Topic 1 : Sheaf

1 Presheaves and sheaves

“The concept of a sheaf provides a systematic way of keeping track of
local algebraic data on a topological space” — Hartshorne, ‘Algebraic Geometry’

Figure 1: A jig-saw puzzle is consisted of small pieces and rules for patching them
together

Let us recall our old memory. Let X C RY be an n-dimensional topological manifold.
One effective way to study X is not only considering X itself, but also observing contin-
uous functions to R. Since an atlas {(Ua, @)} defines X, a continuous function f can be
seen as a collection of continuous functions on smaller open subsets {(Ua, f|v,,)}. Indeed,
we may assume that each U, is an n-dimensional Euclidean ball, which is a fundamental
object in classical topology, and f|y, is a real-valued continuous function. When we are
interested in smooth manifolds, one may substitute X by a smooth manifold and observe
smooth functions. It is straightforward to assign local data from additional structures
such as: continuous functions, smooth functions, or holomorphic functions, etc. In every
cases, such data can be restricted to smaller open sets in a natural way.

Conversely, suppose that we have a collection of local data which comes from a single
(X,f : X — R). In order to make it sense, local pieces should recover the original
(X,f : X — R) by gluing them together. Hence, a right notion for the ‘playground’
should contain the following data:

e the topology of X, that is, the set of all open subsets of X;
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e the collection of a local structure we want to observe, for instance, the set of local
continuous functions on each subset U C X;

e a notion of “restriction” when V' C U is a further open subset, for instance, sending
fu:U—=Rto fuly : V= R;

e a notion of “gluing” when we have two local data compatible on their intersection.

It is hard to pin down who invented the sheaf theory. It seems reasonable to the connec-
tion between the extension problem (such as analytic continuations). Such an idea was
mostly developed by several people working in algebraic topology during 30’s and 40’s,
including Jean Leray. The work when he was in a prisoner camp is essential to bring out
the modern sheaf theory and the development of spectral sequences. Serre brought the
sheaf theory to algebraic geometry in 50’s, and then it becomes a fundamental language
in this world.

Sheaves have various applications in algebraic topology and in algebraic geometry. First,
geometric structures like vector bundles on a smooth manifold (or an algebraic variety)
can be expressed in terms of sheaves of modules on the given space. Also, sheaves
provide (a hint of) a cohomology theory generalizing the usual cohomology such as
singular cohomology. Sheaves are designed in a much more general and abstract way,
however, in this course, we only deal with a few simpler cases.

Definition 1. Let X be a topological space. A presheaf F of abelian groups on X is a
contravariant functor from Top(X) to 2b.

Note that the category Top(X) is consisted of the objects as the open subsets of X and
the morphisms are the inclusion maps between open subsets. Therefore, F is a collection
of the data
(1) abelian group F(U) for each open subset U C X;
(2) a (homo)morphism of abelian groups pyy : F(U) — F(V) for every
inclusion V' C U of open subsets of X

satisfying the following conditions

(a) F(0) =0, the empty set assigns a terminal object;
(b) pyv : F(U) — F(U) is the identity map;
(¢) puw = pvw © pyv where W C V C U are three open subsets.

Of course, we may define a presheaf of rings, or of sets just by replacing the words
“abelian groups” by “rings”, or “sets”. The abelian groups F(U), also denoted by
(U, F), is called the sections of the presheaf F over the open set U. The morphisms
puv are called restriction maps. We write s|y := pyy(s) where s € F(U).

Roughly speaking, a sheaf is a presheaf whose sections are determined by further local
data, as we discussed above.

Definition 2. A presheaf F is a sheaf if it satisfies the following further conditions:



(3) if {U;} is an open covering of an open subset U C X, and if s,t € F(U)
are sections such that s|y, = t|y, for all ¢, then s = t¢;

(4) if {U;} is an open covering of an open subset U C X, and if we have
sections s; € F(U;) for each i such that they agree on the intersections:
silu;nu; = sjluinu; for every pair 4, 7, then there is a section s € F(U)
such that s|y, = s; for each i.

Example 3. Let X be a variety over a field k. For each open subset U C X, let Ox (U)
be the ring of regular functions from U to k, and for each V C U, let pyy : Ox(U) —
Ox (V) be the usual restriction map. Then O is a sheaf of rings on X, which is called
the sheaf of regular functions on X, or the structure sheaf of X (when we regard X as
a locally ringed space, or a scheme).

Let Y C X be a closed subset of X. For each open set U C X, we assign U — %y (U)
where #y (U) C Ox(U) be the ideal of regular functions vanish at every point of Y NU.
This forms a sheaf %y, and called the sheaf of ideals of Y, or the ideal sheaf of Y.

Example 4. One can define the sheaf of continuous functions on any topological space,
or the sheaf of differentiable functions on a differentiable manifold, or the sheaf of holo-
morphic functions on a complex manifold.

Example 5. Let A be an abelian group. We define the constant sheaf o/ on X as
follows. Give A the discrete topology, and for each U C X, let o7 (U) be the group of all
continuous maps from U to A. We have o/ (U) ~ A for every connected open subset U.

Example 6. Let A be an abelian group, and P € X be a point. We define a sheaf
ip(A) on X as follows: ip(A)(U) = Aif P € U and ip(A)(U) = 0 otherwise. ip(A) is
called the skyscraper sheaf.

Now we will see more definitions to play with sheaves. They are not quite different from
the basic notions in commutative algebra and homological algebra.

Definition 7. Let F be a presheaf on X, and let P € X be a point. We define the stalk
Fp of F at P be the direct limit of the groups F(U) for every open subset U containing
P, via the restriction maps.

An element of Fp is represented by a pair (U, s), where U is an open neighborhood of
P, and s € F(U). Two pairs (U, s) and (V,t) defines the same element in Fp if and only
if there is a smaller open subset W C U NV such that s|y = t|y. Hence, the elements
of the stalk Fp are germs of sections at the point P.

Exercise 8. What are the stalks of the previous examples?

Definition 9. Let F and G are presheaves on X. A morphism ¢ : F — G is a collection
of morphisms of abelian groups ¢(U) : F(U) — G(U) for each open set U C X such
that the diagram

FU) G(U)
pUV\L v lpUV
Fvy 2 g(v)
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commutes for any inclusion of open sets V' C U, where p” and pY denotes the restriction
maps in F and G. A morphism of sheaves follows the same definition. An isomorphism
is a morphism which admits a two-sided inverse.

A morphism ¢ : F — G of presheaves on X induces a morphism pp : Fp — Gp on the
stalks, for any P € X. The following proposition shows the local nature of a sheaf.

Proposition 10. Let p : F — G be a morphism of sheaves on X. ¢ is an isomorphism
if and only if the induced map pp is an isomorphism for every P € X.

Proof. 1t is enough to show that ¢ is an isomorphism when all the induced maps on
the stalks are isomorphisms. To do this, we claim that each p(U) : F(U) — G(U) is an
isomorphism where U C X is an open subset. Suppose the claim is true. Let 1) be the
inverse defined by ¢(U) = ¢(U)~!. Since

P(W(py (1)) = v (1) = pEy ((¥(1))) = (ply ((1)))

for any ¢ € G(U) and an open subset V' C U, we conclude that ¢(pgv(t)) = piy (¥(1))
commutes.

First we show that ¢(U) is injective. Let s € F(U) be an element such that ¢(s) = 0
in G(U). For every point P € U, the image ¢(s)p of ¢(s) in the stalk Gp is zero. Since
pp is injective, we have sp = 0 in Fp for every P € X. It means, there exist an open
neighborhood P € Wp C U such that s|w, = 0. Since {Wp} gives a covering of U, we
conclude that s = 0 in U from the sheaf property.

Next, we show that ¢(U) is surjective. Let t € G(U) be a section, and tp be its germ
at P € U. Since each pp is an isomorphism, we have sp € Fp such that ¢p(sp) = tp.
Let sp is represented by a section s(P) on an open neighborhood P € Wp C U. Then
©(s(P)) and t|w, are two sections in Wp whose germs at P coincide. Hence, replacing
Wp by a smaller neighborhood if necessary, we may assume that ¢(s(P)) = t|lw, in
G(Wp). For any P,Q € X, ¢(s(P))lwprwy = tlwpnwg = ¢(s(Q))lwprrw, coincide on
the intersection. Since ¢ is injective, we have s(P)|lw,nw, = s(Q)|lwpnw,- Hence, by
the sheaf property, there is a section s € F(U) such that s|y, = s(P) for each P € X.
Again by the sheaf property for G, we conclude that ¢(s) = t. O

Caution.
(1) The proposition only holds for a morphism of sheaves, not for presheaves.

(2) It is not true that ¢ is an isomorphism when Fp and Gp are isomorphic for each
P € X. Isomorphisms on the stalks must be induced from a single morphism .

For instance, let X = {P,Q} with the discrete topology, and let A be an abelian group.
We take F as a presheaf defined by F(U) = A for any nonempty open subset U C X,
and let G as the constant sheaf. Let ¢ : 7 — G be a morphism of presheaves defined by

e({P}) =ida, p({Q}) = ida, (X) = Aa

where Ag(a) = (a,a) € A@ A. Clearly, they are not isomorphic, but the induced maps
on all the stalks are isomorphisms.



We now define the kernel, cokernel, and image of a morphism of (pre)sheaves.

Definition 11. Let ¢ : 7 — G be a morphism of presheaves. We define the presheaf ker-
nel, presheaf cokernel, presheaf image of ¢ to be the presheaves given by U +— ker ¢(U),
U +— coker p(U), and U — im p(U), respectively.

Caution. Let ¢ : F — G is a morphism of sheaves. The presheaf kernel of ¢ is a sheaf,
but the presheaf cokernel and image are not sheaves in general.

Definition—Theorem 12. Given a presheaf F, there is a sheaf 7T and a morphism
6 : F — F+, with the universal property that for any sheaf G and a morphism ¢ : F — G,
there is a unique morphism v : F* — G such that ¢ = 1 06. The pair (FT,6) is unique
up to unique isomorphism. F* is called the sheaf associated to the presheaf F, or the
sheafification of F.

Proof. For any open set U C X, let F*(U) be the set of functions s* : U — Upcy Fp
such that

(i) for each P € U, s™(P) € Fp, and

(ii) for each P € U, there is an open neighborhood P € V' C U and an element
t € F(V) such that for every Q € V, the germ tg of ¢t at @ is equal to s*(Q).

Then F' with the natural restriction maps is a sheaf. All the other conditions are
clear, so let us only check the gluing property. Let {U;} be an open covering of an open
set U C X. Suppose that we have functions 32' U = U pey, Fp compatible on the
intersections. It is straightforward that there is a function s* : U — (Jpeyy Fp such that
sty, = s and st (P) € Fp for each P € U. Let P € U; C U. By the condition (ii),
there is an open neighborhood P € V; C U; and an element t; € F(V;) such that the
germ of t; at Q € V; is equal to s (Q) = sT|y,(Q) = s7(Q). Thus we have st € FT(U).
It is also clear that the natural map

s € F(U) <s+:U—> U fp>
pPeU

by sT(P) = sp defines a morphism 6 : F — FT.

Now let G be a sheaf and ¢ : F — G be a morphism (of presheaves). We define
¥ Ft — G as follows. Let U C X be an open set, and let s € Ft(U). For each
P € U, there is an open neighborhood P € Vp C U and an element ¢(P) € F(Vp) whose
germ at @ is equal to sT(Q) for every Q@ € Vp. We have sections ¢(t(P)) € G(Vp) for
each P € X. Since two germs ¢ (s7(Q)) and p(t(P))q coincide in G for every Q € Vp,
we replace Vp by a smaller open subset if necessary, and may assume that {¢(t(P))}
are compatible on the intersections. Since G is a sheaf, they glue together and form a
section 1 (sT). This defines a morphism ¢ : F* — G. It is straightforward that this
equals to p(s) when s = 6(s).

The uniqueness of the pair (FT,6) follows from the universal property. O

Remark 13. Note that the induced map on stalks 6p : Fp — ]—"; is an isomorphism
for each P € X. When F itself is a sheaf, then F is isomorphic to F™.
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2 More definitions and basic properties

In several literatures, one can find the same process via the notion of espace étalé. Let F
be a presheaf on X. We define the espace étalé as the topological space Spé(F) together
with a projection 7 : Spé(F) — X in a following way. As a set, Spé(F) = [[pcx Fp be
the disjoint union of all the stalks. The projection is defined in a trivial way: 7 (s) := P
when s € Fp. Let s € F(U) be a section over an open set U. Then we have an element
5: U — Spé(F) by sending P +— sp, its germ at P. Since w05 = idy, one may consider
5 as a “(topological) section” of 7w over U. The topology of Spé(F) is given by the
strongest topology such that all the maps 5 : U — Spé(F) are continuous for any choice
of open sets U C X and s € F(U). Via this notion, F1(U) is identified with the set of
continuous sections of Spé(F) over U.

Definition 14. Let F be a sheaf on X, and let s € F(U) be a section on an open set
U C X. The support of s is defined to be the set {P € U | sp # 0}. We immediately see
that the set Supp(s) C U is closed; if we take a point P € U\ Supp(s) in the complement,
then there is an open neighborhood P € V' C U such that s|yy = 0. The support of F is
defined to be the set {P € X|Fp # 0}.

Definition 15. Let F,G be sheaves, and ¢ : F — G be a morphism of sheaves. A
subsheaf F' of a sheaf F is a sheaf such that for every open set U C X, F'(U) C F(U)
is a subgroup, and the restriction maps are induced by those of F. The kernel of ¢,
denoted by ker ¢, is the presheaf kernel of ¢ (which is a sheaf). A morphism ¢ : F — G
is injective if ker p = 0. The image of p, denoted by im ¢, is the sheaf associated to
the presheaf image of . By the universal property, there is a natural injective map
imep — G. A morphism ¢ : F — G is surjective if imp = G. The cokernel of ¢,
denoted by coker ¢, is the sheaf associated to the presheaf cokernel of ¢. The sheaf of
local morphisms of F into G (or sheaf hom for short), denoted by Hom(F,G), is defined
by U~ HOIH(]:|U — Q|U)

A sequence - - - — Fi~1 g Fi P Fi Ly . of sheaves is ezact if ker @' = im i~
each stage.

Let F' be a subsheaf of F. The quotient sheaf F/F' is the sheaf associated to the
presheaf U — F(U)/F'(U).

L at

Remark 16. A morphism ¢ : F — G of sheaves is injective if and only if the map on
sections (U) : F(U) — G(U) is injective for each U C X. However, the corresponding
statement for the surjective morphisms is not true.

For instance, let X = S' C R? with the usual topology, F be the sheaf of all R-valued
continuous functions, and let G be the sheaf of all S = R /Z-valued continuous functions.
A natural morphism F — G is surjective on any small open neighborhood, however, there
is no global R-valued continuous function from S! which maps to idg:.

We give another example here. Let X = C\ {0} be the punctured complex plane, F be
the sheaf of holomorphic functions, and let G be the sheaf of nowhere-zero holomorphic
functions. Let ¢ : F — G be the exponential map ¢(f) = e/. On a small open
neighborhood, we may take the log branch, and hence ¢ is a surjective morphism of



sheaves. However, it is impossible to take a log branch on the whole punctured complex
plane, in particular, there is no global holomorphic function f : X — C such that
ef(2) = z for every z € X.

Definition 17. A sheaf F is called a flasque sheaf if the restriction map F(U) — F(V)
is surjective for every inclusion V' C U of open subsets.

Let us briefly observe just one major property of flasque sheaves, which will be useful in

the remaining course. Let 0 — F' 5 F % F" 5 0 be a short exact sequence of sheaves.
In general, the (global) section functor I'(U, —) is left exact but not exact: the map
F(U) — F"(U) needs not to be surjective. On the other hand, when F’ is flasque, then
we have a short exact sequence of abelian groups 0 — F'(U) — F(U) — F"(U) — 0 for
any open set U C X. A sketch of proof is as follows:

Let s” € F"(U). Since the induced map on stalks ¢p : Fp — Fp, is surjective,
we may take sp € w;l(s;’p) for each P € X. Let sp is represented by a pair
(Vp,s(P)) where P € Vp C U be an open neighborhood and s(P) € F(Vp)
such that ¢ (s(P)) = s”"|v,. The problem is that s(P) and s(Q) needs not
to be the same on the intersection Vp N V. On the other hand, followed
from the left exactness, there is a section s'(PQ) € F'(Vp N V) such that
o(s'(PQ)) = s(P)|vprvy — 8(Q)|vpnvy,- Since F' is flasque, there is a section
s'(Q) € F'(Vq) such that s(Q)lvynv, = §'(PQ) for each Q € U. We may
replace s(Q) € F(Vg) by s(Q) + ¢(s'(Q)) for every @ € U to correct the
difference.

So far, we discussed sheaves on a single topological space X. We also need to define some
operations on sheaves with two topological spaces X and Y, together with a continuous
map f: X - Y.

Definition 18. Let f : X — Y be a continuous map between two topological spaces,
and let F be a sheaf on X, G be a sheaf on Y. We define the direct image sheaf f.F
onY by (f.F)(V) = F(f~1(V)) for each open set V C Y. We define the inverse image
sheaf f_lg on X to be the sheaf associated to the presheaf U — hﬂvzf(U) G(V). Note

that the stalk is easy to compute: (f~'G)p = Gp(py. Also note that the functor f.(—)
is left exact, and the functor f~1(—) is exact.

When Z C X is a subset, and i : Z — X be the inclusion map, then F|z := iTlLF is
called the restriction of F onto Z.

Remark 19. When we deal with a morphism f : X — Y of locally ringed spaces,
we often play with sheaves of Oy-modules. Since f~'G does not have an Ox-module
structure in general, one defines another functor f* and the sheaf f*G which is different

from f~1G.

We finish by two fundamental propositions.



