 64, 93
module 64, 92

algorithm 70
over affine rings 97

syzygy theorem 90

tacnode 201
tame ramifiction 363
tangent

cone 202
lines 159
space 140, 142, 219, 224

Zariski 153
Taylor expansion

of a polynomial at p 24
tensor product 36
term 4, 50

initial 53
leading 53, 169, 176
of formal power series 169

theorem
AF+BG 243
basis 15, 16
Bertini 295
Bézout 235

second version 285
division 54
going down 121

going up 118
homomorphy 14, 32
isomorphy 33
lying over 115, 116
Mora division 173
Nullstellensatz

projective 259
strong version 20
weak version 20

on the dimension of intersections
291

on the fiber dimension 293
principal ideal

first version 192
general version 193

syzygy 90, 94, 172
threefold 127
topology

m-adic 168
Zariski 12, 213

Tor 98, 102
total quotient ring 150
total transform 314
transform

strict 314
total 314

translation 44
transversal intersection 164
triangular

change of coordinates 44
system of equations 104

triple point 158
twisted cubic curve 124
twisted cubic curve 11, 17, 262

uni-branched singularity 342
uniform position 302

linearly 302
unirational 88
universal property

of a polynomial ring 4
of localization 149
of tensor product 35, 36

unmixed 128
unramified 363

van de Ven 325
vanishing

ideal 17, 259
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order 160, 161
vanishing ideal 39
vanishing locus 7, 11, 213, 259
variety

affine 23
determinantal 264
projective 213
quasi-projective 306
rational 88
unirational 88

Veronese
embedding 269
surface 270, 315, 316

Villarmajor 324
volume 127

web 228
Weierstrass

equation 250
℘-function 255
polnomial 181
preparation theorem 181

weight
order 53

weighted projective space 290
Weil divisor 326
Whitney

umbrella 81
Whitney umbrella 141
wild ramification 363
without multiple factors 19
W r

d (C) 374

xn-general 181

Zariski
tangent space 153
topology 12, 213

Zariski tangent space 153
zeta-function

of Weil 400
ζ-function

of a curve over a finite field 393
of a number field 391


