Exercise Sheet 3 (06. 12. 2018)

Exercise 1. Let $X = \mathbb{P}_k^1 \times \mathbb{P}_k^1 = \operatorname{Proj} k[x, y, z, w]/(xy - zw)$ be a smooth quadric surface in \mathbb{P}_k^3 . Let $D_1 = \{pt\} \times \mathbb{P}_k^1$, and let $D_2 = \mathbb{P}_k^1 \times \{pt\}$.

- (1) Show that there is a surjection $\mathbb{Z} \oplus \mathbb{Z} \to \operatorname{Cl} X$ (Hint : remove D_1 and D_2 from X. The complement is $X \setminus (D_1 \cup D_2) \simeq \mathbb{A}^2$, a spectrum of a UFD, hence has the trivial divisor class group.)
- (2) Show that $\mathcal{O}(D_1)$ restricts to \mathcal{O} on $D_1 \simeq \mathbb{P}^1_k$, and to $\mathcal{O}(1)$ on $D_2 \simeq \mathbb{P}^1_k$. Similarly, show that $\mathcal{O}(D_2)$ restricts to $\mathcal{O}(1)$ on D_1 , and to \mathcal{O} on D_2 .
- (3) Conclude that the homomorphism $\mathbb{Z} \oplus \mathbb{Z} \to \operatorname{Cl} X$ defined by $(a, b) \mapsto aD_1 + bD_2$ is an isomorphism.

Exercise 2. Show that \mathbb{P}_k^2 and $\mathbb{P}_k^1 \times \mathbb{P}_k^1$ are birational but not isomorphic (Hint : what are the divisor class group of them?). Can you find two varieties, which are birational but not isomorphic, having the same divisor class group?

Exercise 3 (Generalized Euler sequence). Let Y be a variety, and let \mathcal{E} be a locally free sheaf of rank n + 1 ($n \ge 1$) on Y. Let $\pi : X = \mathbb{P}(\mathcal{E}) \to Y$ be the projective bundle with the invertible sheaf $\mathcal{O}_X(1)$ followed from the construction. Let

Show that there is an exact sequence

$$0 \to \Omega_{X/Y} \to \mathcal{O}_X(-1) \otimes \pi^* \mathcal{E}^{\vee} \to \mathcal{O}_X \to 0.$$

Exercise 4. Let V be a vector space of dimension n + 1, and let Gr(k + 1, V) be the Grassmannian; the space of sub-vector spaces of V of dimension k + 1. Consider the incidence variety

Let $\mathcal{U} := q_* p^*(\Omega_{\mathbb{P}^n}(1))$, and let $\mathcal{Q} := q_* p^*(\mathcal{O}_{\mathbb{P}^n}(1))$. Show that there is an exact sequence

 $0 \to \mathcal{U} \to V \otimes \mathcal{O}_{Gr(k+1,V)} \to \mathcal{Q} \to 0.$

Exercise 5. Let (X, \mathcal{O}_X) be a ringed space. We denote Pic X by the group of isomorphism classes of invertible sheaves. Show that Pic $X \simeq H^1(X, \mathcal{O}_X^{\times})$, where \mathcal{O}_X^{\times} denotes the sheaf whose sections over an open set U are the units in the ring $\Gamma(U, \mathcal{O}_X)$, with the multiplication as the group operation.

[Hint : Let \mathcal{L} be an invertible sheaf. Cover X by open subsets U_i on which \mathcal{L} is free. Fix local isomorphisms $\varphi_i : \mathcal{O}_{U_i} \xrightarrow{\sim} \mathcal{L}|_{U_i}$. On $U_i \cap U_j$, we have an automorphism $\varphi_i^{-1} \circ \varphi_j$ of $\mathcal{O}_{U_{i,j}}$. These automorphisms give an element of $\check{\mathrm{H}}^1(\mathfrak{U}, \mathcal{O}_X^{\times})$. Now use the fact that $\varinjlim \check{\mathrm{H}}^1(\mathfrak{U}, \mathcal{F}) = H^1(X, \mathcal{F})$.]

Exercise 6. Let C be a projective plane curve, defined by a single homogeneous equation f(x, y, z) = 0 of degree d. Assume that $(1:0:0) \notin C$, equivalently, f does not contains a x^d term.

- (1) Show that C is covered by two affine open subsets $U = C \cap U_y = \{y \neq 0\}$ and $V = C \cap U_z = \{z \neq 0\}.$
- (2) Compute the Čech complex explicitly.
- (3) Verify that $h^0(C, \mathcal{O}_C) = 1$ and $h^1(C, \mathcal{O}_C) = \binom{d-1}{2}$.

Exercise 7. Compute the cohomology groups $H^i(X, \mathcal{O}_X)$ where $X = \mathbb{A}_k^2 \setminus \{(0,0)\}$ is a punctured affine plane. [Hint : compute Čech cohomology groups with respect to an affine open cover $\{U_x, U_y\}$, where $U_x \subseteq \{(x, y) \mid x \neq 0\} \subseteq \mathbb{A}_k^2$ and $U_y \subseteq \{(x, y) \mid y \neq 0\} \subseteq \mathbb{A}_k^2$.] Conclude that $\mathbb{A}_k^2 \setminus \{(0, 0)\}$ is not affine.