Exercise 1. Let \mathcal{F} be an invertible sheaf on (X, \mathcal{O}_X) . Show that $\mathcal{F} \otimes \mathcal{F}^{\vee} \simeq \mathcal{O}_X$.

Exercise 2 (Geometric Nakayama's lemma). Let X be a scheme, \mathcal{F} be a coherent sheaf. Let $U \subset X$ be an open neighborhood of a point $P \in X$, and let $s_1, \dots, s_n \in \mathcal{F}(U)$ be sections such that their images $s_1|_P, \dots, s_n|_P \in \mathcal{F}|_P := \mathcal{F}_P \otimes (\mathcal{O}_{X,P}/\mathfrak{m}_{X,P})$ generate the geometric fiber $\mathcal{F}|_P$. Show that there is an affine open neighborhood $P \in \operatorname{Spec} A \subseteq U$ such that $s_1|_{\operatorname{Spec} A}, \dots, s_n|_{\operatorname{Spec} A}$ generate $\mathcal{F}|_{\operatorname{Spec} A}$ in the following sense:

- (1) $s_1|_{\operatorname{Spec} A}, \cdots, s_n|_{\operatorname{Spec} A}$ generate $\mathcal{F}|_{\operatorname{Spec} A}$ as an A-module;
- (2) for any $Q \in \text{Spec } A, s_1, \cdots, s_n$ generate the stalk \mathcal{F}_Q as an $\mathcal{O}_{X,Q}$ -module.

Exercise 3. Let X be a scheme, and \mathscr{A} be a quasi-coherent sheaf of \mathcal{O}_X -algebras, that is, a sheaf of rings which is a quasi-coherent \mathcal{O}_X -module simultaneously.

- Show that there is a unique scheme Y and a morphism f: Y → X such that for every affine open U ⊆ X, f⁻¹(U) ≃ Spec 𝒜(U), and for every inclusion V → U of open affines of X, the morphism f⁻¹(V) → f⁻¹(U) corresponds to the restriction homomorphism 𝒜(U) → 𝒜(V). The scheme Y is called the global Spec, or the relative Spec, and denoted by Spec 𝒜.
- (2) Let \mathcal{E} be a locally free sheaf of rank r on a scheme X. Take $\mathscr{A} = \operatorname{Sym} \mathcal{E}^{\vee}$ be the sheaf associated to the presheaf $U \mapsto \operatorname{Sym}(\mathcal{E}^{\vee}(U))$. Show that this is a sheaf of \mathcal{O}_X -algebra.
- (3) Let $\mathscr{A} = \operatorname{Sym} \mathcal{E}^{\vee}$ be as above. Check that the morphism $\operatorname{Spec} \mathscr{A} \to X$ gives a vector bundle of rank r. This is called the total space of a locally free sheaf \mathcal{E} of a finite rank, or the vector bundle associated to a locally free sheaf \mathcal{E} .

Exercise 4. Let X be a noetherian scheme, and \mathscr{S} be a quasi-coherent sheaf of graded \mathcal{O}_X -algebras, that is, $\mathscr{S} \simeq \bigoplus_{d \ge 0} \mathscr{S}_d$ where \mathscr{S}_d is the homogeneous part of degree d. Assume that $\mathscr{S}_0 = \mathcal{O}_X$, and \mathscr{S}_1 is a coherent \mathcal{O}_X -module, and that \mathscr{S} is locally generated by \mathscr{S}_1 as an \mathcal{O}_X -algebra. Complete the details of the following construction.

- (1) For each open affine open subset $U = \operatorname{Spec} A \subseteq X$, let $\mathscr{S}(U)$ be the graded A-algebra $\Gamma(U, \mathscr{S}|_U)$. We have a natural morphism $\pi_U : \operatorname{Proj} \mathscr{S}(U) \to U$. Check that this is compatible with a further localization, that is, $\operatorname{Proj} \mathscr{S}(U_f) \simeq \pi_U^{-1}(U_f)$ where $U_f = \operatorname{Spec} A_f \subseteq U$ for some element $f \in A$.
- (2) Let U, V be two affine open subsets of X. Check that $\pi_U^{-1}(U \cap V) \simeq \pi_V^{-1}(U \cap V)$. In particular, the schemes $\operatorname{Proj} \mathscr{S}(U)$ glue together and form a scheme $\operatorname{Proj} \mathscr{S}$, together with a morphism $\pi : \operatorname{Proj} \mathscr{S} \to X$.
- (3) Check that the invertible sheaves $\mathcal{O}(1)$ on each $\operatorname{Proj} \mathscr{S}(U)$ are also compatible under the above construction. They give rise to an invertible sheaf $\mathcal{O}(1)$ on $\operatorname{Proj} \mathscr{S}$.
- (4) Let \mathcal{E} be a locally free sheaf of rank (r+1) on X. Take $\mathscr{S} = \bigoplus_{d \ge 0} \operatorname{Sym}^d \mathcal{E}^{\vee}$ be the symmetric algebra. Check that this is a quasi-coherent sheaf of \mathcal{O}_X -algebras. We denote by $\mathbb{P}(\mathcal{E}) := \operatorname{Proj} \mathscr{S}$

be the projective space bundle, together with a natural projection $\pi : \mathbb{P}(\mathcal{E}) \to X$. If \mathcal{E} is free over a sufficiently small open affine subset $U \simeq \operatorname{Spec} A$, then $\pi^{-1}(U) \simeq \mathbb{P}_A^r = \operatorname{Proj} A[x_0, \cdots, x_r]$.

(5) Let Y be a closed subscheme of X, and let \mathscr{I} be the ideal sheaf. Take $\mathscr{S} = \bigoplus_{d \ge 0} \mathscr{I}^d$, where $\mathscr{I}^0 = \mathcal{O}_X$. Check that \mathscr{S} is a quasi-coherent sheaf of \mathcal{O}_X -algebras. The scheme $\widetilde{X} := \operatorname{\mathbf{Proj}} \mathscr{S}$, together with a natural morphism $\pi_{\mathscr{I}} : \widetilde{X} \to X$, is called the blowing-up of X with respect to \mathscr{I} . Compute it when X is an affine n-space, and Y is the origin of X.

Exercise 5. Let \mathcal{F}, \mathcal{G} be coherent sheaves on X. Suppose that \mathcal{F} is globally generated, and there is a surjection $\mathcal{F} \to \mathcal{G} \to 0$. Show that \mathcal{G} is also globally generated.

Exercise 6. Let A be a ring, X be a closed subscheme of \mathbb{P}^N_A . We define the homogeneous coordinate ring S(X) of X for the given embedding to be $A[x_0, \dots, x_N]/I$, where $I = \Gamma_*(\mathscr{I}_X)$ is the (largest) ideal defining X.

A scheme X is normal if all the local rings $\mathcal{O}_{X,P}$ are integrally closed. A closed subscheme $X \subseteq \mathbb{P}^N_A$ is projectively normal (or, arithemetically normal) for the given embedding, if its homogeneous coordinate ring S(X) is an integrally closed domain.

Now assume that A = k is an algebraically closed field, and that X is a connected, normal, closed subvariety of \mathbb{P}^N_A .

- (1) Let S(X) be the homogeneous coordinate ring of X, and let $R(X) := \bigoplus_{n \in \mathbb{Z}} \Gamma(X, \mathcal{O}_X(n))$ be the section ring. Show that S(X) is an integral domain, and that R(X) is its integral closure.
- (2) Show that $S(X)_d = R(X)_d$ for all sufficiently large d.
- (3) Show that $S(X)^{(d)} := \bigoplus_n S(X)_n^{(d)} = \bigoplus_n S(X)_{nd}$ is integrally closed for sufficiently large d. This implies that the d-uple embedding of X is projectively normal when d is large enough.
- (4) Show that a closed subscheme $X \subseteq \mathbb{P}^N_A$ is projectively normal if and only if it is normal, and the natural map on global sections $\Gamma(\mathbb{P}^N, \mathcal{O}_{\mathbb{P}^N}(n)) \to \Gamma(X, \mathcal{O}_X(n))$ is surjective for every $n \ge 0$.
- (5) Let $X = \{[s^4 : s^3t : st^3 : t^4] \mid [s : t] \in \mathbb{P}^1\} \subseteq \mathbb{P}^3$ be a rational quartic curve in \mathbb{P}^3 . Let $\mathcal{O}_X(1) = i^*\mathcal{O}_{\mathbb{P}^3}(1)$ be the very ample line bundle. Compute S(X) and R(X), and conclude that X is not linearly normal, that is, $\Gamma(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(1)) \to \Gamma(X, \mathcal{O}_X(1))$ is not surjective.

Exercise 7 (Riemann-Roch problem). Let k be an algebraically closed field, X be a nonsingular projective variety over k. Let \mathcal{L} be an invertible sheaf on X. We want to describe the number $\dim \Gamma(X, \mathcal{L}^n)$ as an integer-valued function of n.

- (1) Assume that \mathcal{L} is very ample, and $i : X \hookrightarrow \mathbb{P}_k^N$ is the corresponding embedding in a projective space. Show that dim $\Gamma(X, \mathcal{L}^n) = P_X(n)$ for sufficiently large n, where P_X is the Hilbert polynomial of X.
- (2) Show that dim $\Gamma(X, \mathcal{L}^n)$ is a polynomial function for n large enough when \mathcal{L} is ample.
- (3) Show that dim $\Gamma(X, \mathcal{F} \otimes \mathcal{L}^n)$ is a polynomial function for n large enough when \mathcal{L} is ample and \mathcal{F} is coherent (Hint: use Hilbert's syzygy theorem for $i_*(\mathcal{F} \otimes \mathcal{L}^n)$).