
Topic 3 – Derived functors and cohomology

Still the dualizing sheaf !�

X
= ExtrPN (OX ,!PN ) is not familiar enough. We already know

that the canonical sheaf !X is the dualizing sheaf when X = Pn is a projective space.
Hence, in the general case X ✓ PN , it is natural to compare the canonical sheaves
(!X ,!PN ) and the dualizing sheaf !X . We assume that X is Cohen-Macaulay and
equidimensional, since the natural maps ✓i become isomorphisms in this case. First, we
will see what happens locally.

Lemma 196. Let R be a local Cohen-Macaulay ring with canonical module !R. If A is

a local R-algebra which is finitely generated as an R-module (for instance, A = R/I),
and A is also Cohen-Macaulay, then A has a canonical module and

!A ' ExtrR(A,R)

where r = dimR� dimA.

In particular, we may expect that the canonical sheaf !X will be a strong candidate for
the dualizing sheaf !�

X
– if the local behavior of X is good enough. When X ✓ PN

is locally a complete intersection, then X is cut out by r = codim(X,PN ) = N � n
equations in the local ring at each point x 2 X ✓ PN , and such c generators form a
regular sequence.
Let us describe this phenomenon in a general algebraic setting. Let A be a ring, and
let f1, · · · , fr 2 A. The Koszul complex K•(f1, · · · , fr) is a complex such that K1 is a
free A-module of rank r with basis e1, · · · , er, and Kp := ^pK1. The boundary map
d : Kp ! Kp�1 is defined as

d(ei1 ^ · · · ^ eip) :=
X

(�1)j�1fij (ei1 ^ · · · ^ êij ^ · · · ^ eip).

One can show that d2 = 0, and hence K•(f1, · · · , fr) is a homological complex of A-
modules. If M is an A-module, we write K•(f1, · · · , fr;M) := K•(f1, · · · , fr)⌦A M .

Lemma 197. If f1, · · · , fr form a regular sequence for M , then

hi(K•(f1, · · · , fr;M)) =

⇢
M/(f1, · · · , fr)M i = 0;
0 i > 0,

in particular, the Koszul complex gives a free resolution of M/(f1, · · · , fr)M .

This leads to the following description of the dualizing sheaf for a local complete inter-
section X ✓ PN .

Theorem 198. Let X be a closed subscheme of PN
which is a local complete intersection

of codimension r. Let I be the ideal sheaf of X. Then !�

X
' !PN ⌦ ^r(I /I 2)_, in

particular, !�

X
is an invertible sheaf on X.

Proof. We need to compute !�

X
= ExtrPN (OX ,!PN ). Let U be an a�ne open subset which

is small enough, so that I can be generated by r elements f1, · · · , fr 2 A = �(U,OPN ).
Let x 2 X \ U be a point corresponding to an ideal m ✓ A. Being a local complete
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intersection, f1, · · · , fr form a regular sequence for Am. In particular, the localized
Koszul complex

K•(f1, · · · , fr;Am)

gives a free resolution of Am/(f1, · · · , fr)Am over Am. Hence, replacing U by a smaller
a�ne open neighborhood if necessary, we may assume that K•(f1, · · · , fr) gives a free
resolution of A/(f1, · · · , fr)A over U = SpecA. Sheafifying it gives a free resolution
K•(f1, · · · , fr;OU ) of OX over U . We may compute the sheaf Ext by using this Koszul
resolution; we have

ExtrPN (OX ,!PN )|U = hr(Hom(K•(f1, · · · , fr;OU ),!PN |U ))
' !PN |U/(f1, · · · , fr)!PN |U
= (!PN ⌦OX)|U .

Note that this isomorphism depends on the choice of a regular sequence f1, · · · , fr gen-
erating I . If gi :=

P
r

j=1
cijfj , 1  i  r, they give another basis, and the exterior

powers of the matrix (cij) will give an isomorphism of Koszul complexes. In particular,
we have a factor det(cij) on Kr = ^rK1, and hence, our isomorphism of Extr changes by
det(cij).
Hence, we have to twist it to make it intrinsic, in other words, we have to multiply
det(cij)�1 on the transition functions. Note that the sheaf I /I 2 is a locally free sheaf
of rank r, free over U , with basis f1, · · · , fr. Hence, its determinant ^r(I /I 2) is free
of rank 1, with basis f1 ^ · · · ^ fr. Note that if we substitute the basis by gi as above,
the element g1 ^ · · · ^ gr = det(cij)(f1 ^ · · · ^ fr). Therefore, the sheaf ^r(I /I 2)_ has
the desired transition functions, and hence we have an intrinsic isomorphism (over U)

ExtrPN (OX ,!PN ) ' !PN ⌦OX ⌦ ^r(I /I 2)_

as desired. This isomorphism is independent of the choice of basis. In particular, we
may cover PN by such open subsets, and hence the local isomorphisms will glue together
and form the required isomorphism.

Thanks to the adjunction formula, we immediately have the following description of the
dualizing sheaf when X is smooth.

Corollary 199. If X is a nonsingular projective variety over an algebraically closed

field k, then the dualizing sheaf !�

X
is isomorphic to the canonical sheaf !X .

The following theorem will be very useful in advance.

Theorem 200 (Kodaira, Akizuki-Nakano, Deligne-Illusie). Let X be a smooth projective

variety of dimension n over a field k of characteristic 0. Let L be an ample line bundle

on X. Then,

Hq(X,⌦p

X/k
⌦ L) = 0 for all p+ q > n.

Equivalently, by Serre duality, we have

Hq(X,⌦p

X/k
⌦ L�1) = 0 for all p+ q < n.

81



Topic 3 – Derived functors and cohomology

Corollary 201 (Kodaira vanishing theorem). Let X be a smooth projective variety of

dimension n over a field k of characteristic 0. Let L be an ample line bundle on X.

Then

H i(X,!X ⌦ L) = 0 for all i > 0,

and equivalently,

H i(X,L�1) = 0 for all i < n.
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Topic 4 – Algebraic curves

An algebraic curve is an algebraic variety of dimension 1. We will mainly study irre-
ducible algebraic curves over an algebraically field k of characteristic 0. Up to birational
equivalence, the irreducible curves are equivalent to the algebraic function fields over k
of transcendence degree 1. Indeed, a smooth projective curve can be completely deter-
mined by its function field. When k = C, projective curves over k coincide with compact
Riemann surfaces – connected, complex analytic manifold complex dimension 1. Indeed,
there are equivalent “trichotomy”:

(i) the category of smooth irreducible projective curves (algebraic mani-
folds);

(ii) the category of compact Riemann surfaces (analytic manifolds);

(iii) the opposite category of function fields of transcendence degree 1.

Topologically, compact Riemann surfaces are completely determined by their genera.
Since the topological genus g coincides with the geometric genus pg, one may expect that
the canonical sheaf and their global sections will play significant roles in the curve theory.
Being smooth, the genus also coincide with the arithmetic genus pa. In particular, the
Hilbert function/polynomial will also behave nicely.
There are several ways to give “di↵erent algebraic (or, complex) structure” on a curve of
given genus. Nevertheless, it is quite natural to classify algebraic curves up to its genus,
namely, into 3 subcases g = 0 (rational), g = 1 (elliptic), and g � 2 (of general type).
We will not focus on the moduli problem, however, focus on their canonical sheaves.
The goal of this topic is to understand:

1. basic theorems including Riemann-Roch and Riemann-Hurwitz theo-
rem;

2. embeddings to a projective space, mostly canonical embeddings;

3. canonical models and syzygies of canonical curves.

In particular, we will address Green’s canonical syzygy conjecture, and review some
related problems and results as the goal.
During the whole lectures on algebraic curves, a curve C denotes an irreducible, smooth,
projective variety of dimension 1 over an algebraically closed field k of characteristic 0,
unless there is a specific comment. A point of C means a closed point of C.
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Topic 4 – Algebraic curves

1 Riemann–Roch theorem

Proposition 202. Let C be a curve. We have pa(C) = pg(C) = h1(C,OC).

Proof. The arithmetic genus is given by pa(C) = 1 � �(C,OC) = 1 � h0(C,OC) +
h1(C,OC) = h1(C,OC) since C is connected. The geometric genus pg(C) = h0(C,!C) =
h1(C,OC) by Serre duality.

We will call this number simply the genus of C, and denote it by g, or g(C).

Remark 203. The genus g of a curve C is always nonnegative. Conversely, given any
nonnegative integer g, there is a curve C of genus g. For instance, let X = P1 ⇥ P1 =
V (xy � zw) ✓ P3 be the quadric hypersurface. Note that !X = OX(�2) = OP1(�2) ⇥
OP1(�2). Consider a divisor of type (g + 1, 2) on X. Such a divisor is very ample, and
hence, there is a smooth irreducible divisor of type (g+1, 2) thanks to Bertini’s theorem.
Such a divisor, considered as a variety of dimension 1, is a curve of genus g.

We want to take the sheaf cohomology theory as a key tool of approaches. Our objects
of interests are vector bundles, which are locally free sheaves of finite rank, and in
particular, line bundles to keep a track together with Serre duality and Kodaira vanishing
theorem. Since the set of the equivalence classes of Weil divisors Cl(C) identify with the
set of the isomorphism classes of line bundles Pic(C), via a correspondence D 7! OC(D),
the statement should be described in terms of divisors – a formal sum of points in
integer coe�cients. Hence, we may consider the cohomology of a divisor, and write as
H i(C,D) = H i(C,OC(D)). If there is no confusion, we may skip C and denote just by
H i(D).
Recall that a divisor D can be expressed as a finite sum D =

P
niPi for some Pi 2 C,

ni 2 Z. Its degree is deg(D) =
P

ni. A divisor is e↵ective if all the coe�cients ni � 0
are nonnegative. The set of the e↵ective divisors linearly equivalent to a given divisor
D is called the complete linear system and denoted by |D|. From the construction, the
elements of |D| are in 1� 1 correspondence with the projectivized space

((H0(C,OC(D)) \ {0})/k⇥,

so |D| carries the structure of the set of closed points of a projective space. Indeed,
the global sections H0(C,OC(D)) define a map to the projective space |D|, which is
well-defined outside the base points

Bs(D) :=
\

D02|D|

Supp(D0).

The following statement is quite elementary, but useful.

Lemma 204. Let D be a divisor on a curve C. If degD < 0, then h0(D) = 0. If

degD = 0 and h0(D) 6= 0, then OC(D) ' OC , and hence h0(D) = 1.

Proof. If h0(D) 6= 0, then D is linearly equivalent to an e↵ective divisor D0 2 |D|. Since
degD = degD0, it must be nonnegative. When degD = 0, such D0 is an e↵ective divisor
of degree 0. There is only one such divisor, namely D0 = 0.
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Since the dimension of a curve C is 1, the sheaf of di↵erentials ⌦C/k coincides with the
canonical sheaf !C . We call any divisor in the corresponding linear equivalence class a
canonical divisor, and denote by KC . Note that H i(C,D) ' H1�i(C,KC �D)_ thanks
to Serre duality.

Theorem 205 (Riemann-Roch). Let D be a divisor on a curve C of genus g. Then,

�(C,D) = h0(C,D)� h1(C,D) = degD + 1� g.

Proof. First of all, consider the case D = 0. The formula says:

h0(C,OC)� h1(C,OC) = 1� g.

This is straightforward: h0(C,OC) = 1 since it is connected, and h1(C,OC) = h0(C,!C) =
g by Serre duality.
Now, let D be any divisor, and let P be any point of C. We claim that the formula
is true for D if and only if it is true for D + P . If the claim holds, then the whole
statement becomes true since any divisor can be reached from 0 in a finite number of
steps by adding/subtracting a point each step.
Consider P as a closed subscheme of C. The structure sheaf OP is a skyscraper sheaf
k(P ), assigning k at the point P . Also note that the ideal sheaf IP = OC(�P ). We
have an exact sequence

0 ! OC(�P ) ! OC ! k(P ) ! 0.

Twist by a line bundle OC(D + P ), which preserves the exactness, we have:

0 ! OC(D) ! OC(D + P ) ! k(P ) ! 0.

The Euler characteristic is additive on the short exact sequence, in other words,

�(C,OC(D + P )) = �(C,OC(D)) + 1.

On the other hand, deg(D + P ) = deg(D) + 1, so the formula is true for D if and only
if it is true for D + P .

Remark 206. Let C be a curve in PN of genus g and degree d, and letD be a hyperplane
section. In particular, OC(D) = OC(1). The Hilbert polynomial gives us that

�(C,OC(nD)) = nd+ 1� pa = nd+ 1� g,

which is a special case of the Riemann-Roch formula.

Remark 207. This is a special case of the following Riemann-Roch formula for vector
bundles:

Let C be a curve of genus g, and let E be a locally free sheaf on C of rank r.
Then,

�(C, E) = r(1� g) + deg E
where deg E := deg(det E).
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Example 208. Let C be a curve of genus g, and let KC be its canonical divisor. Since
h0(C,KC) = g and h1(C,KC) = h0(C,OC) = 1, we have

�(C,KC) = g � 1 = degKC + 1� g,

hence degKC = 2g � 2.

Definition 209. A divisor D on a curve C is special if h1(C,D) 6= 0. Otherwise, it is
nonspecial. If D is a divisor of degree > 2g � 2, then KC � D has negative degree, so
h0(KC �D) = h1(D) = 0. Thus any divisor of degree at least 2g � 1 is nonspecial.

Remark 210. Let D be a divisor on a curve C. Then it is ample if and only if
degD > 0. If it is ample, then there is a positive integer n such that nD is very ample,
hence, the linear system |nD| provides an embedding of C into a projective space. In
particular, h0(C, nD) � 2. Conversely, suppose that degD is positive. Choose and fix
any embedding C ✓ PN . Any coherent sheaf F on C is a quotient of a direct sum of line
bundles

L
OC(�q) for some q 2 Z. Twist by OC(nD) for a given integer n, we have a

surjection by reading o↵ the cohomology long exact sequence

M
H1(C,OC(�q)⌦OC(nD)) ! H1(C,F ⌦OC(nD)) ! 0.

Since any line bundle of degree > 2g�2 is nonspecial, the term on left vanishes when n �
0. Hence, H1(C,F ⌦OC(nD)) = 0 for su�ciently large n. Thanks to the cohomological
criterion of the ampleness, this concludes that D is indeed ample.

Definition 211. A curve C is called rational if g(C) = 0. This is compatible with the
definition by a birational equivalence:

Let P,Q be any two points of C. Then the degree of the divisor P � Q is
0 > 2g � 1 = �1, so P �Q is nonspecial. Hence h0(C,P �Q) = 1, in other
words, P �Q ⇠ 0. In particular, there is a rational function f in the function
field K(C) such that (f) = P � Q. The inclusion of fields k(f) ,! K(C)
gives a finite morphism ' : C ! P1, where '⇤(0P1) = P and '⇤(1P1) = Q.
In particular, the degree of ' must be 1, hence, ' is birational.

A curve C is called elliptic if g(C) = 1. In the case, the canonical divisor KC has degree
2g � 2 = 0, with a nontrivial global section h0(KC) = 1. In particular, KC = 0.
Otherwise, a curve C is called of general type. The canonical divisor KC has positive
degree in this case.

Exercise 212. Let C be an elliptic curve, and let P0 be any point. Fix P0. Show that
the map P 7! OC(P � P0) gives a bijection from C to Pic0(C) ✓ Pic(C), the subgroup
of isomorphism classes of degree 0 line bundles. This gives a group structure on the set
of points on C.

Exercise 213. Let D be an e↵ective divisor on C. Show that dim |D|  degD, and the
equality holds if and only if either D = 0 or g = 0.
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Exercise 214. Let C be a curve of genus g. Show that there is a finite morphism
f : C ! P1 of degree  g + 1.

Exercise 215. A curve C is called hyperelliptic if g � 2 and there exists a finite mor-
phism f : C ! P1 of degree 2.

(1) Let C be a curve of genus 2. Show that the canonical divisor KC is base-point-free,
degKC = 2, and h0(C,KC) = 2. Conclude that C is hyperelliptic.

(2) Show that there is a hyperelliptic curve of genus g for every g � 2.
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