
It is better to introduce a classical notation for our convenience.

Notation 240. We say that a curve C has a gr
d
if there is a morphism f : C ! Pr of

degree d, equivalently, there is a linear system of dimension r and degree d.

In particular, C is hyperelliptic if and only if C has a g1
2
.

Now we are ready to prove M. Noether’s theorem:

Theorem 241 (M. Noether). Let C be a curve of genus g � 2. Then KC is very ample

if and only if C is not hyperelliptic.

Proof. Suppose first that KC is very ample, that is, for any e↵ective divisor D of degree
2, we have

h0(C,KC �D) = h0(C,KC)� 2 = g � 2.

By Serre duality, h0(C,D) = h1(C,KC �D) = 1 for any e↵ective divisor D of degree 2.
In particular, the linear system |D| cannot give a morphism to P1, and hence, C cannot
be hyperelliptic.
Conversely, if KC is not very ample, then there are two points P,Q 2 C (possibly
coincide) such that h0(C,KC � P � Q) 6= h0(C,KC) � 2. Since KC is base-point-free,
the only possibility is that h0(C,KC � P � Q) = h0(C,KC) � 1 = g � 1. In this case,
h0(C,P + Q) = h1(C,KC � P � Q) = 2, that is, the complete linear system |P + Q|
induces a morphism f : C ! P1 of degree 2.

Remark 242. Indeed, when C is not hyperelliptic, the natural map Symn(H0(KC)) !
H0(nKC) is surjective for every n. In other words, the image of C under the morphism
induced by |KC | is projectively normal.

Note that every curve of genus 2 is hyperelliptic, since the linear system |KC | is a g1
2
on

C. Hence, it is worthwhile to consider the curves of genus at least 3. In the case, |KC |
gives a morphism C ! Pg�1. When C is not hyperelliptic, this morphism is indeed an
embedding.

Definition 243. Let C be a non-hyperelliptic curve of genus g � 3. The embedding
C ,! Pg�1 determined by the canonical divisor KC is called the canonical embedding of
C (determined up to an automorphism of Pg�1, which is a linear change of coordinates).
Its image, a curve of degree 2g � 2, is called a canonical curve.

Example 244. Let C be a non-hyperelliptic curve of genus 3. Its canonical curve is a
quartic curve in P2. Conversely, any plane quartic curve C has !C ' OC(1), so it is a
canonical curve. In particular, there is a non-hyperelliptic curve of genus 3.

Example 245. Let C be a non-hyperelliptic curve of genus 4. Its canonical curve is a
sextic curve in P3. Let I be the ideal sheaf. We have the following short exact sequence

0 ! I (2) ! OP3(2) ! OC(2) ! 0.
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Since OC(2) has degree 12 = 2 · 6, it is nonspecial. In particular, h0(C,OC(2)) =
�(C,OC(2)) = 1� g + degOC(2) = 9. From the left exact sequence

0 ! H0(P3,I (2)) ! H0(P3,OP3(2)) ! H0(C,OC(2)),

we have
h0(P3,I (2)) � 1.

In particular, there is at least one quadric surface Q ⇢ P3 containing C. Since C is not
contained in a plane P2 (if then, its (arithmetic) genus must be of the form

�
d�1

2

�
for some

integer d), such a Q must be irreducible and reduced. If there are two di↵erent quadrics
Q,Q0 both contain C, then degC  degQ\Q0 = 4 contradicts to the assumption, hence
there is a unique quadric surface Q containing C. In particular, h0(P3,I (2)) = 1.
Consider the short exact sequence

0 ! I (3) ! OP3(3) ! OC(3) ! 0,

we have h0(P3,I (3)) � 5 by a similar argument. Since the image of the multiplication
map H0(P3,I (2))⌦H0(P3,OP3(1)) ! H0(P3,I (3)) has dimension at most 4, there is
a cubic surface F ⇢ P3, not containing Q, such that C ⇢ F . Since degQ \ F = 6, it
must coincide with C. Therefore, we conclude that a canonical curve of genus 4 is a
(smooth) complete intersection of quadric and cubic surfaces in P3.
Conversely, if we have a smooth complete intersection C of quadric and cubic surfaces
in P3, then the adjunction formula implies that !C ' OC(1), so C is a canonical curve
(of genus 4).

Before to proceed, let us have a short tour on the canonical divisor on a hyperelliptic
curve C of genus g � 2. Since KC is base-point-free, it still induces a morphism C !
Pg�1, however, it is not an embedding since KC is not very ample.

Proposition 246. Let C be a hyperelliptic curve of genus g � 2. Then C has a unique

g1
2
. If '0 : C ! P1

is the corresponding 2 � 1 morphism, then the canonical morphism

' : C ! Pg�1
factors through '0 followed by (g � 1)-uple embedding P1 ,! Pg�1

. In

particular, the image '(C) is a rational normal curve of degree g�1 and ' is a morphism

of degree 2 onto '(C). Furthermore, KC ⇠ (g � 1)g1
2
, in other words, every e↵ective

divisor in |KC | is a sum of (g � 1) divisors in the (unique) g1
2
.

Proof. Since C is hyperelliptic, it has a g1
2
. Choose and fix one. For any divisor P1+P2 2

g1
2
, we already seen that P1‘ is a base point of |KC � P2|. In particular, |KC | does not

separate P1 and P2, in other words, '(P1) = '(P2). Since g12 has infinitely many e↵ective
divisors in it (parametrized by P1), the morphism ' cannot be birational. Let the degree
of the surjection ' : C ! '(C) be µ � 2, and let d = deg'(C). Since degKC = 2g � 2,
we have dµ = 2g � 2, hence d  g � 1.

To resolve (potential) singular points of '(C), we take its normalization ]'(C) ! '(C) ✓
Pg�1. In particular, this normalization morphism comes from a linear system of degree

d  g � 1 and dimension g � 1 on ]'(C). The only possibility is d = g � 1 and the
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genus of ]'(C) is 0. Hence, it is isomorphic to P1 and the linear system must be the
unique complete linear system of degree g � 1, namely, |(g � 1)Q|. In particular, the
morphism coincides with the (g � 1)-uple embedding of P1, and hence, the image '(C)
is a (nonsingular) rational normal curve of degree g � 1.
Note that µ = 2, and ' : C ! '(C) collapses the pairs of the g1

2
as above. Thus, it must

be equal to the composition of the map '0 : C ! P1 determined by our g1
2
with the

(g�1)-uple embedding of P1. The g1
2
is determined by ', and so is uniquely determined.

Finally, any e↵ective divisor linearly equivalent toKC is the pull-back of some hyperplane
section of '(C), hence, it is a sum of g � 1 divisors in the unique g1

2
. Conversely, any

sum of g�1 points on '(C) is a hyperplane section, so we may identify the linear system
|KC | with the set of sums of g � 1 divisors in g1

2
.

To provide a finer classification of curves, we need other invariants than the genus.
Among them, the most important invariant is the gonality, which is geometrically de-
fined:

Definition 247. Let C be a curve of genus g. The gonality of C is the minimal possible
degree of a finite morphism C ! P1. C has the gonality k = gon(C) implies that C has
g1
k
but no g1

`
with ` < k.

The only 1-gonal curve is P1, so it is not interesting. When g(C) � 2, the smallest
possible gonality it can have is 2, and hence gon(C) = 2 if and only if C is hyperelliptic.
There is another important invariant called the Cli↵ord index. For a nonspecial divisor
D on C, we can compute the dimension of the vector space H0(C,D), or of the complete
linear system |D| by the Riemann-Roch formula. However, if D is special, h0(C,D) does
not depend only on its degree. There are some useful theorems on h0(C,D), including
the following Cli↵ord’s theorem.

Theorem 248 (Cli↵ord). Let D be an e↵ective special divisor on the curve C, that is,

h1(C,D) > 1. Then

h0(C,D)� 1 = dim |D|  1

2
degD.

Furthermore, the equality holds if and only if either D = 0, or D = K, or C is hyperel-

liptic and D is a multiple of the unique g1
2
.

The above theorem leads to the following definition of the Cli↵ord index:

Definition 249. The Cli↵ord index of a curve C is the minimum value of (degD �
2 dim |D|), taken over all the e↵ective special divisors D on C di↵erent from 0 or KC .

Cli↵ord’s theorem implies that the Cli↵ord index of C is nonnegative, and it is 0 if and
only if C has a g1

2
, i.e., C is hyperelliptic. Note that both the gonality and the Cli↵ord

index measures how the given curve C is apart from hyperelliptic curves.

Remark 250. If we have a g1
k
for some 2  k on a curve C of genus g > 2, then the

divisor D appearing in a linear series in g1
k
contributes to the computation of the Cli↵ord

index, in particular, Cli↵(C)  k � 2. In general, if a curve C is k-gonal, then

k � 3  Cli↵(C)  k � 2
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holds, and the case Cli↵(C) = k � 3 happens rarely.

The following theorem, which is a special case of the theorem called “geometric Riemann-
Roch formula”, is also helpful in many places:

Theorem 251 (Geometric Riemann-Roch formula). Let D = P1+· · ·+Pd be an e↵ective

divisor, which consists of d distinct points on a nonhyperelliptic curve C of genus g � 2.
Let ' : C ,! Pg�1

be the canonical embedding. Then

h0(C,D) = d� dim'(D),

where '(D) denotes the linear span of d points '(P1), · · · ,'(Pd) 2 Pg�1
.

Proof. Only for a sketch of the proof. The Riemann-Roch formula and the Serre duality
imply: h0(C,D) = 1� g+ d+h1(C,D) = 1� g+ d+h0(C,KC �D). Since |KC | defines
an embedding of C into Pg�1, the linear system |KC�D| admits the following geometric
interpretation:

|KC � D| is consisted of hyperplane sections of C (= e↵ective divisors in
|KC |) which contain D = '(P1) + '(P2) + · · ·+ '(Pd).

Note that a hyperplane H ⇢ Pg�1 contains '(P1), · · · ,'(Pd) if and only if H contains
their linear span '(D). The dimension of the family of such hyperplanes of Pg�1 is
(g � 1) � dim'(D) � 1 = g � 2 � dim'(D), which gives the value dim |KC � D|. In
particular, h0(C,KC �D) = g � 1� dim'(D).

Exercise 252. Let C ✓ Pg�1 be a nonhyperelliptic canonical curve of genus g � 3.
Show that the number of independent quadratic generators for the ideal of C is

�
g�2

2

�
.

4 Syzygies and Koszul cohomology

In the last section, we studied basic properties of a curve as a closed subvariety of a
projective space. In particular, we learned two important theorems:

(1) a divisor D is very ample if degD � 2g + 1;

(2) the canonical divisor KC is very ample if and only if C is not hyperel-
liptic.

We may ask for the next case as generalizations. For instance, if D is a divisor of degree
� 2g + 2, then what can we say about D additionally? What can we say about the
canonical divisor if C gets much further from being hyperelliptic?
The answer for the first question is that the image of C is defined by quadratic equa-
tions. Suppose we have a projective variety X ⇢ PN . Composing with a further d-uple
embedding for some d � 0, one immediately has that the image of X tends to be cut
out only by quadratic equations, since Veronese varieties do. Hence, we may expect that
if the divisor D gets more positive, then the image of C by a map defined by |D| tends
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to be cut out by quadratic equations. Green’s (2g+1+ p)-theorem generalizes this idea
in a beautiful statement.
The second question is much tricky. First, we have to find out a good notion which
measures a di↵erence between C and hyperelliptic curves. The notion of gonality is
very intuitive and geometric, and works very nice in many places. However, in some
cases, there are some weird curves which makes the problem hard to characterize and
generalize. One good answer is the following Enriques-Petri theorem:

Theorem 253 (Enriques-Petri). Let C ✓ Pg�1
be a smooth, non-hyperelliptic, canonical

curve of genus g � 3. Then C is projectively normal. Furthermore, C is defined by

quadratic equations unless C is trigonal or C is isomorphic to a plane quintic curve.

A further generalization of this theorem is known as Green’s canonical syzygy conjecture.
To understand those theorems, we need more information on the ideal of C. An approach
to the (extrinsic) geometry of a projective variety X ✓ PN is observing the defining ideal
IX of X. Following Hilbert’s philosophy, it can be achieved by taking the generators of
IX (which are homogeneous polynomials), and then observing their relations and higher
relations. The celebrating syzygy theorem says that such a process terminates in a finite
number of steps; we will have a free resolution which has more fluent information than
the original setup.
Let S = k[x0, · · · , xN ] be the homogeneous coordinate ring of X. Any finitely generated
graded S-module M (for instance, M = SX = S/IX , the homogeneous coordinate ring
of X) has a free S-resolution of finite length. Some resolutions might have di↵erent
lengths, or might contain some reducible factors which can be cancelled. Hence, it is
natural to consider a minimal resolution among those free resolutions.

Definition 254. A complex of graded S-modules · · · ! Fi

di! Fi�1 ! · · · is called
minimal if for each i the image of di is contained in mFi�1, where m = (x0, · · · , xN ) is
the irrelevant maximal ideal. If we consider di as a matrix with entries in homogeneous
polynomials, then a minimal resolution cannot have a nonzero constant as an entry of
di.

Proposition 255. Let F• : · · · ! Fi

di! Fi�1 ! · · · be a graded free resolution. Then

F• is minimal if and only if for each i, the map di takes a basis of Fi to a minimal set

of generators of the image of di.

Proof. The complex is minimal if and only if the induced map

di+1 : Fi+1/mFi+1 ! Fi/mFi

is zero. In the case, the induced map Fi/mFi ! (im di)/m(im di) becomes an isomor-
phism. By Nakayama’s lemma, the image of a basis of Fi form a minimal set of generators
of (im di).

One can prove the following uniqueness theorem of a minimal free resolution.
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Theorem 256. Let M be a finitely generated graded S-module. If F• and G• are minimal

graded free resolutions of M , then there is a graded isomorphism of complexes F• ! G•

inducing the identity map on M .

In particular, the rank of the terms in a minimal free resolution gives an invariant of M .

Definition 257. Let M be a finitely generated graded S-module, and let F• be its
minimal free resolution. The graded Betti number �i,j(M) is defined as the number of
summands S(�j) appearing in the i-th term Fi.

Proposition 258. Let M,F• be as above. Any minimal set of homogeneous generators of

Fi contains precisely dimk Tor
S

i (M,k)j of degree j, that is, �i,j(M) = dimk Tor
S

i (M,k)j.

Proof. The k = S/m-vector space TorSi (M,k)j is the degree j component of the graded
vector space which is the i-th homology of the complex F• ⌦S k. Since F• is minimal,
all the maps in F• ⌦S k are zero. In particular, TorSi (M,k) = Fi ⌦S k. By Nakayama’s
lemma, dimTorSi (M,k)j coincides with the number of degree j generators which Fi

needed.

Definition 259. The table consisted of graded Betti numbers

(�i,i+j(M)) =

0

BBBBBB@

...
...

...
�0,0(M) �1,1(M) �2,2(M) · · ·
�0,1(M) �1,2(M) �2,3(M) · · ·
�0,2(M) �1,3(M) �2,4(M) · · ·

...
...

...

1

CCCCCCA

is called the Betti table of M .

Example 260. Let C ⇢ P3 be the twisted cubic {[s3 : s2t : st2 : t3] | [s : t] 2 P1}.
The defining ideal of C is generated by three quadric equations x1x3 � x2

2
,�x0x3 +

x1x2, x0x2 � x2
1
. One may compute the minimal free resolution of the homogeneous

coordinate ring SC :

0 ! F2 = S(�3)2
d2�! F1 = S(�2)3

d1�! F0 = S ! SC ! 0

where the boundary maps are given by

d1 =
�
x1x3 � x2

2
�x0x3 + x1x2 x0x2 � x2

1

�

and

d2 =

0

@
x0 x1
x1 x2
x2 x3

1

A .

Hence, �0,0(SC) = 1,�1,2(SC) = 3, and �2,3(SC) = 2 and all the others are zero. We
have the following Betti table

1 � �
� 3 2
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Still the computation of graded Betti numbers looks weird, since we need very explicit
information on the graded module M . Even in the case M = SX , we have no computa-
tional idea unless we know the generators of the defining ideal. One geometric idea is to
associate the Koszul cohomology groups Kp,q(X,L) associated to a very ample line bun-
dle L on X which corresponds to the embedding X ,! PN . The idea was suggested by
M. Green in 1984. In so many cases, classical results concerning the generators/relations
of the ideal IX can be rephrased in terms of Koszul cohomology groups.
Since S is the symmetric algebra of the vector space V with basis x0, · · · , xN , we have
the following sequence of vector spaces:

0 ! (^N+1V ) ! · · · ! ^2V ! ^1V = V ! k ! 0,

where the (p+ 1)-th map is defined to be a natural extension of

xi0 ^ · · · ^ xip 7!
X

j

(�1)j+1xi0 ^ · · · ^ cxij ^ · · · ^ xip .

When we have a graded S-module M =
L

q
Mq, we may plug in the grading structure

as follows. The map
� : ^pV ⌦Mq ! ^p�1V ⌦Mq+1

defined as

�(xi0 ^ · · · ^ xip�1 ⌦m) :=
X

j

(�1)j+1xi0 ^ · · · ^ cxij ^ · · · ^ xip�1 ⌦ xijm

induces a complex

· · · ! ^p+1V ⌦Mq�1 ! ^pV ⌦Mq ! ^p�1V ⌦Mq+1

of total degree p+ q, which is called the Koszul complex.
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