Topic 4 - Algebraic curves

Example 261. The most simplest case is when $M=S=k\left[x_{0}, \cdots, x_{N}\right]$, and collecting all the degrees at once, we have a complex of graded S-modules

$$
0 \rightarrow F_{N+1}=\wedge^{N+1} V \otimes S(-N-1) \rightarrow \cdots \rightarrow F_{1}=\wedge^{1} V \otimes S(-1) \rightarrow F_{0}=S \rightarrow 0
$$

which is exact at every F_{i} except for F_{0}. Indeed, it is a minimal graded S-free resolution of the quotient module coker $\left[F_{1} \rightarrow F_{0}\right]=S /\left(x_{0}, \cdots, x_{N}\right) \simeq k$.

Definition 262. The Koszul cohomology group $K_{p, q}(M, V)$ is the cohomology of the above complex at $\wedge^{p} V \otimes M_{q}$.

Proposition 263. Let M be a finitely generated graded S-module, and let $V=S_{1}$. Then $\operatorname{dim} K_{p, q}(M, V)=\beta_{p, p+q}(M)$.

Proof. Thanks to the symmetry property of Tor functors, the Tor group $\operatorname{Tor}_{p}^{S}(M, k)$ can be computed from a free resolution of k. Since the Koszul complex

$$
0 \rightarrow \wedge^{N+1} V \otimes S(-N-1) \rightarrow \cdots \rightarrow \wedge^{2} V \otimes S(-2) \rightarrow \wedge^{1} V \otimes S(-1) \rightarrow S \rightarrow k \rightarrow 0
$$

which provides a (minimal) free resolution of k. Hence, the p-th Tor group $\operatorname{Tor}_{p}^{S}(M, k)$ can be computed from the (co)homology at the p-th step. In particular, $\operatorname{dim}_{k} \operatorname{Tor}_{p}^{S}(M, k)_{p, q}=$ $\operatorname{dim} K_{p, q}(M, V)$ since the Koszul complex for M is obtained by taking a tensor product $\left(-\otimes_{S} M\right)$ to the Koszul complex for k.

The Koszul cohomology groups can be easily defined in the geometric context as follows.
Definition 264. Let X be a projective variety, and let L be a globally generated line bundle on X. Let $V=H^{0}(X, L)$.
The Koszul cohomology group $K_{p, q}(X, L)$ is the Koszul cohomology of the graded $\operatorname{Sym}(V)$ module

$$
R(L)=\bigoplus_{q} H^{0}\left(X, L^{q}\right)
$$

Precisely, it is the cohomology at the middle of the complex

$$
\wedge^{p+1} V \otimes H^{0}\left(X, L^{q-1}\right) \rightarrow \wedge^{p} V \otimes H^{0}\left(X, L^{q}\right) \rightarrow \wedge^{p-1} V \otimes H^{0}\left(X, L^{q+1}\right)
$$

Let \mathcal{F} be a coherent sheaf on X. We define $R(\mathcal{F}, L):=\bigoplus_{q} H^{0}\left(X, \mathcal{F} \otimes L^{q}\right)$, and the Koszul cohomology group $K_{p, q}(X, \mathcal{F}, L)$ be the cohomology of $R(\mathcal{F}, L)$ at $\wedge^{p} V \otimes H^{0}\left(X, \mathcal{F} \otimes L^{q}\right)$.

When $L=\mathcal{O}_{X}(1)$ induces an embedding $X \hookrightarrow \mathbb{P}^{N}$ so that X is projectively normal, then two rings $S(X)$ and $R(L)=\bigoplus_{q} H^{0}\left(X, L^{q}\right)$ coincides; in particular, $K_{p, q}\left(S(X), H^{0}(L)\right)=$ $K_{p, q}(X, L)$ as desired. In general, there is an inclusion of rings $S(X) \hookrightarrow R(L)$, whose difference is measured by the Hartshorne-Rao module $\bigoplus_{q} H^{1}\left(X, \mathscr{I}_{X}(q)\right)$. In particular, X is q-normal if and only if the natural map $\operatorname{Sym}^{q} H^{0}(L) \rightarrow H^{0}\left(L^{q}\right)$ is surjective.

Lemma 265. Let X be a projective variety, and let L be a very ample line bundle on X. Consider the embedding $X \hookrightarrow \mathbb{P}^{N}$ given by the complete linear series $|L|$. Then X is projective normal if and only if

$$
K_{0, q}(X, L)=0
$$

for every $q \geq 1$.
Proof. The projective normality is equivalent to the surjectivity of the multiplication map $H^{0}(L) \otimes H^{0}\left(L^{q-1}\right) \rightarrow H^{0}\left(L^{q}\right)$ for every $q \geq 1$. By definition, the cokernel of this multiplication map coincides with the Koszul cohomology group $K_{0, q}(X, L)$.

There are also technical merits to compute the syzygies by Koszul cohomology groups. We will observe just a few basic tools.

Definition 266. Let C be a curve, and L be a globally generated line bundle. The kernel \mathcal{M}_{L} of the evaluation map $e v: H^{0}(C, L) \otimes \mathcal{O}_{C} \rightarrow L$ is called the kernel bundle. Note that the short exact sequence

$$
0 \rightarrow \mathcal{M}_{L} \rightarrow H^{0}(C, L) \otimes \mathcal{O}_{C} \xrightarrow{e v} L \rightarrow 0
$$

is the pullback of the Euler sequence

$$
0 \rightarrow \Omega_{\mathbb{P}^{N}}^{1}(1) \rightarrow H^{0}(C, L) \otimes \mathcal{O}_{\mathbb{P}^{N}} \rightarrow \mathcal{O}_{\mathbb{P}^{N}}(1) \rightarrow 0
$$

on the projective space $\mathbb{P}^{N}=\mathbb{P} H^{0}(C, L)^{\vee}$ via the morphism defined by L.
Example 267 (Castelnuovo base-point-free pencil trick). Let C be a curve, and let L be a globally generated line bundle such that the linear series $\mathbb{P} V \subseteq|L|$ is a base-point-free \mathfrak{g}_{d}^{1} on C, where $d=\operatorname{deg} L$. Then L is globally generated by its two independent sections in $V \subseteq H^{0}(C, L)$. In particular, we have the following ladder of short exact sequences

The above diagram is very useful when we check the normality of C embedded by L, together with a certain twist by a power of L.

Proposition 268. Let C, L be as above, and let $V=H^{0}(C, L)$. We have

$$
\begin{aligned}
K_{p, q}(C, L) & \simeq \operatorname{coker}\left[\wedge^{p+1} V \otimes H^{0}\left(L^{q-1}\right) \rightarrow H^{0}\left(\wedge^{p} \mathcal{M}_{L} \otimes L^{q}\right)\right] \\
& \simeq \operatorname{ker}\left[H^{1}\left(\wedge^{p+1} \mathcal{M}_{L} \otimes L^{q-1}\right) \rightarrow \wedge^{p+1} V \otimes H^{1}\left(L^{q-1}\right)\right]
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
K_{p, q}(C, \mathcal{F}, L) & \simeq \operatorname{coker}\left[\wedge^{p+1} V \otimes H^{0}\left(\mathcal{F} \otimes L^{q-1}\right) \rightarrow H^{0}\left(\wedge^{p} \mathcal{M}_{L} \otimes \mathcal{F} \otimes L^{q}\right)\right] \\
& \simeq \operatorname{ker}\left[H^{1}\left(\wedge^{p+1} \mathcal{M}_{L} \otimes \mathcal{F} \otimes L^{q-1}\right) \rightarrow \wedge^{p+1} V \otimes H^{1}\left(\mathcal{F} \otimes L^{q-1}\right)\right]
\end{aligned}
$$

Topic 4 - Algebraic curves

Proof. Consider the sequence of vector bundles

$$
\cdots \rightarrow \wedge^{p+1} V \otimes L^{q-1} \rightarrow \wedge^{p} V \otimes L^{q} \rightarrow \wedge^{p-1} V \otimes L^{q+1} \rightarrow \cdots .
$$

Note that the Koszul cohomology group $K_{p, q}(C, L)$ is the cohomology (at the middle) of the sequence obtained by taking global sections of the above sequence.
On the other hand, by definition, we have a short exact sequence

$$
0 \rightarrow \mathcal{M}_{L} \rightarrow V \otimes \mathcal{O}_{C} \rightarrow L \rightarrow 0
$$

Taking the p-th exterior powers, we have

$$
0 \rightarrow \wedge^{p} \mathcal{M}_{L} \rightarrow \wedge^{p} V \otimes \mathcal{O}_{C} \rightarrow \wedge^{p-1} \mathcal{M}_{L} \otimes L \rightarrow 0
$$

Twisting by L^{q}, we have a short exact sequence

$$
0 \rightarrow \wedge^{p} \mathcal{M}_{L} \otimes L^{q} \rightarrow \wedge^{p} V \otimes L^{q} \rightarrow \wedge^{p-1} \mathcal{M}_{L} \otimes L^{q+1} \rightarrow 0
$$

Hence, the first sequence factors through those vector bundles appearing in the left and right:

In particular, the kernel and the image of the Koszul differential

$$
\delta: \wedge^{p} V \otimes H^{0}\left(L^{q}\right) \rightarrow \wedge^{p-1} V \otimes H^{0}\left(L^{q+1}\right)
$$

are given by

$$
\begin{aligned}
\operatorname{ker} \delta & \simeq H^{0}\left(\wedge^{p} \mathcal{M}_{L} \otimes L^{q}\right) \\
\operatorname{im} \delta & \simeq H^{0}\left(\wedge^{p-1} \mathcal{M}_{L} \otimes L^{q+1}\right)
\end{aligned}
$$

which gives the formula.
Proposition 269 (Green duality for curves). Let C, L be as above, and let $r=\operatorname{dim}|L|=$ $h^{0}(L)-1$. Then $K_{p, q}(C, L) \simeq K_{r-p-1,2-q}\left(C, K_{C}, L\right)^{\vee}$.

Proof. Note that

$$
K_{p, q}(C, L) \simeq \operatorname{coker}\left[\wedge^{p+1} V \otimes H^{0}\left(L^{q-1}\right) \rightarrow H^{0}\left(\wedge^{p} \mathcal{M}_{L} \otimes L^{q}\right)\right]
$$

which is dual to

$$
\operatorname{ker}\left[H^{1}\left(K_{C} \otimes \wedge^{p} \mathcal{M}_{L}^{\vee} \otimes L^{-q}\right) \rightarrow \wedge^{p+1} V^{\vee} \otimes H^{1}\left(K_{C} \otimes L^{1-q}\right)\right]
$$

by the above formula and Serre duality. Since the rank of \mathcal{M}_{L} is r and $\operatorname{det} \mathcal{M}_{L} \simeq L^{-1}$, we have the following perfect pairing

$$
\wedge^{p} \mathcal{M}_{L} \otimes \wedge^{r-p} \mathcal{M}_{L} \rightarrow \wedge^{r} \mathcal{M}_{L} \simeq L^{-1}
$$

In particular, $\wedge^{r-p} \mathcal{M}_{L} \simeq \wedge^{p} \mathcal{M}_{L}^{\vee} \otimes L^{-1}$. Also note that $\wedge^{p+1} V^{\vee} \simeq \wedge^{(r+1)-(p+1)} V$ by the same reason. Hence,

$$
K_{p, q}(C, L)^{\vee} \simeq \operatorname{ker}\left[H^{1}\left(\wedge^{r-p} \mathcal{M}_{L} \otimes K_{C} \otimes L^{1-q}\right) \rightarrow \wedge^{r-p} V \otimes H^{1}\left(K_{C} \otimes L^{1-q}\right)\right]
$$

which is an expression of the Koszul cohomology group $K_{r-p-1,2-q}\left(C, K_{C}, L\right)$.
Corollary 270. Let C be a nonhyperelliptic curve. Then $K_{p, q}\left(C, K_{C}\right) \simeq K_{g-p-2,3-q}\left(C, K_{C}\right)^{\vee}$. In particular, the Betti table of a canonical curve is symmetric.

Proof. Since K_{C} is very ample, and hence $K_{p, q}\left(C, K_{C}\right) \simeq K_{g-p-2,2-q}\left(C, K_{C}, K_{C}\right)^{\vee}=$ $K_{g-p-2,3-1}\left(C, K_{C}\right)^{\vee}$ 。

Example 271. Let C be a nonhyperelliptic curve of genus $g=3$. Then $\left|K_{C}\right|$ embeds C as a degree $2 g-2=4$ curve in $\mathbb{P}^{g-1}=\mathbb{P}^{2}$. Hence, the Betti table of the canonical curve will be

$$
\begin{array}{|cc|}
\hline 1 & - \\
- & - \\
- & - \\
- & 1 \\
\hline
\end{array}
$$

Let C be a nonhyperelliptic curve of genus $g=4$. Then $\left|K_{C}\right|$ embeds C as a degree 6 curve in \mathbb{P}^{3}, and the image is projectively normal. We already observed that C is a complete intersection of these quadric and cubic hypersurfaces, and hence, the Betti table of the canonical curve will be

$$
\begin{array}{ccc}
1 & - & - \\
- & 1 & - \\
- & 1 & - \\
- & - & 1
\end{array}
$$

When C is a nonhyperelliptic curve of genus $g=5$, there are two possibilities for the Betti table of the canonical curve: either

$$
\left.\begin{array}{|cccc|}
\hline 1 & - & - & - \\
- & 3 & - & - \\
- & - & 3 & - \\
- & - & - & 1
\end{array} \right\rvert\,
$$

Topic 4 - Algebraic curves
, or

1	-	-	-
-	3	2	-
-	2	3	-
-	-	-	1

which depends on the existence of \mathfrak{g}_{3}^{1} on C.
Definition 272. A very ample line bundle L on a smooth projective variety X satisfies the property $\left(N_{p}\right)$ if $|L|$ embeds X into a projective space projective normally, and certain Koszul cohomology groups vanish:

$$
K_{i, j}(X, L)=0 \text { for all } i \leq p, j \geq 2
$$

Example 273. In the above cases of canonical curves, all of them satisfies the property $\left(N_{0}\right)$. When C is the canonical curve of a nonhyperelliptic curve of genus 5 which is not trigonal, it also satisfies the property $\left(N_{1}\right)$. In other words,

$\left(N_{0}\right)$	the embedded variety is projectively normal;
$\left(N_{1}\right)$	the variety is projectively normal and defined by quadric equations;
$\left(N_{2}\right)$	the property $\left(N_{1}\right)$ and the syzygies are generated by linear relations;
$\left(N_{3}\right)$	$\left(N_{2}\right)$ and the further relations among the syzygies are generated by linear relations;
\vdots	\vdots
$\left(N_{p}\right)$	$\left(N_{1}\right)$ and the minimal free resolution is linear between the 1st and the p-th term.

5 Curves of high degree

Let C be a curve of genus g. We learned that any line bundle of degree at least $2 g+1$ is very ample. What happens if we take a line bundle of degree higher than $2 g+1$? The image of such a curve embedded by the complete linear series is called a curve of high degree.
First of all, to make sure that the syzygy of a curve of high degree can be read off from the Koszul cohomology groups $K_{p, q}(C, L)$ where $L=\mathcal{O}_{C}(1)$, we need the projective normality.

Proposition 274. Let C be a curve of high degree in \mathbb{P}^{r}, where $r=\operatorname{deg}(C)-g$. Then it is projectively normal, in other words, the natural inclusion

$$
S_{C} \hookrightarrow \bigoplus_{n} H^{0}\left(C, \mathcal{O}_{C}(n)\right)
$$

is an isomorphism.
The statement claims that $C \subset \mathbb{P}^{r}$ is projectively normal. We already saw that the projective normality is equivalent to the vanishing of Koszul cohomology groups

$$
K_{0, q}(C, L)=0
$$

for every $q \geq 1$. When $q=1$, it is trivial, which is obtained from taking the global sections of the evaluation map $H^{0}(L) \otimes \mathcal{O}_{C} \rightarrow L$. For $q \geq 2$, the following theorem by Green will imply the above proposition. We need a small lemma first:

Lemma 275. Let C be a curve of genus g. Then,
(1) a general line bundle L on C of degree $\geq g-1$ is nonspecial, that is, $h^{1}(L)=0$;
(2) a general line bundle L on C of degree $\geq g+1$ is base-point-free.

Proof. Let L be a line bundle on C of degree $g-1$. By Riemann-Roch, the assumption $h^{1}(L)=0$ is equivalent to $h^{0}(L)=0$. Suppose not, namely, $H^{0}(L) \neq 0$. Then there is an effective divisor contained in $|L|$, and hence, L is in the image of the following map

$$
\begin{aligned}
C^{g-1} & \rightarrow \operatorname{Pic}^{g-1}(C) \\
\left(P_{1}, \cdots, P_{g-1}\right) & \mapsto \mathcal{O}_{C}\left(P_{1}+\cdots+P_{g-1}\right)
\end{aligned}
$$

Since the image can have at most dimension $(g-1)$, it cannot fill the g-dimensional space $\mathrm{Pic}^{g-1}(C)$. We conclude that $h^{0}(L)=h^{1}(L)=0$ for a general $L \in \operatorname{Pic}^{g-1}(C)$. When L is a general line bundle of degree $d \geq g-1$, choose $(d-g-1)$ general points $P_{1}, \cdots, P_{d-g-1} \in C$. Then the line bundle $L\left(-P_{1} \cdots-P_{d-g-1}\right)$ is a general line bundle of degree $g-1$, which is nonspecial; in particular, L itself must be nonspecial.
Now let L be a line bundle of degree $d \geq g+1$. Consider the incidence set of nonspecial line bundles of degree d with base points:

It is enough to show that $\operatorname{dim} \mathcal{U}<g=\operatorname{dim} \operatorname{Pic}^{d}(C)$. Let $\pi: \mathcal{U} \rightarrow \operatorname{Pic}^{d-1}(C)$ be the morphism sending (L, P) to $L(-P)$. Note that a fiber $\pi^{-1}\left(L^{\prime}\right)$ of π over a line bundle $L^{\prime} \in \operatorname{Pic}^{d-1}(C)$ is contained in the set

$$
\left\{\left(L^{\prime}(P), P\right) \mid P \in C\right\} \simeq C
$$

which is parametrized by C. In particular, $\operatorname{dim} \pi^{-1}\left(L^{\prime}\right)$ is at most 1 for any $L^{\prime} \in$ $\operatorname{Pic}^{d-1}(C)$. Also note that if $(L, P) \in \mathcal{U}$, then $h^{0}(L(-P))=h^{0}(L)=1-g+d$ and $h^{1}(L(-P))=1$ by Riemann-Roch. In particular, $L(-P)$ is a special line bundle of degree $d-1$. On the other hand, via the Serre dual map

$$
\begin{aligned}
\operatorname{Pic}^{d-1}(C) & \rightarrow \operatorname{Pic}^{2 g-2-(d-1)}(C) \\
L^{\prime} & \mapsto \omega_{C} \otimes\left(L^{\prime}\right)^{\vee}
\end{aligned}
$$

the locus of special line bundles $\left\{L^{\prime} \in \operatorname{Pic}^{d-1}(C) \mid h^{1}\left(L^{\prime}\right)>0\right\}$ is isomorphic to the locus $\left\{L^{\prime \prime} \in \operatorname{Pic}^{2 g-2-(d-1)}(C) \mid h^{0}\left(L^{\prime \prime}\right)>0\right\}$, which is the image of $C^{2 g-2-(d-1)} \rightarrow$

Topic 4 - Algebraic curves
$\mathrm{Pic}^{2 g-2-(d-1)}$ as above. Hence, the locus has dimension at most $2 g-2-(d-1) \leq g-2$. We conclude that

$$
\operatorname{dim} \mathcal{U} \leq(g-2)+\operatorname{dim} \pi^{-1}\left(L^{\prime}\right) \leq g-1
$$

which is strictly smaller than $\operatorname{dim} \operatorname{Pic}^{d}(C)$.

Theorem 276 (Green). Let C be a smooth curve of genus g, and let L be a very ample line bundle of degree d. Then:
(1) $K_{p, q}(C, L)=0$ for $q \geq 3$ if $H^{1}(L)=0$.
(2) $K_{p, 2}(C, L)=0$ if $d \geq 2 g+1+p$, that is, a high degree curve of degree $d \geq 2 g+1+p$, $p \geq 0$ satisfies the property $\left(N_{p}\right)$.

Proof. By Green's duality, we have $K_{p, q}(C, L)^{\vee} \simeq K_{r-1-p, 2-q}\left(C, K_{C}, L\right)$ where $r=$ $h^{0}(C, L)-1$. If $h^{1}(L)=0$, we have $h^{0}\left(K_{C}-L\right)=0$ by Serre duality, and in particular, $h^{0}\left(K_{C}+(2-q) L\right)=0$ for any $q \geq 3$. The term $\wedge^{r-1-p} V \otimes H^{0}\left(K_{C}+(2-q) L\right)=0$, and hence the cohomology group $K_{r-1-p, 2-q}\left(C, K_{C}, L\right)$ also vanishes.
Now consider the case $q=2$ and $d=\operatorname{deg} L \geq 2 g+1+p$ with $p \geq 0$. Since $H^{1}(L)=0$, we have $K_{p, 2}(C, L) \simeq H^{1}\left(C, \wedge^{p+1} \mathcal{M}_{L} \otimes L\right)$. By Serre duality, the vanishing of $K_{p, 2}(C, L)$ is equivalent to show that

$$
H^{0}\left(C, \wedge^{p+1} M_{L}^{\vee} \otimes \omega_{C} \otimes L^{\vee}\right)=0
$$

Let $P \in C$ be a (general) point. Since $L-P$ is still base-point-free, one has the following ladder with exact rows and columns.

This process can be repeated: choose general points $P_{1}, \cdots, P_{r-1} \in C$, where $r=$ $h^{0}(L)-1=d-g$. By induction on r, one has the following short exact sequence

$$
0 \rightarrow \mathcal{M}_{L\left(-P_{1}-\cdots-P_{r-1}\right)} \rightarrow \mathcal{M}_{L} \rightarrow \bigoplus_{i=1}^{r-1} \mathcal{O}_{C}\left(-P_{i}\right) \rightarrow 0
$$

Note that the line bundle $L\left(-P_{1}-\cdots-P_{r-1}\right)$ is a base-point-free pencil, since $h^{0}\left(L\left(-P_{1}-\right.\right.$ $\left.\left.\cdots-P_{r-1}\right)\right)=h^{0}(L)-(r-1)=2$. Therefore, Castelnuovo pencil trick gives an isomorphism $M_{L\left(-P_{1}-\cdots-P_{r-1}\right)} \simeq L^{\vee}\left(P_{1}+\cdots+P_{r-1}\right)$. Taking the dual of the above short exact sequence, we have

$$
0 \rightarrow \bigoplus_{i=1}^{r-1} \mathcal{O}_{C}\left(P_{i}\right) \rightarrow \mathcal{M}_{L}^{\vee} \rightarrow L\left(-P_{1}-\cdots-P_{r-1}\right) \rightarrow 0
$$

Taking its $(p+1)$-th exterior power, we have
$0 \rightarrow \wedge^{p+1}\left(\bigoplus_{i=1}^{r-1} \mathcal{O}_{C}\left(P_{i}\right)\right) \rightarrow \wedge^{p+1} \mathcal{M}_{L}^{\vee} \rightarrow \wedge^{p}\left(\bigoplus_{i=1}^{r-1} \mathcal{O}_{C}\left(P_{i}\right)\right) \otimes L\left(-P_{1}-\cdots-P_{r-1}\right) \rightarrow 0$.
Twisting by $\omega_{C} \otimes L^{\vee}$, we see that the terms on the left is a direct sum of line bundles of degree $(p+1)+(2 g-2)-d=2 g+p-1-d<0$, hence have no global sections. The terms on the right is a direct sum of line bundles of the form $\omega_{C}\left(-P_{i_{1}}-\cdots-P_{i_{r-p-1}}\right)$, subtracting $(r-p-1)$ points among general points $P_{1}, \cdots, P_{r-1} \in C$. It has no global section since the rank of the zeroth cohomology group drops by 1 when we subtract a general point, and $r-p-1=d-g-p-1 \geq g$ in our case. In particular, $K_{p, 2}(C, L) \simeq$ $H^{0}\left(C, \wedge^{p+1} \mathcal{M}_{L}^{\vee} \otimes \omega_{C} \otimes L^{\vee}\right)^{\vee}=0$.

Hence, the Betti table of a curve of high degree $C \subset \mathbb{P}^{r}$ of degree $d=2 g+1+p$ has the following shape:

	0	1	2	\cdots	$p-1$	p	$p+1$	\cdots	$r-1$
0	$\kappa_{0,0}=1$	-	-	\cdots	-	-	-	\cdots	-
1	-	$\kappa_{1,1}$	$\kappa_{2,1}$	\cdots	$\kappa_{p-1,1}$	$\kappa_{p, 1}$	$\kappa_{p+1,1}$	\cdots	$\kappa_{r-1,1}$
2	-	-	-	\cdots	-	-	$\kappa_{p+1,2}$	\cdots	$\kappa_{r-1,2}$

where $\kappa_{p, q}=\operatorname{dim} K_{p, q}\left(C, \mathcal{O}_{C}(1)\right)=\beta_{p, p+q}(C)$. The horizontal strip $\left(\begin{array}{llll}\kappa_{1,1} & \kappa_{2,1} & \cdots & \kappa_{r, 1}\end{array}\right)$ is called the quadratic strand, since it denotes the quadric generators and their linear relations. The next strip $\left(\begin{array}{llll}\kappa_{1,2} & \kappa_{2,2} & \cdots & \kappa_{r, 2}\end{array}\right)$ is called the cubic strand. It is composed of the cubic generators and their linear relations, and quadratic relations among the terms lie on the quadratic strand. Green's $(2 g+p+1)$-theorem says that the first p-terms in the quadratic strand of a curve of degree $\geq 2 g+p+1$ becomes zero.

