Exercise 1. Let X be a topological space, A be an abelian group. The constant presheaf \mathcal{F} is defined by $U \mapsto A$ for every nonempty open subset $U \subseteq X$, together with the restriction maps given by the identity map id_A .

- (1) What is the stalk of \mathcal{F} at a point $P \in X$?
- (2) Explain why it is not a sheaf in general.
- (3) Find its sheafification \mathcal{F}^+ by definition, and compare with the constant sheaf we treated in the class.

Exercise 2. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves.

- (1) Show that $(\ker \varphi)_P = \ker(\varphi_P)$ and $(\operatorname{im} \varphi)_P = \operatorname{im}(\varphi_P)$ for each point $P \in X$.
- (2) Show that φ is injective (resp., surjective) if and only if the induced map φ_P is injective (resp., surjective) for every $P \in X$.
- (3) Show that $\operatorname{im} \varphi \simeq \mathcal{F} / \ker \varphi$.
- (4) Show that $\operatorname{coker} \varphi \simeq \mathcal{G} / \operatorname{im} \varphi$.

Exercise 3. Let $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}''$ be a left exact sequence of sheaves on a topological space X, and let $f: X \to Y$ be a continuous map between two topological spaces.

- (1) Let $U \subseteq X$ be an open subset. Show that the functor $\Gamma(U, -)$ is left exact.
- (2) Show that the functor f_* is left exact.

Exercise 4 (Extension by zero). Let $Z \subset X$ be a closed subset, and $U = X \setminus Z$ be the complement open set. Let $i : Z \hookrightarrow X$, $j : U \hookrightarrow X$ be the inclusions.

- (1) Let \mathcal{F} be a sheaf on Z. Show that the stalk of the sheaf $i_*\mathcal{F}$ on X at $P \in X$ is \mathcal{F}_P if $P \in Z$, and 0 otherwise (if there is no confusing, we sometimes omit i_* .)
- (2) Let \mathcal{G} be a sheaf on U. Let $j_{!}\mathcal{G}$ be the sheaf associated to the presheaf $V \mapsto \mathcal{F}(V)$ if $V \subseteq U$, and 0 otherwise. Show that the stalk of the sheaf $j_{!}\mathcal{G}$ at P is \mathcal{G}_{P} if $P \in U$, and 0 otherwise. The sheaf $j_{!}\mathcal{G}$ is called the sheaf obtained by extending \mathcal{G} by zero outside U.
- (3) Show that there is a natural bijection of sets $\operatorname{Hom}_X(j_!\mathcal{G},\mathcal{F}) = \operatorname{Hom}_U(\mathcal{G},\mathcal{F}|_U)$ for any sheaves \mathcal{F} on X and \mathcal{G} on U, that is, j^{-1} is a right adjoint of $j_!$ and $j_!$ is a left adjoint of j^{-1} .

Exercise 5. Let A be a ring, and $(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ be its spectrum. Check that

- (1) For any $\mathfrak{p} \in \operatorname{Spec} A$, the stalk $\mathcal{O}_{\mathfrak{p}}$ of $\mathcal{O}_{\operatorname{Spec} A}$ is isomorphic to the local ring $A_{\mathfrak{p}}$.
- (2) The global section $\Gamma(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ is isomorphic to A.

Exercise 6. Describe affine schemes $\operatorname{Spec} \mathbb{Z}$, $\operatorname{Spec} \mathbb{C}[x, y]$ as topological spaces.

Exercise 7. Show that the projective n-space \mathbb{P}_k^n (n > 0) over a field k is not affine. (Hint: what is the global section of the structure sheaf $\mathcal{O}_{\mathbb{P}_k^n}$?)