Exercise Sheet 3 (06. 12. 2018)

Exercise 1. Let $X=\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}=\operatorname{Proj} k[x, y, z, w] /(x y-z w)$ be a smooth quadric surface in \mathbb{P}_{k}^{3}. Let $D_{1}=\{p t\} \times \mathbb{P}_{k}^{1}$, and let $D_{2}=\mathbb{P}_{k}^{1} \times\{p t\}$.
(1) Show that there is a surjection $\mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathrm{Cl} X$ (Hint : remove D_{1} and D_{2} from X. The complement is $X \backslash\left(D_{1} \cup D_{2}\right) \simeq \mathbb{A}^{2}$, a spectrum of a UFD, hence has the trivial divisor class group.)
(2) Show that $\mathcal{O}\left(D_{1}\right)$ restricts to \mathcal{O} on $D_{1} \simeq \mathbb{P}_{k}^{1}$, and to $\mathcal{O}(1)$ on $D_{2} \simeq \mathbb{P}_{k}^{1}$. Similarly, show that $\mathcal{O}\left(D_{2}\right)$ restricts to $\mathcal{O}(1)$ on D_{1}, and to \mathcal{O} on D_{2}.
(3) Conclude that the homomorphism $\mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathrm{Cl} X$ defined by $(a, b) \mapsto a D_{1}+b D_{2}$ is an isomorphism.

Exercise 2. Show that \mathbb{P}_{k}^{2} and $\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}$ are birational but not isomorphic (Hint : what are the divisor class group of them?). Can you find two varieties, which are birational but not isomorphic, having the same divisor class group?

Exercise 3 (Generalized Euler sequence). Let Y be a variety, and let \mathcal{E} be a locally free sheaf of rank $n+1(n \geq 1)$ on Y. Let $\pi: X=\mathbb{P}(\mathcal{E}) \rightarrow Y$ be the projective bundle with the invertible sheaf $\mathcal{O}_{X}(1)$ followed from the construction. Let

Show that there is an exact sequence

$$
0 \rightarrow \Omega_{X / Y} \rightarrow \mathcal{O}_{X}(-1) \otimes \pi^{*} \mathcal{E}^{\vee} \rightarrow \mathcal{O}_{X} \rightarrow 0
$$

Exercise 4. Let V be a vector space of dimension $n+1$, and let $G r(k+1, V)$ be the Grassmannian; the space of sub-vector spaces of V of dimension $k+1$. Consider the incidence variety

Let $\mathcal{U}:=q_{*} p^{*}\left(\Omega_{\mathbb{P}^{n}}(1)\right)$, and let $\mathcal{Q}:=q_{*} p^{*}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)$. Show that there is an exact sequence

$$
0 \rightarrow \mathcal{U} \rightarrow V \otimes \mathcal{O}_{G r(k+1, V)} \rightarrow \mathcal{Q} \rightarrow 0
$$

Exercise 5. Let $\left(X, \mathcal{O}_{X}\right)$ be a ringed space. We denote $\operatorname{Pic} X$ by the group of isomorphism classes of invertible sheaves. Show that $\operatorname{Pic} X \simeq H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)$, where \mathcal{O}_{X}^{\times}denotes the sheaf whose sections over an open set U are the units in the ring $\Gamma\left(U, \mathcal{O}_{X}\right)$, with the multiplication as the group operation.
[Hint: Let \mathcal{L} be an invertible sheaf. Cover X by open subsets U_{i} on which \mathcal{L} is free. Fix local isomorphisms $\varphi_{i}:\left.\mathcal{O}_{U_{i}} \xrightarrow{\sim} \mathcal{L}\right|_{U_{i}}$. On $U_{i} \cap U_{j}$, we have an automorphism $\varphi_{i}^{-1} \circ \varphi_{j}$ of $\mathcal{O}_{U_{i, j}}$. These automorphisms give an element of $\check{\mathrm{H}}^{1}\left(\mathfrak{U}, \mathcal{O}_{X}^{\times}\right)$. Now use the fact that $\underset{\longrightarrow}{\lim } \check{\mathrm{H}}^{1}(\mathfrak{U}, \mathcal{F})=H^{1}(X, \mathcal{F})$.]

Exercise 6. Let C be a projective plane curve, defined by a single homogeneous equation $f(x, y, z)=$ 0 of degree d. Assume that $(1: 0: 0) \notin C$, equivalently, f does not contains a x^{d} term.
(1) Show that C is covered by two affine open subsets $U=C \cap U_{y}=\{y \neq 0\}$ and $V=C \cap U_{z}=$ $\{z \neq 0\}$.
(2) Compute the Čech complex explicitly.
(3) Verify that $h^{0}\left(C, \mathcal{O}_{C}\right)=1$ and $h^{1}\left(C, \mathcal{O}_{C}\right)=\binom{d-1}{2}$.

Exercise 7. Compute the cohomology groups $H^{i}\left(X, \mathcal{O}_{X}\right)$ where $X=\mathbb{A}_{k}^{2} \backslash\{(0,0)\}$ is a punctured affine plane. [Hint : compute Čech cohomology groups with respect to an affine open cover $\left\{U_{x}, U_{y}\right\}$, where $U_{x} \subseteq\{(x, y) \mid x \neq 0\} \subseteq \mathbb{A}_{k}^{2}$ and $\left.U_{y} \subseteq\{(x, y) \mid y \neq 0\} \subseteq \mathbb{A}_{k}^{2}.\right]$ Conclude that $\mathbb{A}_{k}^{2} \backslash\{(0,0)\}$ is not affine.

