Topic 4 – Algebraic curves

Example 261. The most simplest case is when $M = S = k[x_0, \dots, x_N]$, and collecting all the degrees at once, we have a complex of graded S-modules

$$0 \to F_{N+1} = \wedge^{N+1} V \otimes S(-N-1) \to \dots \to F_1 = \wedge^1 V \otimes S(-1) \to F_0 = S \to 0$$

which is exact at every F_i except for F_0 . Indeed, it is a minimal graded S-free resolution of the quotient module coker $[F_1 \to F_0] = S/(x_0, \dots, x_N) \simeq k$.

Definition 262. The Koszul cohomology group $K_{p,q}(M, V)$ is the cohomology of the above complex at $\wedge^p V \otimes M_q$.

Proposition 263. Let M be a finitely generated graded S-module, and let $V = S_1$. Then dim $K_{p,q}(M, V) = \beta_{p,p+q}(M)$.

Proof. Thanks to the symmetry property of Tor functors, the Tor group $\operatorname{Tor}_p^S(M, k)$ can be computed from a free resolution of k. Since the Koszul complex

$$0 \to \wedge^{N+1} V \otimes S(-N-1) \to \dots \to \wedge^2 V \otimes S(-2) \to \wedge^1 V \otimes S(-1) \to S \to k \to 0$$

which provides a (minimal) free resolution of k. Hence, the p-th Tor group $\operatorname{Tor}_p^S(M,k)$ can be computed from the (co)homology at the p-th step. In particular, $\dim_k \operatorname{Tor}_p^S(M,k)_{p,q} = \dim K_{p,q}(M,V)$ since the Koszul complex for M is obtained by taking a tensor product $(-\otimes_S M)$ to the Koszul complex for k.

The Koszul cohomology groups can be easily defined in the geometric context as follows.

Definition 264. Let X be a projective variety, and let L be a globally generated line bundle on X. Let $V = H^0(X, L)$.

The Koszul cohomology group $K_{p,q}(X, L)$ is the Koszul cohomology of the graded Sym(V)-module

$$R(L) = \bigoplus_{q} H^0(X, L^q).$$

Precisely, it is the cohomology at the middle of the complex

$$\wedge^{p+1}V \otimes H^0(X, L^{q-1}) \to \wedge^p V \otimes H^0(X, L^q) \to \wedge^{p-1}V \otimes H^0(X, L^{q+1}).$$

Let \mathcal{F} be a coherent sheaf on X. We define $R(\mathcal{F}, L) := \bigoplus_q H^0(X, \mathcal{F} \otimes L^q)$, and the Koszul cohomology group $K_{p,q}(X, \mathcal{F}, L)$ be the cohomology of $R(\mathcal{F}, L)$ at $\wedge^p V \otimes H^0(X, \mathcal{F} \otimes L^q)$.

When $L = \mathcal{O}_X(1)$ induces an embedding $X \hookrightarrow \mathbb{P}^N$ so that X is projectively normal, then two rings S(X) and $R(L) = \bigoplus_q H^0(X, L^q)$ coincides; in particular, $K_{p,q}(S(X), H^0(L)) = K_{p,q}(X, L)$ as desired. In general, there is an inclusion of rings $S(X) \hookrightarrow R(L)$, whose difference is measured by the Hartshorne-Rao module $\bigoplus_q H^1(X, \mathscr{I}_X(q))$. In particular, X is q-normal if and only if the natural map $\operatorname{Sym}^q H^0(L) \to H^0(L^q)$ is surjective. **Lemma 265.** Let X be a projective variety, and let L be a very ample line bundle on X. Consider the embedding $X \hookrightarrow \mathbb{P}^N$ given by the complete linear series |L|. Then X is projective normal if and only if

$$K_{0,q}(X,L) = 0$$

for every $q \geq 1$.

Proof. The projective normality is equivalent to the surjectivity of the multiplication map $H^0(L) \otimes H^0(L^{q-1}) \to H^0(L^q)$ for every $q \ge 1$. By definition, the cokernel of this multiplication map coincides with the Koszul cohomology group $K_{0,q}(X, L)$.

There are also technical merits to compute the syzygies by Koszul cohomology groups. We will observe just a few basic tools.

Definition 266. Let C be a curve, and L be a globally generated line bundle. The kernel \mathcal{M}_L of the evaluation map $ev : H^0(C, L) \otimes \mathcal{O}_C \to L$ is called the *kernel bundle*. Note that the short exact sequence

$$0 \to \mathcal{M}_L \to H^0(C, L) \otimes \mathcal{O}_C \stackrel{ev}{\to} L \to 0$$

is the pullback of the Euler sequence

$$0 \to \Omega^1_{\mathbb{P}^N}(1) \to H^0(C,L) \otimes \mathcal{O}_{\mathbb{P}^N} \to \mathcal{O}_{\mathbb{P}^N}(1) \to 0$$

on the projective space $\mathbb{P}^N = \mathbb{P}H^0(C, L)^{\vee}$ via the morphism defined by L.

Example 267 (Castelnuovo base-point-free pencil trick). Let C be a curve, and let L be a globally generated line bundle such that the linear series $\mathbb{P}V \subseteq |L|$ is a base-point-free \mathfrak{g}_d^1 on C, where $d = \deg L$. Then L is globally generated by its two independent sections in $V \subseteq H^0(C, L)$. In particular, we have the following ladder of short exact sequences

The above diagram is very useful when we check the normality of C embedded by L, together with a certain twist by a power of L.

Proposition 268. Let C, L be as above, and let $V = H^0(C, L)$. We have

$$K_{p,q}(C,L) \simeq \operatorname{coker}[\wedge^{p+1}V \otimes H^0(L^{q-1}) \to H^0(\wedge^p \mathcal{M}_L \otimes L^q)]$$

$$\simeq \operatorname{ker}[H^1(\wedge^{p+1} \mathcal{M}_L \otimes L^{q-1}) \to \wedge^{p+1}V \otimes H^1(L^{q-1})].$$

Similarly,

$$K_{p,q}(C,\mathcal{F},L) \simeq \operatorname{coker}[\wedge^{p+1}V \otimes H^0(\mathcal{F} \otimes L^{q-1}) \to H^0(\wedge^p \mathcal{M}_L \otimes \mathcal{F} \otimes L^q)]$$

$$\simeq \operatorname{ker}[H^1(\wedge^{p+1} \mathcal{M}_L \otimes \mathcal{F} \otimes L^{q-1}) \to \wedge^{p+1}V \otimes H^1(\mathcal{F} \otimes L^{q-1})].$$

Topic 4 – Algebraic curves

Proof. Consider the sequence of vector bundles

$$\cdots \to \wedge^{p+1} V \otimes L^{q-1} \to \wedge^p V \otimes L^q \to \wedge^{p-1} V \otimes L^{q+1} \to \cdots$$

Note that the Koszul cohomology group $K_{p,q}(C, L)$ is the cohomology (at the middle) of the sequence obtained by taking global sections of the above sequence. On the other hand, by definition, we have a short exact sequence

$$0 \to \mathcal{M}_L \to V \otimes \mathcal{O}_C \to L \to 0.$$

Taking the p-th exterior powers, we have

$$0 \to \wedge^p \mathcal{M}_L \to \wedge^p V \otimes \mathcal{O}_C \to \wedge^{p-1} \mathcal{M}_L \otimes L \to 0$$

Twisting by L^q , we have a short exact sequence

$$0 \to \wedge^p \mathcal{M}_L \otimes L^q \to \wedge^p V \otimes L^q \to \wedge^{p-1} \mathcal{M}_L \otimes L^{q+1} \to 0.$$

Hence, the first sequence factors through those vector bundles appearing in the left and right:

In particular, the kernel and the image of the Koszul differential

$$\delta: \wedge^p V \otimes H^0(L^q) \to \wedge^{p-1} V \otimes H^0(L^{q+1})$$

are given by

$$\ker \delta \simeq H^0(\wedge^p \mathcal{M}_L \otimes L^q), \operatorname{im} \delta \simeq H^0(\wedge^{p-1} \mathcal{M}_L \otimes L^{q+1})$$

which gives the formula.

Proposition 269 (Green duality for curves). Let C, L be as above, and let $r = \dim |L| = h^0(L) - 1$. Then $K_{p,q}(C,L) \simeq K_{r-p-1,2-q}(C,K_C,L)^{\vee}$.

Proof. Note that

$$K_{p,q}(C,L) \simeq \operatorname{coker}\left[\wedge^{p+1}V \otimes H^0(L^{q-1}) \to H^0(\wedge^p \mathcal{M}_L \otimes L^q)\right]$$

which is dual to

$$\ker \left[H^1(K_C \otimes \wedge^p \mathcal{M}_L^{\vee} \otimes L^{-q}) \to \wedge^{p+1} V^{\vee} \otimes H^1(K_C \otimes L^{1-q}) \right]$$

by the above formula and Serre duality. Since the rank of \mathcal{M}_L is r and det $\mathcal{M}_L \simeq L^{-1}$, we have the following perfect pairing

$$\wedge^{p}\mathcal{M}_{L}\otimes\wedge^{r-p}\mathcal{M}_{L}\to\wedge^{r}\mathcal{M}_{L}\simeq L^{-1}.$$

In particular, $\wedge^{r-p}\mathcal{M}_L \simeq \wedge^p \mathcal{M}_L^{\vee} \otimes L^{-1}$. Also note that $\wedge^{p+1}V^{\vee} \simeq \wedge^{(r+1)-(p+1)}V$ by the same reason. Hence,

$$K_{p,q}(C,L)^{\vee} \simeq \ker \left[H^1(\wedge^{r-p}\mathcal{M}_L \otimes K_C \otimes L^{1-q}) \to \wedge^{r-p}V \otimes H^1(K_C \otimes L^{1-q}) \right]$$

which is an expression of the Koszul cohomology group $K_{r-p-1,2-q}(C,K_C,L)$.

Corollary 270. Let C be a nonhyperelliptic curve. Then $K_{p,q}(C, K_C) \simeq K_{g-p-2,3-q}(C, K_C)^{\vee}$. In particular, the Betti table of a canonical curve is symmetric.

Proof. Since K_C is very ample, and hence $K_{p,q}(C, K_C) \simeq K_{g-p-2,2-q}(C, K_C, K_C)^{\vee} = K_{g-p-2,3-1}(C, K_C)^{\vee}$.

Example 271. Let *C* be a nonhyperelliptic curve of genus g = 3. Then $|K_C|$ embeds *C* as a degree 2g - 2 = 4 curve in $\mathbb{P}^{g-1} = \mathbb{P}^2$. Hence, the Betti table of the canonical curve will be

Let C be a nonhyperelliptic curve of genus g = 4. Then $|K_C|$ embeds C as a degree 6 curve in \mathbb{P}^3 , and the image is projectively normal. We already observed that C is a complete intersection of these quadric and cubic hypersurfaces, and hence, the Betti table of the canonical curve will be

When C is a nonhyperelliptic curve of genus g = 5, there are two possibilities for the Betti table of the canonical curve: either

$\begin{vmatrix} - & 3 & - \\ - & - & 3 \end{vmatrix}$	_
3	_
	_
	1

, or

which depends on the existence of \mathfrak{g}_3^1 on C.

Definition 272. A very ample line bundle L on a smooth projective variety X satisfies the *property* (N_p) if |L| embeds X into a projective space projective normally, and certain Koszul cohomology groups vanish:

$$K_{i,j}(X,L) = 0$$
 for all $i \leq p, j \geq 2$.

Example 273. In the above cases of canonical curves, all of them satisfies the property (N_0) . When C is the canonical curve of a nonhyperelliptic curve of genus 5 which is not trigonal, it also satisfies the property (N_1) . In other words,

(N_0)	the embedded variety is projectively normal;						
(N_1)	the variety is projectively normal and defined by quadric equations;						
(N_2)	the property (N_1) and the syzygies are generated by linear relations;						
(N_3)	(N_2) and the further relations among the syzygies are generated by linear relations;						
:							
(N_p)	(N_1) and the minimal free resolution is linear between the 1st and the <i>p</i> -th term.						

5 Curves of high degree

Let C be a curve of genus g. We learned that any line bundle of degree at least 2g + 1 is very ample. What happens if we take a line bundle of degree higher than 2g + 1? The image of such a curve embedded by the complete linear series is called a *curve of high degree*.

First of all, to make sure that the syzygy of a curve of high degree can be read off from the Koszul cohomology groups $K_{p,q}(C,L)$ where $L = \mathcal{O}_C(1)$, we need the projective normality.

Proposition 274. Let C be a curve of high degree in \mathbb{P}^r , where $r = \deg(C) - g$. Then it is projectively normal, in other words, the natural inclusion

$$S_C \hookrightarrow \bigoplus_n H^0(C, \mathcal{O}_C(n))$$

is an isomorphism.

The statement claims that $C \subset \mathbb{P}^r$ is projectively normal. We already saw that the projective normality is equivalent to the vanishing of Koszul cohomology groups

$$K_{0,q}(C,L) = 0$$

108

for every $q \ge 1$. When q = 1, it is trivial, which is obtained from taking the global sections of the evaluation map $H^0(L) \otimes \mathcal{O}_C \to L$. For $q \ge 2$, the following theorem by Green will imply the above proposition. We need a small lemma first:

Lemma 275. Let C be a curve of genus g. Then,

(1) a general line bundle L on C of degree $\geq g - 1$ is nonspecial, that is, $h^1(L) = 0$;

(2) a general line bundle L on C of degree $\geq g+1$ is base-point-free.

Proof. Let L be a line bundle on C of degree g-1. By Riemann-Roch, the assumption $h^1(L) = 0$ is equivalent to $h^0(L) = 0$. Suppose not, namely, $H^0(L) \neq 0$. Then there is an effective divisor contained in |L|, and hence, L is in the image of the following map

$$C^{g-1} \rightarrow \operatorname{Pic}^{g-1}(C)$$

(P₁, ..., P_{g-1}) $\mapsto \mathcal{O}_C(P_1 + \dots + P_{g-1}).$

Since the image can have at most dimension (g-1), it cannot fill the g-dimensional space $\operatorname{Pic}^{g-1}(C)$. We conclude that $h^0(L) = h^1(L) = 0$ for a general $L \in \operatorname{Pic}^{g-1}(C)$. When L is a general line bundle of degree $d \geq g-1$, choose (d-g-1) general points $P_1, \dots, P_{d-g-1} \in C$. Then the line bundle $L(-P_1 \dots - P_{d-g-1})$ is a general line bundle of degree g-1, which is nonspecial; in particular, L itself must be nonspecial.

Now let L be a line bundle of degree $d \ge g+1$. Consider the incidence set of nonspecial line bundles of degree d with base points:

It is enough to show that dim $\mathcal{U} < g = \dim \operatorname{Pic}^{d}(C)$. Let $\pi : \mathcal{U} \to \operatorname{Pic}^{d-1}(C)$ be the morphism sending (L, P) to L(-P). Note that a fiber $\pi^{-1}(L')$ of π over a line bundle $L' \in \operatorname{Pic}^{d-1}(C)$ is contained in the set

$$\{(L'(P), P) \mid P \in C\} \simeq C$$

which is parametrized by C. In particular, dim $\pi^{-1}(L')$ is at most 1 for any $L' \in \operatorname{Pic}^{d-1}(C)$. Also note that if $(L, P) \in \mathcal{U}$, then $h^0(L(-P)) = h^0(L) = 1 - g + d$ and $h^1(L(-P)) = 1$ by Riemann-Roch. In particular, L(-P) is a special line bundle of degree d-1. On the other hand, via the Serre dual map

$$\operatorname{Pic}^{d-1}(C) \to \operatorname{Pic}^{2g-2-(d-1)}(C)$$
$$L' \mapsto \omega_C \otimes (L')^{\vee},$$

the locus of special line bundles $\{L' \in \operatorname{Pic}^{d-1}(C) \mid h^1(L') > 0\}$ is isomorphic to the locus $\{L'' \in \operatorname{Pic}^{2g-2-(d-1)}(C) \mid h^0(L'') > 0\}$, which is the image of $C^{2g-2-(d-1)} \to C^{2g-2-(d-1)}(C)$

Topic 4 – Algebraic curves

 ${\rm Pic}^{2g-2-(d-1)}$ as above. Hence, the locus has dimension at most $2g-2-(d-1)\leq g-2.$ We conclude that

$$\dim \mathcal{U} \le (g-2) + \dim \pi^{-1}(L') \le g-1$$

which is strictly smaller than dim $\operatorname{Pic}^{d}(C)$.

Theorem 276 (Green). Let C be a smooth curve of genus g, and let L be a very ample line bundle of degree d. Then:

- (1) $K_{p,q}(C,L) = 0$ for $q \ge 3$ if $H^1(L) = 0$.
- (2) $K_{p,2}(C,L) = 0$ if $d \ge 2g+1+p$, that is, a high degree curve of degree $d \ge 2g+1+p$, $p \ge 0$ satisfies the property (N_p) .

Proof. By Green's duality, we have $K_{p,q}(C,L)^{\vee} \simeq K_{r-1-p,2-q}(C,K_C,L)$ where $r = h^0(C,L) - 1$. If $h^1(L) = 0$, we have $h^0(K_C - L) = 0$ by Serre duality, and in particular, $h^0(K_C + (2-q)L) = 0$ for any $q \ge 3$. The term $\wedge^{r-1-p} V \otimes H^0(K_C + (2-q)L) = 0$, and hence the cohomology group $K_{r-1-p,2-q}(C,K_C,L)$ also vanishes.

Now consider the case q = 2 and $d = \deg L \ge 2g + 1 + p$ with $p \ge 0$. Since $H^1(L) = 0$, we have $K_{p,2}(C,L) \simeq H^1(C, \wedge^{p+1}\mathcal{M}_L \otimes L)$. By Serre duality, the vanishing of $K_{p,2}(C,L)$ is equivalent to show that

$$H^0(C, \wedge^{p+1}M_L^{\vee} \otimes \omega_C \otimes L^{\vee}) = 0.$$

Let $P \in C$ be a (general) point. Since L - P is still base-point-free, one has the following ladder with exact rows and columns.

This process can be repeated: choose general points $P_1, \dots, P_{r-1} \in C$, where $r = h^0(L) - 1 = d - g$. By induction on r, one has the following short exact sequence

$$0 \to \mathcal{M}_{L(-P_1 - \dots - P_{r-1})} \to \mathcal{M}_L \to \bigoplus_{i=1}^{r-1} \mathcal{O}_C(-P_i) \to 0.$$

110

Note that the line bundle $L(-P_1-\cdots-P_{r-1})$ is a base-point-free pencil, since $h^0(L(-P_1-\cdots-P_{r-1})) = h^0(L) - (r-1) = 2$. Therefore, Castelnuovo pencil trick gives an isomorphism $M_{L(-P_1-\cdots-P_{r-1})} \simeq L^{\vee}(P_1+\cdots+P_{r-1})$. Taking the dual of the above short exact sequence, we have

$$0 \to \bigoplus_{i=1}^{r-1} \mathcal{O}_C(P_i) \to \mathcal{M}_L^{\vee} \to L(-P_1 - \dots - P_{r-1}) \to 0.$$

Taking its (p+1)-th exterior power, we have

$$0 \to \wedge^{p+1} \left(\bigoplus_{i=1}^{r-1} \mathcal{O}_C(P_i) \right) \to \wedge^{p+1} \mathcal{M}_L^{\vee} \to \wedge^p \left(\bigoplus_{i=1}^{r-1} \mathcal{O}_C(P_i) \right) \otimes L(-P_1 - \dots - P_{r-1}) \to 0.$$

Twisting by $\omega_C \otimes L^{\vee}$, we see that the terms on the left is a direct sum of line bundles of degree (p+1) + (2g-2) - d = 2g + p - 1 - d < 0, hence have no global sections. The terms on the right is a direct sum of line bundles of the form $\omega_C(-P_{i_1} - \cdots - P_{i_{r-p-1}})$, subtracting (r-p-1) points among general points $P_1, \cdots, P_{r-1} \in C$. It has no global section since the rank of the zeroth cohomology group drops by 1 when we subtract a general point, and $r-p-1 = d-g-p-1 \ge g$ in our case. In particular, $K_{p,2}(C,L) \simeq$ $H^0(C, \wedge^{p+1}\mathcal{M}_L^{\vee} \otimes \omega_C \otimes L^{\vee})^{\vee} = 0$.

Hence, the Betti table of a curve of high degree $C \subset \mathbb{P}^r$ of degree d = 2g + 1 + p has the following shape:

	0	1	2	•••	p-1	p	p+1	•••	r-1
0	$\kappa_{0,0} = 1$	—	—	•••	_	—	_	•••	_
1	—	$\kappa_{1,1}$	$\kappa_{2,1}$	•••	$\kappa_{p-1,1}$	$\kappa_{p,1}$	$\kappa_{p+1,1}$	•••	$\kappa_{r-1,1}$
2	_	_	_	•••	_	_	$\kappa_{p+1,2}$	•••	$\kappa_{r-1,2}$

where $\kappa_{p,q} = \dim K_{p,q}(C, \mathcal{O}_C(1)) = \beta_{p,p+q}(C)$. The horizontal strip $(\kappa_{1,1} \quad \kappa_{2,1} \quad \cdots \quad \kappa_{r,1})$ is called the *quadratic strand*, since it denotes the quadric generators and their linear relations. The next strip $(\kappa_{1,2} \quad \kappa_{2,2} \quad \cdots \quad \kappa_{r,2})$ is called the *cubic strand*. It is composed of the cubic generators and their linear relations, and quadratic relations among the terms lie on the quadratic strand. Green's (2g + p + 1)-theorem says that the first *p*-terms in the quadratic strand of a curve of degree $\geq 2g + p + 1$ becomes zero.