
Topic 4 – Algebraic curves

Example 261. The most simplest case is when M = S = k[x0, · · · , xN ], and collecting
all the degrees at once, we have a complex of graded S-modules

0 ! FN+1 = ^N+1V ⌦ S(�N � 1) ! · · · ! F1 = ^1V ⌦ S(�1) ! F0 = S ! 0

which is exact at every Fi except for F0. Indeed, it is a minimal graded S-free resolution
of the quotient module coker[F1 ! F0] = S/(x0, · · · , xN ) ' k.

Definition 262. The Koszul cohomology group Kp,q(M,V ) is the cohomology of the
above complex at ^pV ⌦Mq.

Proposition 263. Let M be a finitely generated graded S-module, and let V = S1.

Then dimKp,q(M,V ) = �p,p+q(M).

Proof. Thanks to the symmetry property of Tor functors, the Tor group TorSp (M,k) can
be computed from a free resolution of k. Since the Koszul complex

0 ! ^N+1V ⌦ S(�N � 1) ! · · · ! ^2V ⌦ S(�2) ! ^1V ⌦ S(�1) ! S ! k ! 0

which provides a (minimal) free resolution of k. Hence, the p-th Tor group TorSp (M,k)

can be computed from the (co)homology at the p-th step. In particular, dimk Tor
S

p (M,k)p,q =
dimKp,q(M,V ) since the Koszul complex for M is obtained by taking a tensor product
(�⌦S M) to the Koszul complex for k.

The Koszul cohomology groups can be easily defined in the geometric context as follows.

Definition 264. Let X be a projective variety, and let L be a globally generated line
bundle on X. Let V = H0(X,L).
TheKoszul cohomology group Kp,q(X,L) is the Koszul cohomology of the graded Sym(V )-
module

R(L) =
M

q

H0(X,Lq).

Precisely, it is the cohomology at the middle of the complex

^p+1V ⌦H0(X,Lq�1) ! ^pV ⌦H0(X,Lq) ! ^p�1V ⌦H0(X,Lq+1).

Let F be a coherent sheaf onX. We defineR(F , L) :=
L

q
H0(X,F⌦Lq), and the Koszul

cohomology group Kp,q(X,F , L) be the cohomology of R(F , L) at ^pV ⌦H0(X,F⌦Lq).

When L = OX(1) induces an embedding X ,! PN so that X is projectively normal, then
two rings S(X) and R(L) =

L
q
H0(X,Lq) coincides; in particular, Kp,q(S(X), H0(L)) =

Kp,q(X,L) as desired. In general, there is an inclusion of rings S(X) ,! R(L), whose
di↵erence is measured by the Hartshorne-Rao module

L
q
H1(X,IX(q)). In particular,

X is q-normal if and only if the natural map Symq H0(L) ! H0(Lq) is surjective.
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Lemma 265. Let X be a projective variety, and let L be a very ample line bundle on

X. Consider the embedding X ,! PN
given by the complete linear series |L|. Then X

is projective normal if and only if

K0,q(X,L) = 0

for every q � 1.

Proof. The projective normality is equivalent to the surjectivity of the multiplication
map H0(L) ⌦H0(Lq�1) ! H0(Lq) for every q � 1. By definition, the cokernel of this
multiplication map coincides with the Koszul cohomology group K0,q(X,L).

There are also technical merits to compute the syzygies by Koszul cohomology groups.
We will observe just a few basic tools.

Definition 266. Let C be a curve, and L be a globally generated line bundle. The
kernel ML of the evaluation map ev : H0(C,L) ⌦ OC ! L is called the kernel bundle.
Note that the short exact sequence

0 ! ML ! H0(C,L)⌦OC

ev! L ! 0

is the pullback of the Euler sequence

0 ! ⌦1

PN (1) ! H0(C,L)⌦OPN ! OPN (1) ! 0

on the projective space PN = PH0(C,L)_ via the morphism defined by L.

Example 267 (Castelnuovo base-point-free pencil trick). Let C be a curve, and let L be
a globally generated line bundle such that the linear series PV ✓ |L| is a base-point-free
g1
d
on C, where d = degL. Then L is globally generated by its two independent sections

in V ✓ H0(C,L). In particular, we have the following ladder of short exact sequences

0 // L_
//� _

✏✏

V ⌦OC
//

� _

✏✏

L // 0

0 //ML
// H0(C,L)⌦OC

// L // 0.

The above diagram is very useful when we check the normality of C embedded by L,
together with a certain twist by a power of L.

Proposition 268. Let C,L be as above, and let V = H0(C,L). We have

Kp,q(C,L) ' coker[^p+1V ⌦H0(Lq�1) ! H0(^pML ⌦ Lq)]

' ker[H1(^p+1ML ⌦ Lq�1) ! ^p+1V ⌦H1(Lq�1)].

Similarly,

Kp,q(C,F , L) ' coker[^p+1V ⌦H0(F ⌦ Lq�1) ! H0(^pML ⌦ F ⌦ Lq)]

' ker[H1(^p+1ML ⌦ F ⌦ Lq�1) ! ^p+1V ⌦H1(F ⌦ Lq�1)].
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Proof. Consider the sequence of vector bundles

· · · ! ^p+1V ⌦ Lq�1 ! ^pV ⌦ Lq ! ^p�1V ⌦ Lq+1 ! · · · .

Note that the Koszul cohomology group Kp,q(C,L) is the cohomology (at the middle)
of the sequence obtained by taking global sections of the above sequence.
On the other hand, by definition, we have a short exact sequence

0 ! ML ! V ⌦OC ! L ! 0.

Taking the p-th exterior powers, we have

0 ! ^pML ! ^pV ⌦OC ! ^p�1ML ⌦ L ! 0.

Twisting by Lq, we have a short exact sequence

0 ! ^pML ⌦ Lq ! ^pV ⌦ Lq ! ^p�1ML ⌦ Lq+1 ! 0.

Hence, the first sequence factors through those vector bundles appearing in the left and
right:

0

((

0

^pML ⌦ Lq

''

66

^p+1V ⌦ Lq�1
//

66

^pV ⌦ Lq
//

((

^p�1V ⌦ Lq+1

^p�1ML ⌦ Lq+1

55

))0

66

0

In particular, the kernel and the image of the Koszul di↵erential

� : ^pV ⌦H0(Lq) ! ^p�1V ⌦H0(Lq+1)

are given by

ker � ' H0(^pML ⌦ Lq),

im � ' H0(^p�1ML ⌦ Lq+1)

which gives the formula.

Proposition 269 (Green duality for curves). Let C,L be as above, and let r = dim |L| =
h0(L)� 1. Then Kp,q(C,L) ' Kr�p�1,2�q(C,KC , L)_.
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Proof. Note that

Kp,q(C,L) ' coker
⇥
^p+1V ⌦H0(Lq�1) ! H0(^pML ⌦ Lq)

⇤

which is dual to

ker
⇥
H1(KC ⌦ ^pM_

L ⌦ L�q) ! ^p+1V _ ⌦H1(KC ⌦ L1�q)
⇤

by the above formula and Serre duality. Since the rank of ML is r and detML ' L�1,
we have the following perfect pairing

^pML ⌦ ^r�pML ! ^rML ' L�1.

In particular, ^r�pML ' ^pM_

L
⌦L�1. Also note that ^p+1V _ ' ^(r+1)�(p+1)V by the

same reason. Hence,

Kp,q(C,L)
_ ' ker

⇥
H1(^r�pML ⌦KC ⌦ L1�q) ! ^r�pV ⌦H1(KC ⌦ L1�q)

⇤

which is an expression of the Koszul cohomology group Kr�p�1,2�q(C,KC , L).

Corollary 270. Let C be a nonhyperelliptic curve. Then Kp,q(C,KC) ' Kg�p�2,3�q(C,KC)_.
In particular, the Betti table of a canonical curve is symmetric.

Proof. Since KC is very ample, and hence Kp,q(C,KC) ' Kg�p�2,2�q(C,KC ,KC)_ =
Kg�p�2,3�1(C,KC)_.

Example 271. Let C be a nonhyperelliptic curve of genus g = 3. Then |KC | embeds
C as a degree 2g � 2 = 4 curve in Pg�1 = P2. Hence, the Betti table of the canonical
curve will be

1 �
� �
� �
� 1

Let C be a nonhyperelliptic curve of genus g = 4. Then |KC | embeds C as a degree
6 curve in P3, and the image is projectively normal. We already observed that C is
a complete intersection of these quadric and cubic hypersurfaces, and hence, the Betti
table of the canonical curve will be

1 � �
� 1 �
� 1 �
� � 1

When C is a nonhyperelliptic curve of genus g = 5, there are two possibilities for the
Betti table of the canonical curve: either

1 � � �
� 3 � �
� � 3 �
� � � 1
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, or
1 � � �
� 3 2 �
� 2 3 �
� � � 1

which depends on the existence of g1
3
on C.

Definition 272. A very ample line bundle L on a smooth projective variety X satisfies
the property (Np) if |L| embedsX into a projective space projective normally, and certain
Koszul cohomology groups vanish:

Ki,j(X,L) = 0 for all i  p, j � 2.

Example 273. In the above cases of canonical curves, all of them satisfies the property
(N0). When C is the canonical curve of a nonhyperelliptic curve of genus 5 which is not
trigonal, it also satisfies the property (N1). In other words,

(N0) the embedded variety is projectively normal;
(N1) the variety is projectively normal and defined by quadric equations;
(N2) the property (N1) and the syzygies are generated by linear relations;
(N3) (N2) and the further relations among the syzygies are generated by linear relations;
...

...
(Np) (N1) and the minimal free resolution is linear between the 1st and the p-th term.

5 Curves of high degree

Let C be a curve of genus g. We learned that any line bundle of degree at least 2g+1 is
very ample. What happens if we take a line bundle of degree higher than 2g + 1? The
image of such a curve embedded by the complete linear series is called a curve of high

degree.
First of all, to make sure that the syzygy of a curve of high degree can be read o↵ from
the Koszul cohomology groups Kp,q(C,L) where L = OC(1), we need the projective
normality.

Proposition 274. Let C be a curve of high degree in Pr
, where r = deg(C)� g. Then

it is projectively normal, in other words, the natural inclusion

SC ,!
M

n

H0(C,OC(n))

is an isomorphism.

The statement claims that C ⇢ Pr is projectively normal. We already saw that the
projective normality is equivalent to the vanishing of Koszul cohomology groups

K0,q(C,L) = 0
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for every q � 1. When q = 1, it is trivial, which is obtained from taking the global
sections of the evaluation map H0(L) ⌦ OC ! L. For q � 2, the following theorem by
Green will imply the above proposition. We need a small lemma first:

Lemma 275. Let C be a curve of genus g. Then,

(1) a general line bundle L on C of degree � g � 1 is nonspecial, that is, h1(L) = 0;

(2) a general line bundle L on C of degree � g + 1 is base-point-free.

Proof. Let L be a line bundle on C of degree g � 1. By Riemann-Roch, the assumption
h1(L) = 0 is equivalent to h0(L) = 0. Suppose not, namely, H0(L) 6= 0. Then there is
an e↵ective divisor contained in |L|, and hence, L is in the image of the following map

Cg�1 ! Picg�1(C)

(P1, · · · , Pg�1) 7! OC(P1 + · · ·+ Pg�1).

Since the image can have at most dimension (g � 1), it cannot fill the g-dimensional
space Picg�1(C). We conclude that h0(L) = h1(L) = 0 for a general L 2 Picg�1(C).
When L is a general line bundle of degree d � g � 1, choose (d � g � 1) general points
P1, · · · , Pd�g�1 2 C. Then the line bundle L(�P1 · · ·� Pd�g�1) is a general line bundle
of degree g � 1, which is nonspecial; in particular, L itself must be nonspecial.
Now let L be a line bundle of degree d � g+1. Consider the incidence set of nonspecial
line bundles of degree d with base points:

U = {(L,P ) | h0(L) = h0(L� P ) and h1(L) = 0}

pr1

ss

pr2

++Picd(C) C

It is enough to show that dim U < g = dim Picd(C). Let ⇡ : U ! Picd�1(C) be the
morphism sending (L,P ) to L(�P ). Note that a fiber ⇡�1(L0) of ⇡ over a line bundle
L0 2 Picd�1(C) is contained in the set

{(L0(P ), P ) | P 2 C} ' C

which is parametrized by C. In particular, dim ⇡�1(L0) is at most 1 for any L0 2
Picd�1(C). Also note that if (L,P ) 2 U , then h0(L(�P )) = h0(L) = 1 � g + d and
h1(L(�P )) = 1 by Riemann-Roch. In particular, L(�P ) is a special line bundle of
degree d� 1. On the other hand, via the Serre dual map

Picd�1(C) ! Pic2g�2�(d�1)(C)

L0 7! !C ⌦ (L0)_,

the locus of special line bundles {L0 2 Picd�1(C) | h1(L0) > 0} is isomorphic to the
locus {L00 2 Pic2g�2�(d�1)(C) | h0(L00) > 0}, which is the image of C2g�2�(d�1) !
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Pic2g�2�(d�1) as above. Hence, the locus has dimension at most 2g�2� (d�1)  g�2.
We conclude that

dim U  (g � 2) + dim ⇡�1(L0)  g � 1

which is strictly smaller than dim Picd(C).

Theorem 276 (Green). Let C be a smooth curve of genus g, and let L be a very ample

line bundle of degree d. Then:

(1) Kp,q(C,L) = 0 for q � 3 if H1(L) = 0.

(2) Kp,2(C,L) = 0 if d � 2g+1+p, that is, a high degree curve of degree d � 2g+1+p,
p � 0 satisfies the property (Np).

Proof. By Green’s duality, we have Kp,q(C,L)_ ' Kr�1�p,2�q(C,KC , L) where r =
h0(C,L)� 1. If h1(L) = 0, we have h0(KC � L) = 0 by Serre duality, and in particular,
h0(KC + (2 � q)L) = 0 for any q � 3. The term ^r�1�p V ⌦H0(KC + (2 � q)L) = 0,
and hence the cohomology group Kr�1�p,2�q(C,KC , L) also vanishes.
Now consider the case q = 2 and d = degL � 2g + 1 + p with p � 0. Since H1(L) = 0 ,
we have Kp,2(C,L) ' H1(C,^p+1ML⌦L). By Serre duality, the vanishing of Kp,2(C,L)
is equivalent to show that

H0(C,^p+1M_

L ⌦ !C ⌦ L_) = 0.

Let P 2 C be a (general) point. Since L�P is still base-point-free, one has the following
ladder with exact rows and columns.

0

✏✏

0

✏✏

0

✏✏

0 //ML(�P )
//

✏✏

H0(L(�P ))⌦OC
//

✏✏

L(�P ) //

✏✏

0

0 //ML
//

✏✏

H0(L)⌦OC
//

✏✏

L //

✏✏

0

0 // IP = OC(�P ) //

✏✏

OC
//

✏✏

OP
//

✏✏

0

0 0 0

This process can be repeated: choose general points P1, · · · , Pr�1 2 C, where r =
h0(L)� 1 = d� g. By induction on r, one has the following short exact sequence

0 ! ML(�P1�···�Pr�1)
! ML !

r�1M

i=1

OC(�Pi) ! 0.
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Note that the line bundle L(�P1�· · ·�Pr�1) is a base-point-free pencil, since h0(L(�P1�
· · ·�Pr�1)) = h0(L)� (r� 1) = 2. Therefore, Castelnuovo pencil trick gives an isomor-
phism ML(�P1�···�Pr�1)

' L_(P1+ · · ·+Pr�1). Taking the dual of the above short exact
sequence, we have

0 !
r�1M

i=1

OC(Pi) ! M_

L ! L(�P1 � · · ·� Pr�1) ! 0.

Taking its (p+ 1)-th exterior power, we have

0 ! ^p+1

 
r�1M

i=1

OC(Pi)

!
! ^p+1M_

L ! ^p

 
r�1M

i=1

OC(Pi)

!
⌦ L(�P1 � · · ·� Pr�1) ! 0.

Twisting by !C ⌦ L_, we see that the terms on the left is a direct sum of line bundles
of degree (p+1)+ (2g� 2)� d = 2g+ p� 1� d < 0, hence have no global sections. The
terms on the right is a direct sum of line bundles of the form !C(�Pi1 � · · ·� Pir�p�1),
subtracting (r � p� 1) points among general points P1, · · · , Pr�1 2 C. It has no global
section since the rank of the zeroth cohomology group drops by 1 when we subtract a
general point, and r� p� 1 = d� g� p� 1 � g in our case. In particular, Kp,2(C,L) '
H0(C,^p+1M_

L
⌦ !C ⌦ L_)_ = 0.

Hence, the Betti table of a curve of high degree C ⇢ Pr of degree d = 2g+1+ p has the
following shape:

0 1 2 · · · p� 1 p p+ 1 · · · r � 1

0 0,0 = 1 � � · · · � � � · · · �
1 � 1,1 2,1 · · · p�1,1 p,1 p+1,1 · · · r�1,1

2 � � � · · · � � p+1,2 · · · r�1,2

where p,q = dimKp,q(C,OC(1)) = �p,p+q(C). The horizontal strip (1,1 2,1 · · · r,1)
is called the quadratic strand, since it denotes the quadric generators and their linear
relations. The next strip (1,2 2,2 · · · r,2) is called the cubic strand. It is com-
posed of the cubic generators and their linear relations, and quadratic relations among
the terms lie on the quadratic strand. Green’s (2g + p + 1)-theorem says that the first
p-terms in the quadratic strand of a curve of degree � 2g + p+ 1 becomes zero.

111


