Exercise Sheet 4 (17. 01. 2019)

Exercise 1. Let D be an effective divisor on C. Show that $\operatorname{dim}|D| \leq \operatorname{deg} D$, and the equality holds if and only if either $D=0$ or $g=0$.

Exercise 2. A curve C is called hyperelliptic if $g \geq 2$ and there exists a finite morphism $f: C \rightarrow \mathbb{P}^{1}$ of degree 2 .
(1) Let C be a curve of genus 2. Show that the canonical divisor K_{C} is base-point-free, $\operatorname{deg} K_{C}=2$, and $h^{0}\left(C, K_{C}\right)=2$. Conclude that C is hyperelliptic.
(2) Show that there is a hyperelliptic curve of genus g for every $g \geq 2$.

Exercise 3 (Automorphisms of a curve). Let C be a curve over $k=\mathbb{C}$ of genus g.
(1) Let $g=0$. Show that the automorphism group $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ is the group of Möbius transformations

$$
\left\{f(z)=\frac{a z+b}{c z+d}, \quad a d-b c \neq 0\right\}
$$

(2) Let $g=1$. In the case, C is an elliptic curve, and hence it has a group structure. Show that the translation by a point of C is an automorphism. In particular, C is a subgroup of $\operatorname{Aut}(C)$.
(3) Let $g \geq 2$. In the case, it is known that $G=\operatorname{Aut}(C)$ is finite. So let $n=|G|$ be its order. Since G acts on the function field $K(C)$ of C, we have a field extension $L:=K(C)^{G} \hookrightarrow K(C)$. This gives a finite morphism of curves $f: C \rightarrow C^{\prime}$ of degree n.

If $P \in C$ is a ramification point of index $e_{P}=r$, show that $f^{-1}(f(P))$ consists of n / r points, each having ramification index r.
(4) Note that f is branched over finite number of points on C^{\prime}. Let P_{1}, \cdots, P_{s} be a maximal set of ramification points of C lying over distinct points of Y. In particular, s is the number of branch points of C^{\prime}. Let $e_{P_{i}}=r_{i}$. Show that

$$
\frac{1}{n}(2 g-2)=2 g\left(C^{\prime}\right)-2+\sum_{i=1}^{s}\left(1-\frac{1}{r_{i}}\right)
$$

(5) Since $g \geq 2$, the value appearing in the above equality must be >0. Under the assumption $g\left(C^{\prime}\right) \geq 0, s \geq 0, r_{i} \geq 2$ for $1 \leq i \leq s$ which makes the above value to be strictly greater than 0, show that the minimum value of the expression

$$
2 g\left(C^{\prime}\right)-2+\sum_{i=1}^{s}\left(1-\frac{1}{r_{i}}\right)
$$

is $\frac{1}{42}$ (occurs when $g\left(C^{\prime}\right)=0, s=3, r_{1}=2, r_{2}=3, r_{3}=7$). Conclude that $n \leq 84(g-1)$.
Exercise 4. Let C be a plane curve of degree 4. Show that any effective divisor linearly equivalent to the canonical divisor is the hyperplane divisor $C \cap L$ for some line $L \subseteq \mathbb{P}^{2}$. Show that there is no linear system of divisors of degree 2 of dimension 1, in other words, $h^{0}(C, D)<2$ for any (effective) divisor D of degree 2. Conclude that C cannot be hyperelliptic.

