
Topic 4 – Algebraic curves

2 Riemann–Hurwitz theorem

Suppose that we have two curves X,Y and a nonconstant morphism f : X ! Y . Note
that f is dominant, hence, it is equivalent to give a field extension of function fields of
X and Y , and hence, a finite extension. In particular, the morphism f : X ! Y must
be a finite morphism of degree [K(X) : K(Y )]. It is natural to compare the canonical
divisors of X and Y via f , in other words, to measure the di↵erence between two divisors
KX and f⇤KY . Thanks to the cotangent sequence, we have a right exact sequence

f⇤⌦Y ! ⌦X ! ⌦X/Y ! 0.

Hence, it sounds natural to describe the di↵erence by the relative sheaf of di↵erentials
⌦X/Y .
On the other hand, there is a geometric way to understand the morphism f , by observing
the fibers. When Q 2 Y is a point, then the fiber f�1(Q) ✓ X is a set of points of length
d = deg f . In particular, this gives a family of (e↵ective) divisors on X parametrized
by points of Y . By the upper-semicontunity, a “general” fiber is composed of d distinct
points, and a “special” fiber has a multiplicity > 1 at some points.
This leads to the notion of ramification points as follows.

Definition 216. Let P 2 X be a point. The ramification index eP is defined as:

Let Q = f(P ), and let t 2 OY,Q be the local parameter at Q. Via the natural
map f# : OY,Q ! OX,P , define eP := vP (f#(t)) where vP is the valuation
of the discrete valuation ring OX,P .

If eP = 1, we say f is unramified at P . If eP > 1, we say f is ramified at P , and that
Q is a branch point of f . A morphism of varieties (needs not to be curves) ' is called
étale if it is locally finite and unramified.

Following the above notion, the pullback of divisors f⇤ : Div Y ! DivX is given by

f⇤(Q) =
X

P2f�1(Q)

eP · P.

Since OX(f⇤D) ' f⇤OY (D) for any divisor D on Y , it is better to take the homomor-
phism of the Picard groups. Note that any morphism f : X ! Y of curves is separable,
that is, K(X) is a separable extension of K(Y ), since the base field k has characteristic
0. In particular,

Proposition 217. Let f : X ! Y be a finite morphism of curves. Then the relative

cotangent sequence 0 ! f⇤⌦Y ! ⌦X ! ⌦X/Y ! 0 is exact also on the left.

Proof. It is su�cient to show that the first map is injective. Since both are locally free
of rank 1, it will be su�cient to show that the map is nonzero at the generic point.
Since K(X) is separable over K(Y ), the sheaf ⌦X/Y is zero at the generic point of X.
In particular, f⇤⌦Y ! ⌦X is surjective at the generic point, which cannot be zero.
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Since f⇤⌦Y and ⌦X are line bundles onX, it sounds like that the sheaf ⌦X/Y corresponds
to the di↵erence of two divisorsKX�f⇤KY . However, the sheaf ⌦X/Y is not an invertible
sheaf, and it is zero at the generic point of X. Indeed, it is a torsion sheaf, and hence,
supported on a proper closed subset of X.
Let us study a little more on the sheaf ⌦X/Y of relative di↵erentials. Let P 2 X be a
point, and let Q = f(P ) be its image. Let t be a local parameter of Y at Q, and let u
be a local parameter of X at P . Then, dt is a generator of a free module ⌦Y,Q, and du
is a generator of a free module ⌦X,P . In particular, there is a unique element g 2 OX,P

such that f⇤dt = g · du, and we denote it by dt

du
.

Proposition 218. Let f : X ! Y be a finite morphism of curves. Then:

(1) ⌦X/Y is a torsion sheaf on X, with support equal to the set of ramification points of

f . In particular, f is ramified at finitely many points;

(2) for each P 2 X, the stalk (⌦X/Y )P is a principal OX,P -module of finite length equal

to vP
�
dt

du

�
;

(3) length(⌦X/Y )P = eP � 1.

Proof. Note that ⌦X/Y = ⌦X/f⇤⌦Y is a quotient of two invertible sheaves. The stalk

(⌦X/Y )P can be written as ⌦X,P /f⇤⌦Y,Q, which is isomorphic to OX,P /(
dt

du
) as an OX,P -

module. This implies the second statement. Furthermore, (⌦X/Y )P = 0 if and only if
f⇤dt generates ⌦X,P , in other words, t is also a local parameter for OX,P . Hence, f is
unramified at P which implies the first statement.
Finally, if f is ramified at P of index eP , then we may write t = aueP for some unit
a 2 OX,P . Therefore,

dt = eP · aueP�1du+ ueP da = ueP�1(eP · adu+ uda).

Since we are working over a field of characteristic 0, we have eP · adu 6= 0 and thus
vP (dt/du) = e� 1.

Definition 219. Let f : X ! Y be a finite morphism of curves. We define the ramifi-

cation divisor R of f to be

R =
X

P2X

length(⌦X/Y )P · P.

Immediately, we have the following proposition which describes the di↵erence of two
canonical sheaves:

Proposition 220 (Ramification formula). Let f : X ! Y be a finite morphism of

curves. Then KX ⇠ f⇤KY +R.

Proof. The structure sheaf OR of R is isomorphic to the sheaf ⌦X/Y . Hence, we have a
short exact sequence

0 ! f⇤⌦Y ! ⌦X ! OR ! 0.
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Twisting by ⌦_

X
, we have

0 ! f⇤⌦Y ⌦ ⌦_

X ! OX ! OR ! 0,

which has to coincide with the exact sequence

0 ! IR = OX(�R) ! OX ! OR ! 0.

Corollary 221 (Riemann-Hurwitz formula). Let f : X ! Y be a finite morphism of

curves of degree n. Then

2g(X)� 2 = n · (2g(Y )� 2) + degR = n · (2g(Y )� 2) +
X

P2X

(eP � 1).

Example 222. By the Riemann-Hurwitz formula, we can show easily that P1 does not
admit an unramified finite cover by another curve X. Let f : X ! P1 be a finite étale
cover of P1 of degree n. Then,

2g(X)� 2 = n(2g(P1)� 2) + degR = �2n+ degR = �2n  �2

since n � 1. The only possibility is that g(X) = 0 and n = 1, that is, X = P1 and f is
the identity map.

Example 223. Suppose that there is a dominant, finite morphism f : X ! Y of curves.
Then g(X) � g(Y ) since deg f � 1 and degR � 0. The equality occurs only if n = 1, or
g(X) = g(Y ) = 0, or g(Y ) = 1 and f is unramified.
As a consequence, we have the following “Lüroth’s theorem”:

Let X be a unirational curve, that is, there is a finite, dominant rational map
f : P1 99K X. Then X is rational.

If there is such a rational map, it extends to a finite, dominant morphism from P1 to X.
Hence, g(X) = 0 and we conclude that X ' P1.

Exercise 224 (Hyperelliptic revisited). Let C be a curve of genus 2 over the field k = C.

(1) Show that the canonical divisor KC induces a finite morphism f : C ! P1 of degree
2 ramified at 6 points.

(2) Let ↵1, · · · ,↵6 2 k be six distinct elements, and let K be the field extension of k(x)
by the equation y2 �

Q
6

i=1
(x � ↵i) = 0. Let f : C ! P1 be the corresponding

morphism of curves. Show that g(C) = 2, and the map f is the same as the
morphism induced by the canonical divisor KC . In particular, f is ramified exactly
over the six points (x = ↵i) of P1.
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(3) (Möbius transformation) Let P1, P2, P3 be three distinct points of P1, and letQ1, Q2, Q3

be another three distinct points of P1. Show that there is an automorphism of P1

sending Pi to Qi. In particular, the above six points ↵1, · · · ,↵6 can be normalized
by 0, 1,1,�1,�2,�3 where �i’s are three distinct complex numbers di↵erent from
0, 1.

(4) Show that the permutation group S6 of six letters acts on the set of triples

{(�1,�2,�3) | �i 2 C \ {0, 1}}.

(5) Conclude that there is an 1-1 correspondence between the set of isomorphism classes
of curves of genus 2 and the set of orbits described in above.

(6) Similarly, describe the parameter space of hyperelliptic curve of genus g as the set
of (2g � 1)-tuples of distinct elements in C \ {0, 1} modulo a finite group action.

Exercise 225 (Automorphisms of a curve). Let C be a curve over k = C of genus g.

(1) Let g = 0. Show that the automorphism group Aut(P1) is the group of Möbius
transformations ⇢

f(z) =
az + b

cz + d
, ad� bc 6= 0

�
.

(2) Let g = 1. In the case, C is an elliptic curve, and hence it has a group structure.
Show that the translation by a point of C is an automorphism. In particular, C is
a subgroup of Aut(C).

(3) Let g � 2. In the case, it is known that G = Aut(C) is finite. So let n = |G| be
its order. Since G acts on the function field K(C) of C, we have a field extension
L := K(C)G ,! K(C). This gives a finite morphism of curves f : C ! C 0 of degree
n.

If P 2 C is a ramification point of index eP = r, show that f�1(f(P )) consists of
n/r points, each having ramification index r.

(4) Note that f is branched over finite number of points on C 0. Let P1, · · · , Ps be a
maximal set of ramification points of C lying over distinct points of Y . In particular,
s is the number of branch points of C 0. Let ePi = ri. Show that

1

n
(2g � 2) = 2g(C 0)� 2 +

sX

i=1

✓
1� 1

ri

◆
.

(5) Since g � 2, the value appearing in the above equality must be > 0. Under the
assumption g(C 0) � 0, s � 0, ri � 2 for 1  i  s which makes the above value to
be strictly greater than 0, show that the minimum value of the expression

2g(C 0)� 2 +
sX

i=1

✓
1� 1

ri

◆
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is 1

42
(occurs when g(C 0) = 0, s = 3, r1 = 2, r2 = 3, r3 = 7). Conclude that n 

84(g � 1).

3 Embeddings in projective spaces and the canonical

embedding

From this section, we are interested in the extrinsic behavior of a projective curve C ✓
PN , in other words, C as a closed subvariety of PN . Since any divisor D on a curve C
of positive degree is ample, there is always a very ample line bundle on C, of su�ciently
high degree. Among them, the most interesting case is the canonical embedding, which
is the case when the canonical divisor KC is very ample. In fact, it can be described in
geometric way as follows:

Theorem 226 (M. Noether). Let C be a curve of genus g � 3. Then KC is very ample

if and only if C is not hyperelliptic.

In this section, we will focus on basic and general properties of curves, together with
embeddings to projective spaces.
First of all, we study basic properties of line bundles (= divisors) on a curve C. Since
an embedding to a projective space is determined by a linear system determined by a
very ample divisor, it is important to analyze the positivity of line bundles. Note that a
divisor D on C is ample if and only if degD > 0, and D is very ample if it is isomorphic
to O(1) for some embedding into a projective space. Also note that D is base-point-
free if the set

T
D0⇠D

SuppD0 is empty, equivalently, the line bundle OC(D) is globally
generated.

Proposition 227. Let D be a divisor on a curve C. Then:

(1) D is base-point-free if and only if h0(C,D�P ) = h0(C,D)�1 for every point P 2 C;

(2) D is very ample if and only if h0(C,D�P �Q) = h0(C,D)� 2 for every two points

P,Q 2 C, including the case P = Q.

Proof. Consider the short exact sequence

0 ! OC(D � P ) ! OC(D) ! k(P ) ! 0.

Taking the global section, we have a left exact sequence 0 ! H0(C,OC(D � P )) !
H0(C,OC(D)) ! k of k-vector spaces. In particular, h0(C,D) is either h0(C,D�P )+1
or h0(C,D�P ). Consider the addition map 'P defined as D0 7! D0+P which induces an
injection H0(C,D � P ) ! H0(C,D), which will denote also by 'P . Hence, h0(C,D) =
h0(C,D�P ) if and only if the addition map 'P : H0(C,D�P ) ! H0(C,D) is surjective.
In particular, any e↵ective divisor D0 linearly equivalent to D can be expressed as a sum
of two e↵ective divisor D0 = E + P for some E 2 Div(C). In particular, P 2 SuppD0

for any D0 ⇠ D, that is, P is a base point of D.
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For the very ampleness, we may assume that D is base-point-free. Clearly, a very ample
divisor is base-point-free. On the other hand, if we have h0(C,D�P�Q) = h0(C,D)�2,
then h0(C,D � P ) = h0(C,D)� 1 since h0(C,D � P ), obtained by subtracting a single
point, is either h0(C,D) or h0(C,D) � 1, in particular, can di↵er at most 1. Hence, D
is base-point-free.
Note that D is very ample if and only if the complete linear system |D| separates the
points and tangent vectors. Separating points means that for any distinct two points
P,Q 2 C, the point Q is not a base point of |D�P |, which we already proved. Separating
tangent vectors means that for any point P 2 C, there is an e↵ective divisor D0 ⇠ D
such that P occurs with multiplicity 1 in D0. Since P is a smooth point of C, this is
equivalent to say that dimTP (D0) < dimTP (C) = 1, that is, dimTP (D0) = dimD0 = 0.
But this says that P is not a base point of |D � P |, in particular,

h0(D � 2P ) = h0(D)� 2.

Corollary 228. Let D be a divisor on a curve C of genus g. Then:

(1) if degD � 2g, then D is base-point-free;

(2) if degD � 2g + 1, then D is very ample.

Proof. When D is nonspecial, the degree of D completely determines the value h0(C,D)
by Riemann-Roch formula. Since any divisor of degree at least 2g � 1 is nonspecial by
Kodaira vanishing, it is easy to verify the above statements.

Example 229. When g = 0, i.e., C ' P1, then a divisor D is ample , very ample
, degD > 0. On the other hand, when g > 0, the ample divisor OC(P ), P 2 C is never
very ample. Indeed, it is not even base-point-free:

h0(C,OC(P )) � h0(C,OC) + 1 = 2 implies that there is an e↵ective divisor
(of degree 1) which is linearly equivalent to P but di↵erent from P . In
particular, it must be another point Q 2 C. Hence, there is a degree 1
morphism f : C ! P1 sending P to 0 2 P1 and Q to 1 2 P1, which is
possible only when C ' P1. This contradicts to the assumption g > 0.

Note that P is the only base point in this case.

Example 230. When D is a very ample divisor of degree d on a curve C, which induces
an embedding of C into a projective space PN . The image of C, as a projective variety,
has degree d.

Example 231. Let C be an elliptic curve. Since g = 1, any divisor D of degree at
least 3 = 2g + 1 is very ample. However, there is no very ample divisor D of degree
2. Indeed, such D must be base-point-free, hence, |D| gives a morphism to P1 since
dim |D| = h0(C,D) � 1 = 1, which cannot be an embedding of C. When g � 2, the
smallest degree among very ample divisors on C does not coincide with the bound 2g+1
we found, and provides an (intrinsic) geometric information of C.
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We give a short remark on linear projections. Note that a linear projection at a linear
subspace ⇤ ✓ PN of dimension r is a rational map ⇡⇤ : PN 99K PN�r�1, corresponding
to the quotient V ! V/W where P(V ) = PN and P(W ) = ⇤. When we have a (quasi-)
projective variety X ✓ PN which does not intersect with ⇤, then it gives a morphism
⇡⇤ : X ! PN�r�1, which is also called a (outer) projection. Since any linear projection
can be decomposed into a sequence of linear projections at a point, we only consider the
case ⇤ = {P} the projection center is a single point of PN .
A secant line L of X is a line in PN which equals to the line Q1Q2 for some distinct
two points Q1, Q2 2 X. A tangent line L to X at a point Q 2 X is a line such that the
(embedded) tangent space TQ(L) at Q is a subspace of TQ(X) as subspaces of TQ(PN ).
When X is a curve, and Q is a smooth point of X, then there is a unique tangent line
to X at the point Q.

Proposition 232. Let X ✓ PN
be a projective variety, and let P 2 PN \X be a point

not on X. Let ⇡P : X ! PN�1
be the linear projection at the point P . Then ⇡P is an

embedding if and only if

(i) no secant line of X passes through P ;

(ii) no tangent line of X (at any point Q 2 X) passes through P .

Proof. If P lies on a secant line Q1Q2 ofX, then ⇡P fails to separate ⇡P (Q1) and ⇡P (Q2).
Similarly, if P lies on a tangent line L of X at Q 2 X, then ⇡P fails to separate the
tangent vectors of ⇡P (X) at ⇡P (Q).

Definition 233. Let X ✓ PN be a projective variety of dimension n. We define the
tangent variety Tan(X) as

Tan(X) :=
[

L, where L is a tangent line of X at some point Q 2 X ,

and the secant variety Sec(X) as

Sec(X) :=
[

L, where L is a secant line of X .

Note that both Tan(X) and Sec(X) are projective varieties in PN , and Tan(X) ✓ Sec(X).
When X is smooth, dimTan(X)  2n and dimSec(X)  2n+ 1.

Corollary 234. Let X be a smooth projective variety of dimension n. Then X can be

embedded into P2n+1
.

Proof. First, take any embedding X ,! PN . If N > 2n + 1, then there is a point
P 2 PN \Sec(X). The linear projection ⇡P at a point P gives an embedding X ,! PN�1.
By repeating the process, we have the desired result.

Remark 235. The smallest embedding dimension also provides a geometric information
of X. Of course, 2n + 1 is not always the smallest possible, for instance, a plane curve
has embedding dimension 2 < 3 = 2n+ 1.
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Remark 236. Suppose that the projection center P 2 PN is a point on X. In this
case, we have a rational map ⇡P : X 99K PN�1, well-defined on X \ {P}. This can
be completed by taking its projective closure (or, consider the strict transform of X
inside the blowing up of PN at P and extend it into a morphism). Indeed, we have a
morphism X ! PN�1, again denoted by ⇡P , which is called an inner projection of X at
P . This morphism is determined by the linear subsystem whose support contains P . In
particular, when X = C is a smooth curve embedded by the complete linear system |D|
for some divisor D on C, then the inner projection of C at P is the morphism induced
by the complete linear system |D � P | (note that D � P is base-point-free since D is
very ample).
In the case, one can show that the induced morphism ⇡P : C ! PN�1 is very ample if
and only if there is no trisecant lines of C containing P , where a trisecant line of C is a
line L with length(L \ C) � 3.
For example, a twisted cubic C in P3 has no trisecant lines, and hence, any inner projec-
tion at a point P 2 C gives an embedding C ! P2 as a degree 2 curve, in other words,
a plane conic.
Another example: let C be a complete intersection of two quadrics in P3. One can show
that C has no trisecant lines. Hence, an inner projection at a point P 2 C gives an
embedding C ! P2 as a degree 3 curve, in other words, a plane cubic. One can show
that the (arithmetic) genus of C is 1, thus C is an elliptic curve.

Exercise 237. Let C be a plane curve of degree 4. Show that any e↵ective divisor
linearly equivalent to the canonical divisor is the hyperplane divisor C \L for some line
L ✓ P2. Show that there is no linear system of divisors of degree 2 of dimension 1, in
other words, h0(C,D) < 2 for any (e↵ective) divisor D of degree 2. Conclude that C
cannot be hyperelliptic.

Exercise 238 (Curves of degree 4). Let C ⇢ PN be a curve of degree 4 of genus g.
Show that either

1. g = 3, in which case X is a plane quartic; or

2. g = 1, in which case X is a complete intersection of two quadric surfaces in P3; or

3. g = 0, in which case X is either a rational normal quartic in P4, or X is a rational
quartic in P3.

Now we want to focus on the canonical divisor KC of degree 2g � 2. If g = 0, then
KC = O(�2) does not have any nonzero global section, and hence the linear system |KC |
is empty. If g = 1, then KC = OC , and hence the linear system |KC | gives a constant
map from C to a point. Hence, considering the linear system |KC | is meaningful when
g � 2, that is, C is a curve of general type.

Lemma 239. Let C be a curve of genus g � 1. Then the canonical divisor KC is

base-point-free.
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Proof. Note that h0(C,OC(P )) = h0(C,OC) = 1 for any P 2 C unless C is rational.
Also note that a point P is a base point of KC if and only if h0(C,KC) = h0(KC � P ).
Since h0(C,KC � P ) = h1(P ) by Serre duality, we have

h0(C,KC � P ) = h0(C,P )� (1� g + degP ) = g � 1

by Riemann-Roch, where the value equals to h0(C,KC)�1 = g�1. Therefore, no point
P can be a base point of KC .
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