Topic 4 - Algebraic curves

Some of the numbers can be read off from the Hilbert function of C, in particular:
Proposition 277. $\kappa_{1,1}=\binom{d-g-1}{2}$ and $\kappa_{r-1,2}=g$.
Proof. Since there is no linear form in the ideal I_{C}, we have $\kappa_{1,1}=\operatorname{dim}\left(I_{C}\right)_{2}=\operatorname{dim} S_{2}-$ $h^{0}\left(\mathcal{O}_{C}(2)\right)=\binom{r+2}{2}-(1-g+2 d)$. Since $r=d-g$, we have the desired result.
Moreover, by Green's duality, $K_{r-1,2}\left(C, \mathcal{O}_{C}(1)\right)=K_{0,0}\left(C, K_{C}, \mathcal{O}_{C}(1)\right)=H^{0}\left(K_{C}\right)$ is g-dimensional as stated.

Proposition 278. Let C be a curve of high degree as above. If $\kappa_{i, 1}=0$, then $\kappa_{j, 1}=0$ for every $j \geq i$. If $\kappa_{i, 2}=0$, then $\kappa_{j, 2}=0$ for every $j \leq i$.

Proof. Note that $\kappa_{i+1,1}$ counts the number of independent linear relations among minimal generators of $S(-i-1)^{\oplus \kappa_{i, 1}} \subseteq F_{i}$ appearing in i-th term of the minimal free resolution of C. Hence, if $\kappa_{i, 1}=0$, no (linear) relations can occur, which forces $\kappa_{i+1,1}=0$.
The second statement comes from the same argument, applied on the "dual resolution" $\operatorname{Hom}\left(F_{\bullet}, S(-r-1)\right)$ which is a free resolution of the graded module $\bigoplus_{j} H^{0}\left(\omega_{C}(j)\right)$.

To sum up, the Betti table of a curve of high degree has the following shape:

	0	1	2	\cdots	a	$a+1$	\cdots	$b-1$	b	\cdots	$r-1$
0	1	-	-	\cdots	-	-	\cdots	-	-	\cdots	-
1	-	$\kappa_{1,1}$	$\kappa_{2,1}$	\cdots	$\kappa_{a, 1}$	$\kappa_{a+1,1}$	\cdots	$\kappa_{b-1,1}$	-	\cdots	-
2	-	-	-	\cdots	-	$\kappa_{a+1,2}$	\cdots	$\kappa_{b-1,2}$	$\kappa_{b, 2}$	\cdots	g

Question 279. It is natural to ask the following questions for a curve of high degree $C \subset \mathbb{P}^{r}$ of degree $d=2 g+1+p$.
(1) What is the number $a=a(C)$ so that $\kappa_{a, 2}=0$ but $\kappa_{a+1,2} \neq 0$? (such a number is called the Green-Lazarsfeld index)
(2) What is the number b so that $\kappa_{b, 1}=0$ but $\kappa_{b-1,1} \neq 0$?

As we seen above, Green's $(2 g+1+p)$-theorem implies that $a(C) \geq p$. An upper bound of $a(C)$ comes from the presence of special secants:

Definition 280. A degenerate q-secant plane of $C \subset \mathbb{P}^{r}$ is a linear subspace $\Lambda \subseteq \mathbb{P}^{r}$ such that length $(C \cap \Lambda) \geq q$, and $\operatorname{dim} \Lambda \leq q-2$.
If we choose general q points P_{1}, \cdots, P_{q} of C with $q<r$, then their linear span $\Lambda=$ $\left\langle P_{1}, \cdots, P_{q}\right\rangle$ is a linear subspace of dimension $(q-1)$ which intersects C exactly at P_{1}, \cdots, P_{q}. Hence, a degenerate q-secant plane implies that there are q-points on C which form a special configuration in this manner. We address a known result without proofs:

Proposition 281. Let C be as above. If C has a degenerate q-secant plane, then $a(C) \leq$ $q-3$. Furthermore, C always has a degenerate q-secant plane for the value $q=p+3+$ $\max \left(0,\left\lceil\frac{g-p-3}{2}\right\rceil\right)$

For the values of $b(C)$, one has an upper bound, called $K_{p, 1}$-theorem:
Theorem 282. $b(C) \leq r$, and the equality holds (i.e., $\kappa_{r-1,1} \neq 0$) if and only if C is a rational normal curve.

A well-known proof of the $K_{p, 1}$-theorem uses a notion of "syzygy scheme" and Castelnuovo theory, so we will skip in this lecture.
A lower bound comes from the following nonvanishing theorem by Green and Lazarsfeld.
Theorem 283 (Green-Lazarsfeld nonvanishing). Let X be a smooth projective variety, L be a very ample line bundle. Let M_{1}, M_{2} be two line bundles such that $L \simeq M_{1} \otimes M_{2}$ and

$$
r_{i}=h^{0}\left(X, M_{i}\right)-1 \geq 1
$$

for $i=1,2$. Then $K_{r_{1}+r_{2}-1,1}(X, L) \neq 0$.
If we are able to find certain M_{1}, M_{2} for our curve of high degree, then $b(C) \geq r_{1}+r_{2}$. A nonzero cohomology class in $K_{r_{1}+r_{2}-1,1}(X, L)$ provided from the above nonvanishing theorem is called a Green-Lazarsfeld class.

Question 284. Let C be a curve (of high degree).
(1) Do the degenerate secant planes completely determine the value $a(C)$?
(2) Do the Green-Lazarsfeld classes completely determine the value $b(C)$?

Both of the questions seem to be extremely difficult in general. There is an answer to the second question when C is a curve of sufficiently high degree. We first begin with a consequence of the Green-Lazarsfeld nonvanishing.

Corollary 285. Let C be a k-gonal curve, and let L be a very ample line bundle on C of degree $\operatorname{deg} L=2 g+1+p$ for $p \geq 0$, so that $|L|$ embeds C into \mathbb{P}^{N} where $N=g+p+1$. Then $K_{N-k, 1}(C, L) \neq 0$.

Proof. Apply the Green-Lazarsfeld nonvanishing theorem for a pair M and $L \otimes M^{\vee}$, where M is a line bundle which gives a \mathfrak{g}_{k}^{1} on C. Since $h^{0}\left(C, L \otimes M^{\vee}\right) \geq g+p+2-k=N+$ $1-k$, the Koszul cohomology groups $K_{i, 1}(C, L)$ cannot be zero for $1 \leq i \leq h^{0}(L-M)-1$, where the range covers $i=N-k$.

When $\operatorname{deg} L$ is sufficiently large, then the divisor $L-M$ becomes nonspecial, and hence the number $h^{0}(L-M)-1$ coincides with $N-k$. Therefore, we may ask a natural question whether this result is sharp:

Question 286. Let L be a very ample divisor on C with $\operatorname{deg} L \gg 0$, so that $|L|$ embeds C into \mathbb{P}^{N} where $N=\operatorname{deg} L-g$. Does $K_{p, 1}(C, L)=0$ when $p>N-k$?

The problem, once known as Green-Lazarsfeld's gonality conjecture, is turned out to be true by Ein and Lazarsfeld.

Topic 4 - Algebraic curves

Theorem 287 (Ein-Lazarsfeld, Rathmann). Let L be any very ample divisor on C with $\operatorname{deg} L>4 g-4$, so that $|L|$ embeds C into \mathbb{P}^{N} where $N=\operatorname{deg} L-g$. Then $K_{p, 1}(C, L)=0$ for $p>N-k$.

In particular, we are able to read off the gonality of C from the shape of Betti table for $C \subset \mathbb{P}^{N}$ a curve of sufficiently high degree.

Remark 288. For a generic k-gonal curve C of genus g, Farkas and Kemeny showed that $\operatorname{deg}(L) \geq 2 g-1+k$ is enough for the degree condition for L. Their bound is sharp; every k-gonal curve C of genus g has a line bundle of degree $2 g-2+k$ which fails to verify the statement of the gonality conjecture. However, their result cannot cover every k-gonal curve of genus g; plane curves do not satisfy the statement (of course, they are NOT general in the moduli).

6 Enriques-Petri theorem and Green's conjecture

We begin with another consequence of Green-Lazarsfeld nonvanishing theorem, asking the Clifford index:

Question 289. Is it possible to read off the Clifford index of C from a certain Betti table?

Going back to the nonvanishing theorem, we have the following consequence:
Corollary 290. Let C be a nonhyperelliptic curve of genus $g \geq 3$ such that $\operatorname{Cliff}(C)=p$. Then the Koszul cohomology group $K_{g-2-p, 1}\left(C, K_{C}\right) \neq 0$ does not vanish.

Proof. Let A be an effective divisor which computes the Clifford index of C. In particular, if we denote by $d=\operatorname{deg} A, r=h^{0}(A)-1 \geq 1$, then $p=d-2 r$. By Riemann-Roch, the divisor $K_{C}-A$ is also a special divisor such that $h^{0}\left(K_{C}-A\right)-1=g-d+r-1$. Hence, the nonvanishing theorem implies that $K_{g-d+2 r-2,1}\left(C, K_{C}\right)=K_{g-2-p, 1}\left(C, K_{C}\right)$ does not vanish.

We may also ask that the above nonvanishing result is sharp, which is a famous Green's conjecture:

Conjecture 291 (Green's canonical syzygy conjecture). Let C be as above. Then $K_{i, 1}\left(C, K_{C}\right)=0$ for $i>g-2-\operatorname{Cliff}(C)$.

Passing by Green's duality theorem, we have an equivalent statement for $K_{p, 2}\left(C, K_{C}\right)$:
Conjecture 292. Let C be as above. Then the canonical curve satisfies the property $\left(N_{p}\right)$ for $p<\operatorname{Cliff}(C)$.

The zeroth case $p=0$ corresponds to M. Noether's theorem. The case $p=1$ corresponds to Enriques-Petri theorem:

Theorem 293 (Enriques-Petri). Let C be a nonhyperelliptic curve of genus $g \geq 4$. The canonical curve of C is defined only by quadric equations if and only if neither C is trigonal and nor C is isomorphic to a plane quintic.

Proof. (\Rightarrow) When C is trigonal, then the divisor D associated to the $3-1$ morphism $C \rightarrow$ \mathbb{P}^{1} contributes to the Clifford index of C; in particular, $\operatorname{Cliff}(C) \leq \operatorname{deg} D-h^{0}(D)+2=1$. Since C is not hyperelliptic, the Clifford index cannot be zero. Similarly, when C is isomorphic to a plane quintic, then the hyperplane divisor D satisfies $h^{0}(D)=3$ and $\operatorname{deg} D=5$, which also contributes to the Clifford index of C. In particular, $\operatorname{Cliff}(C) \leq 1$, and we conclude that $\operatorname{Cliff}(C)=1$ by the same reason. In any cases, $\operatorname{Cliff}(C)=1$, and hence, the canonical curve fails to satisfy the property $\left(N_{1}\right)$ since the Koszul cohomology group $K_{g-3,1}\left(C, K_{C}\right) \simeq K_{1,2}\left(C, K_{C}\right)^{\vee}$ does not vanish. In particular, the ideal of the canonical curve requires a cubic equation as generators.
(\Leftarrow) First, consider the case $g=3$ as an example. By Riemann-Roch, we have $h^{0}\left(K_{C}\right)=$ 3 and $h^{0}\left(n K_{C}\right)=4 n-2$ for $n>1$. Since K_{C} is very ample, hence, for any point $P \in C$ we have

$$
\left\{\begin{aligned}
h^{0}\left(K_{C}(-P)\right) & =2, \text { and } \\
h^{0}\left(K_{C}(-2 P)\right) & =1
\end{aligned}\right.
$$

In particular, we are able to find a basis $\{r, s, t\}$ of $H^{0}\left(K_{C}\right)$ such that

$$
\left\{\begin{aligned}
\operatorname{ord}_{P}(r) & =2 \\
\operatorname{ord} d_{P}(s) & =1 \\
\operatorname{ord} d_{P}(t) & =0
\end{aligned}\right.
$$

Since $K_{C}(-P)$ is a base-point-free pencil, we have a short exact sequence

$$
0 \rightarrow-K_{C}(P) \rightarrow H^{0}\left(K_{C}(-P)\right) \otimes \mathcal{O}_{C} \rightarrow K_{C}(-P) \rightarrow 0
$$

Twisting by K_{C} and considering the cohomology long exact sequence, one can show that the multiplication map

$$
H^{0}\left(K_{C}(-P)\right) \otimes H^{0}\left(K_{C}\right) \rightarrow H^{0}\left(2 K_{C}(-P)\right)
$$

is surjective. Hence, $H^{0}\left(2 K_{C}(-P)\right)$ is spanned by $r^{2}, r s, r t, s^{2}$, st. Since $h^{0}\left(2 K_{C}\right)=6$, we conclude that

$$
H^{0}\left(2 K_{C}(-P)\right)=\left\langle r^{2}, r s, r t, s^{2}, s t\right\rangle \subset\left\langle r^{2}, r s, r t, s^{2}, s t, t^{2}\right\rangle=H^{0}\left(2 K_{C}\right)
$$

Similarly, the multiplication map $H^{0}\left(K_{C}(-P)\right) \otimes H^{0}\left(2 K_{C}\right) \rightarrow H^{0}\left(3 K_{C}(-P)\right)$ is also surjective, and we have

$$
\begin{aligned}
H^{0}\left(3 K_{C}(-P)\right) & =\left\langle r^{3}, r^{2} s, r^{2} t, r s^{2}, r s t, r t^{2}, s^{3}, s^{2} t, s t^{2}\right\rangle, \\
H^{0}\left(3 K_{C}\right) & =\left\langle r^{3}, r^{2} s, r^{2} t, r s^{2}, r s t, r t^{2}, s^{3}, s^{2} t, s t^{2}, t^{3}\right\rangle .
\end{aligned}
$$

We will show the statement by a similar argument. Now let C be a non-hyperelliptic curve of genus $g \geq 3$. Choose a general set of points $P_{1}, P_{2}, \cdots, P_{g} \in C$ such that the divisor $D=P_{3}+\cdots+P_{g}$ satisfies

- $K_{C}(-D)$ is globally generated;
- $h^{0}\left(K_{C}(-D)\right)=2$, that is, $\left|K_{C}(-D)\right|$ is a base-point-free \mathfrak{g}_{g}^{1}.

Since $V_{i}:=H^{0}\left(K_{C}\left(-P_{1}-\cdots-P_{g}+P_{i}\right)\right) \subset H^{0}\left(K_{C}\right)$ is 1-dimensional for each $1 \leq i \leq g$, we may pick a basis $\left\{\omega_{1}, \cdots, \omega_{g}\right\}$ of $H^{0}\left(K_{C}\right)$ from generators of V_{i}. We have

$$
\left\{\begin{array}{l}
\omega_{i}\left(P_{i}\right) \neq 0 \\
\omega_{i}\left(P_{j}\right)=0 \text { if } i \neq j
\end{array}\right.
$$

and $H^{0}\left(K_{C}(-D)\right)=\left\langle\omega_{1}, \omega_{2}\right\rangle$ (in particular, ω_{1} and ω_{2} vanish with order exactly 1 on $\left.P_{3}, \cdots, P_{g}\right)$.
We apply the base-point-free pencil trick for the following multiplicative map

$$
\mu_{n}: H^{0}\left(K_{C}(-D)\right) \otimes H^{0}\left((n-1) K_{C}\right) \rightarrow H^{0}\left(n K_{C}(-D)\right)
$$

for each $n \geq 2$, we have

- $\omega_{3}^{n}, \cdots, \omega_{g}^{n} \in H^{0}\left(n K_{C}\right) \backslash H^{0}\left(n K_{C}(-D)\right)$;
- $\omega_{3}^{n}, \cdots, \omega_{g}^{n}$ are linearly independent;
- $h^{0}\left(n K_{C}\right)-h^{0}\left(n K_{C}(-D)\right)=g-2$.

Hence, $H^{0}\left(n K_{C}\right)$ is spanned by forms in $H^{0}\left(n K_{C}(-D)\right)$ and $\omega_{3}^{n}, \cdots, \omega_{g}^{n}$. As a consequence, for any $n \geq 2$, the multiplicative map

$$
H^{0}\left(K_{C}\right) \otimes H^{0}\left((n-1) K_{C}\right) \rightarrow H^{0}\left(n K_{C}\right)
$$

is surjective, which proves the "projective normality part" of M. Noether's theorem.
We are particularly interested in quadratic forms. Indeed, the $(3 g-3)$-dimensional vector space $H^{0}\left(2 K_{C}\right)$ is spanned by:

$$
H^{0}\left(2 K_{C}\right)=\left\langle\omega_{1}^{2}, \omega_{1} \omega_{2}, \cdots, \omega_{1} \omega_{g}, \omega_{2}^{2}, \omega_{2} \omega_{3}, \cdots, \omega_{2} \omega_{g}, \omega_{3}^{2}, \cdots, \omega_{g}^{2}\right\rangle .
$$

Let $i, j \in\{3, \cdots, g\}$ be distinct indices. Since ω_{i} vanishes on $P_{k} \neq P_{i}$ and ω_{j} vanishes on $P_{k} \neq P_{j}$, their multiplication $\omega_{i} \omega_{j} \in H^{0}\left(2 K_{C}\right)$ vanishes at P_{1}, \cdots, P_{g}. Therefore, ω_{k}^{2}-term cannot appear (which vanishes at every P_{1}, \cdots, P_{g} but not at P_{k}). In other words, there exist $\lambda_{i j s}, \mu_{i j s}, b_{i j} \in \mathbb{C}$ such that $\omega_{i} \omega_{j}$ is expressed as a linear sum

$$
\omega_{i} \omega_{j}=b_{i j} \omega_{1} \omega_{2}+\sum_{s=3}^{g}\left(\lambda_{i j s} \omega_{1}+\mu_{i j s} \omega_{2}\right) \omega_{s} .
$$

In particular, a quadratic form

$$
f_{i j}:=\omega_{i} \cdot \omega_{j}-b_{i j} \omega_{1} \cdot \omega_{2}-\sum_{s=3}^{g}\left(\lambda_{i j s} \omega_{1}+\mu_{i j s} \omega_{2}\right) \cdot \omega_{s} \in \operatorname{Sym}^{2} H^{0}\left(K_{C}\right)
$$

is in the kernel I of the natural map $\varphi: \operatorname{Sym} H^{0}\left(K_{C}\right) \rightarrow \bigoplus_{n} H^{0}\left(n K_{C}\right)$. The elements $f_{i j}$ are linearly independent, and hence, we have $\binom{g-2}{2}$ quadratic equations which form a basis for the ideal I_{2} of C.
We are now going to construct a set of cubic relations $G_{j k}$ such that $f_{i j}$'s and $G_{j k}$'s form a generating set for the whole I. However, the multiplication map

$$
H^{0}\left(K_{C}-D\right) \otimes H^{0}\left(2 K_{C}-D\right) \rightarrow H^{0}\left(3 K_{C}-2 D\right)
$$

is not surjective. Inside the $(3 g-1)$-dimensional vector space $H^{0}\left(3 K_{C}-2 D\right)$, the image forms a ($3 g-2$)-dimensional subspace

$$
W:=\left\langle\omega_{1}^{3}, \omega_{1}^{2} \omega_{2} \cdots, \omega_{1}^{2} \omega_{g}, \omega_{1} \omega_{2}^{2}, \cdots, \omega_{1} \omega_{2} \omega_{g}, \omega_{2}^{3}, \cdots, \omega_{2}^{2} \omega_{g}\right\rangle
$$

(corresponding to cubic monomials which contains $\omega_{3}, \cdots, \omega_{g}$ at most once; we skipped a proof for their linear independence). Take $\eta \in H^{0}\left(3 K_{C}(-2 D)\right) \backslash W$ so that $H^{0}\left(3 K_{C}(-2 D)\right)=$ $\langle W, \eta\rangle$. Hence, we have a filtration

$$
W^{3 g-2} \subset H^{0}\left(3 K_{C}-2 D\right)^{3 g-1} \subset H^{0}\left(3 K_{C}-D\right)^{4 g-3} \subset H^{0}\left(3 K_{C}\right)^{5 g-5}
$$

of vector spaces. For each $i \in\{3, \cdots, g\}$, there is an element $\alpha_{i} \in H^{0}\left(K_{C}(-D)\right)=$ $\left\langle\omega_{1}, \omega_{2}\right\rangle$ such that $\alpha_{i} \omega_{i}^{2} \in H^{0}\left(3 K_{C}-2 D\right) \backslash W$.

Topic 4 - Algebraic curves

Note that both $\omega_{1} \omega_{i}^{2}$ and $\omega_{2} \omega_{i}^{2}$ has a zero of order 1 at P_{i}. Hence, by taking a suitable linear combination of them, there is a unique nonzero element $\alpha_{i} \in\left\langle\omega_{1}, \omega_{2}\right\rangle$ such that $\alpha_{i} \omega_{i}^{2}$ has a zero of order ≥ 2 at P_{i}. Clearly it has a zero of order 2 at the other $P_{j}, j \neq i$. In particular, $\alpha_{i} \omega_{i}^{2} \in H^{0}\left(3 K_{C}(-2 D)\right)$. If it is an element in W, one can express $\alpha_{i} \omega_{i}^{2}$ as a linear combination

$$
\alpha_{i} \omega_{i}^{2}=\alpha_{i} \omega_{1} \varphi_{1}+\alpha_{i} \omega_{2} \varphi_{2}+\omega_{2}^{2} \theta
$$

for some linear forms $\varphi_{1}, \varphi_{2}, \theta \in H^{0}\left(K_{C}\right)$. Consider the (effective) divisor of zeros of α_{i}. Then $\left(\alpha_{i}\right)_{0}=D+P_{i}+D_{i} ; \alpha_{i}$ vanishes along P_{3}, \cdots, P_{g}, and vanishes twice at P_{i}. Since $\left|K_{C}-D\right|$ is base-point-free, the divisors D_{i} and $\left(\omega_{2}\right)_{0}$ are disjoint. Hence, if Q is a point such that $\alpha_{i}(Q)=0$ but $\omega_{2}(Q) \neq 0$, then $\theta(Q)=0$, that is, $\theta \in H^{0}\left(K_{C}-D_{i}\right)$. Among the elements in $H^{0}\left(K_{C}-D\right)$, the only possible choice is: θ is a constant multiple of α_{i}. Hence the relation reduces into

$$
\alpha_{i} \omega_{i}^{2}=\alpha_{i}\left(\sum \lambda_{j} \omega_{1} \omega_{j}+\sum \mu_{j} \omega_{2} \omega_{j}\right)
$$

which gives a contradiction by observing the vanishing order at P_{i}.
We conclude that there is an element $\theta_{i} \in W$ such that $\alpha_{i} \omega_{i}^{2}=\eta+\theta_{i}$ for each $i \leq 3 \leq g$. Therefore, for any given distinct $j, k \in\{3, \cdots, g\}$, the cubic relation

$$
G_{j k}:=\left(\alpha_{j} \cdot \omega_{j} \cdot \omega_{j}-\theta_{j}\right)-\left(\alpha_{k} \cdot \omega_{k} \cdot \omega_{k}-\theta_{k}\right) \in \operatorname{Sym}^{3} H^{0}\left(K_{C}\right)
$$

lies in the kernel I of φ. In particular, I_{3} is generated by $\omega_{k} \cdot f_{i j}$ and $G_{j k}$'s.

Vector space	(additional) Generators
W	$\omega_{1}^{3}, \omega_{1}^{2} \omega_{2} \cdots, \omega_{1}^{2} \omega_{g}, \omega_{1} \omega_{2}^{2}, \cdots, \omega_{1} \omega_{2} \omega_{g}, \omega_{2}^{3}, \cdots, \omega_{2}^{2} \omega_{g}$
$H^{0}\left(3 K_{C}-2 D\right)$	η
$H^{0}\left(3 K_{C}-D\right)$	$\beta_{i} \omega_{i}^{2}(3 \leq i \leq g), \beta_{i} \in H^{0}\left(K_{C}(-D)\right) \backslash\left\langle\alpha_{i}\right\rangle$
$H^{0}\left(3 K_{C}\right)$	$\omega_{i}^{3}(3 \leq i \leq g)$

When $n \geq 4$, the multiplication map

$$
H^{0}\left(K_{C}-D\right) \otimes H^{0}\left((n-1) K_{C}+(2-n) D\right) \rightarrow H^{0}\left(n K_{C}+(1-n) D\right)
$$

becomes surjective by the bpf pencil trick, since the divisor $(n-2) K_{C}+(3-n) D$ is always nonspecial. By induction, one can compute the bases of vector spaces as in the following table:

Vector space	(additional) Generators
	$\omega_{1}^{l} \omega_{2}^{m} \quad(l+m=n)$,
$H^{0}\left(n K_{C}+(1-n) D\right)$	$\omega_{1}^{s} \omega_{2}^{t} \omega_{i} \quad(s+t=n-1,3 \leq i \leq g)$,
	$\omega_{1}^{h} \omega_{2}^{k} \eta \quad(h+k=n-3)$
$H^{0}\left(n K_{C}+(2-n) D\right)$	$\beta_{i}^{n-2} \omega_{i}^{2} \quad(3 \leq i \leq g)$
\vdots	\vdots
$H^{0}\left(n K_{C}-D\right)$	$\beta_{i} \omega_{i}^{n-1} \quad(3 \leq i \leq g)$
$H^{0}\left(n K_{C}\right)$	$\omega_{i}^{n} \quad(3 \leq i \leq g)$

This explicit computation of bases allows us to find the generators of the ideal I of the canonical curve of C. Indeed, I is generated by the $f_{i j}$ (quadratic equations) and $G_{j k}$ (cubic equations):

$$
\begin{aligned}
f_{i j} & =\omega_{i} \cdot \omega_{j}-b_{i j} \omega_{1} \omega_{2}-\sum_{s=3}^{g}\left(\lambda_{i j s} \omega_{1}+\mu_{i j s} \omega_{2}\right) \cdot \omega_{s} \\
G_{j k} & =\left(\alpha_{j} \cdot \omega_{j} \cdot \omega_{j}-\theta_{j}\right)-\left(\alpha_{k} \cdot \omega_{k} \cdot \omega_{k}-\theta_{k}\right)
\end{aligned}
$$

Note that $f_{i j}$ are linearly independent, but $G_{j k}$ are mostly not; it satisfies the cocycle condition $G_{j k}+G_{k l}=G_{j l}$.

First we show that they generate I. Consider an element $R=\sum \gamma_{i j k} \omega_{i} \cdot \omega_{j}$. $\omega_{k} \in I_{3}$. Since $\omega_{i}^{3}(3 \leq i \leq g)$ are linearly independent modulo $H^{0}\left(3 K_{C}-D\right)$, we have $\gamma_{i i i}=0$ for $i=3, \cdots, g$. Thus

$$
R=\sum \delta_{i j k} f_{i j} \omega_{k}+\sum_{i=3}^{g}\left(\mu_{i} \alpha_{i}+\nu_{i} \beta_{i}\right) \omega_{i}^{2}+w
$$

where $w \in W$. Restricting to C and use the relation $\alpha_{i} \omega_{i}^{2}=\eta+\theta_{i}$, we have $\sum \mu_{i}=0$ and $\nu_{i}=0$, and hence we may write it as

$$
R=\sum \sigma_{i j k} f_{i j} \omega_{k}+\sum \lambda_{j k} G_{j k}+w^{\prime}
$$

with some $w^{\prime} \in W$. Restricting again to C, we see that $w^{\prime} \in I_{3}$. However, by the construction of W, we have $W \cap I=\{0\}$ so w^{\prime} must be 0 . In particular, R is generated by $f_{i j}$ and $G_{j k}$'s.

Similarly, one can check that I_{n} is generated by $f_{i j}$ and $G_{j k}$ for $n \geq 4$.
To complete the proof, we need to exhibit the syzygies among them. First assume that $g \geq 5$; a canonical curve of genus 4 is always trigonal, since it is a complete intersection of a quadric and a cubic hypersurface, so that the rulings of the quadric cut out on C a \mathfrak{g}_{3}^{1}.
Consider the relation

$$
\omega_{i} \omega_{j}=\sum_{s=3}^{g}\left(\alpha_{i j s}\right) \omega_{s}+b_{i j} \omega_{1} \omega_{2}
$$

determined by the quadratic equation $f_{i j}$. For any triple of distinct integers i, j, k, the linear form (differential) $\alpha_{i j k}$ vanishes doubly at P_{k}, so there are scalars $\rho_{i j k}$ such that $\alpha_{i j k}=\rho_{i j k} \alpha_{k}$. Hence, we have Petri syzygies

$$
f_{i j} \omega_{k}-f_{i k} \omega_{j}=\sum_{s=3}^{g}\left(\alpha_{i k s} f_{s j}-\alpha_{i j s} f_{s k}\right)+\rho_{i j k} G_{j k}
$$

for any triple of distinct indices $3 \leq i, j, k \leq g$ (here, in the summation appearing in the right-hand-side, $f_{j j}=f_{k k}=0$). One can also check that the coefficients $\rho_{i j k}$ are symmetric in i, j, k.

Topic 4 - Algebraic curves

To complete the theorem, we have to ask under which condition the coefficients $\rho_{i j k}$ are zero/nonzero. Let $3 \leq j \leq g$. Denote $V_{j} \subseteq \mathbb{P}^{g-1}$ be the algebraic set defined by $(g-3)$ quadratic equations

$$
f_{i j}=0, \quad 3 \leq i \leq g, \quad i \neq j .
$$

Note that $f_{i j} \in I$; hence the canonical curve of C lies in V_{j}. Then one can check that V_{j} has a unique surface component F_{j} which contains the canonical curve C;

Since V_{j} is defined by $(g-3)$ equations in \mathbb{P}^{g-1}, every component of V_{j} is of dimension ≥ 2, and there is a component which contains C since $V_{j} \supset C$. Write the equations $\left\{f_{i j}\right\}$ defining V_{j} in the following way:

$$
\sum_{s=3, s \neq j}^{g}\left(\delta_{i s} \omega_{j}-\alpha_{i j s}\right) \omega_{s}=b_{i j} \omega_{1} \omega_{2}+\alpha_{i j j} \omega_{j}, \quad 3 \leq i \leq g, i \neq j
$$

where $\delta_{i s}$ is the Kronecker delta symbol. Consider the determinant Δ_{j} of the $(g-3) \times(g-3)$ matrix

$$
M_{j}=\left(\delta_{i s} \omega_{j}-\alpha_{i j s}\right)_{3 \leq i, s \leq g, i \neq j, s \neq j}
$$

Then Δ_{j} is a polynomial in $\omega_{1}, \omega_{2}, \omega_{j}$ such that $\Delta_{j}\left(P_{j}\right) \neq 0$. In particular, the hypersurface $\left(\Delta_{j}=0\right)$ does not contain the canonical curve $C \subseteq \mathbb{P}^{g-1}$. In particular, we can solve the above system of equations in the ω_{s}. As a result, we obtain a rational surface F_{j} with rational parametric equations, away from the hypersurface $\Delta_{j}=0$,

$$
\left\{\begin{aligned}
\omega_{1} & =\omega_{1} \\
\omega_{2} & =\omega_{2} \\
\omega_{j} & =\omega_{j} \\
\omega_{s} & =\left[M_{j}^{-1}\left(b_{i j} \omega_{1} \omega_{2}+\alpha_{i j j} \omega_{j}\right)\right]_{s}, \quad 3 \leq s \leq g, s \neq j
\end{aligned}\right.
$$

By construction, it is the only component of V_{j} which is not contained in the hypersurface $V\left(\Delta_{j}\right)$. Since $P_{j} \in C \subseteq V_{j}$ and $P_{j} \notin V\left(\Delta_{j}\right)$, the only possibility is that F_{j} is the only component containing C.

Petri's key idea is encoded in the vanishing condition of $\rho_{i j k}$ in terms of those surfaces, namely:

Let $3 \leq j, k \leq g, j \neq k$. Two surfaces F_{j} and F_{k} coincide if and only if $\rho_{i j k}=0$ for every $i \in\{3, \cdots, g\} \backslash\{j, k\}$.

We will see how the above statement concludes the proof. If $\rho_{i j k} \neq 0$, from the Petri syzygy we have

$$
\rho_{i j k} G_{j k}=f_{i j} \omega_{k}-f_{i k} \omega_{j}-\sum_{s=3}^{g}\left(\alpha_{i k s} f_{s j}-\alpha_{i j s} f_{s k}\right),
$$

hence $G_{j k}$ is generated by quadratic equations $\left\{f_{i j}\right\}$, which are quadratic generators of I. Since $\rho_{i j k}$ is symmetric up to permutations of indices, we may have the same conclusion for $G_{i j}$ and $G_{i k}=G_{i j}+G_{j k}$. Hence, it remains to see that all the coefficients $\rho_{i j k}$ cannot vanish simultaneously. Suppose not, then the surfaces $F_{3}=\cdots=F_{g}=F$, it means that all the quadrics containing C contain a surface F. Such an irreducible surface F has the maximal number of quadric generators it can have (equals to $\binom{\operatorname{codim}(F)+1}{2}=\binom{g-2}{2}$). Castelnuovo theory implies that $\operatorname{deg} F=g-2$, and F is either one of the following:

- a cone over a rational normal curve;
- a rational normal scroll;
- Veronese surface in \mathbb{P}^{5}.

However, the first case does not appear (by a projection argument). If $F=v_{2}\left(\mathbb{P}^{2}\right) \subset \mathbb{P}^{5}$ is the Veronese surface, then $C \subset F \subset \mathbb{P}^{5}$ implies that the genus $g(C)=6$, and C is isomorphic to a plane curve since $F \simeq \mathbb{P}^{2}$. Therefore, C must be isomorphic to a plane quintic curve.
Finally, suppose that F is a rational normal scroll $F \simeq \mathbb{F}_{n}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-n)\right)(n \geq 0)$, embedded in \mathbb{P}^{g-1} by a complete linear series $|H|=|\sigma+(n+1+k) f|$ for some $k \geq 0$, where f is the fiber of the ruling $\mathbb{F}_{n} \rightarrow \mathbb{P}^{1}$ and σ is the unique irreducible section so that $\sigma^{2}=-n$. Note that the canonical divisor is given by $K_{\mathbb{F}_{n}}=-2 \sigma-(n+2) f$. Since $\operatorname{deg} F=H^{2}=g-2$, we have

$$
g-2=\sigma^{2}+2(n+1+k) \sigma \cdot f+(n+1+k)^{2} f^{2}=n+2 k+2
$$

Since $C \subset F$ is a divisor, $C \in|r \sigma+s f|$ for integers r, s, given by the intersection number $r=C . f$ and $s=C . \sigma+r n$. By the adjunction formula, we have

$$
\operatorname{deg} K_{C}=2 g-2=-r(r-2) n+(r-2) s+r(s-n-2)
$$

On the other hand, C is a canonical curve, hence its degree $2 g-2$;

$$
\operatorname{deg} C=C . H=2 g-2=-r n+s+r(n+1+k) .
$$

Therefore, we have

$$
\begin{aligned}
k & =\frac{g-n-4}{2} \\
s & =(2 g-2)-\frac{r}{2}(g-n-2) \\
0 & =(g-2) r^{2}+(8-5 g) r+(6 g-6)=(r-3)[(g-2) r-2(g-1)]
\end{aligned}
$$

Since $g \geq 4$, the only integral solution is $r=3$. Thus the fiber of the ruling $\pi: F \rightarrow \mathbb{P}^{1}$ intersects 3 times with C, induces a triple cover $\pi_{C}: C \rightarrow \mathbb{P}^{1}$. Therefore C is trigonal.

Remark 294. One can imitate the above arguments for a curve which is not trigonal nor isomorphic to a plane quintic. Then, each $G_{j k}$ is generated by quadratic equations $\left\{f_{i j}\right\}$ as in the proof of the Enriques-Petri theorem, and hence give a linear syzygy among $\left\{f_{i j}\right\}$ from the cocycle condition on $\left\{G_{j k}\right\}$. To classify potential counterexamples, there are more subcases; for instance, C is contained in a threefold of minimal degree. All the possible cases of curves C are classified by Ehbauer.

Remark 295. For general and special curves, there are several attempts on Green's conjecture. The next case to the Enriques-Petri theorem, describing the property (N_{2}) with the exceptional cases of tetragonal curves/plane sextics, is known to be true by Voisin and Schreyer independently. During 90s, several people containing Bayer and Eisenbud studied a degeneration of curves and observed the behavior of syzygies. They tried to solve Green's conjecture for general curves, by considering a family of curves whose limit is fairly easy to compute; for instance, tends to be a hyperelliptic curve, or a degenerate hyperelliptic curve (ribbon). Unfortunately, it was not very much successful at the time.
Voisin showed that Green's conjecture holds for a general curve of genus g (as a general element of the moduli space \mathcal{M}_{g}). Using Lefschetz theorem on Koszul cohomology groups, the syzygies $K_{p, q}\left(C, K_{C}\right)$ can be computed from the syzygies of K3 surfaces. Together with computational techniques using the Hilbert scheme of points on K3 surfaces, she found a K3 surface whose general hyperplane section is a canonical curve of genus g for each g. Aprodu showed that the conjecture holds for a general k-gonal curve of genus g (as an element of the gonality strata $\mathcal{M}_{g, k} \subset \mathcal{M}_{g}$). Aprodu and Farkas showed that the conjecture holds for arbitrary smooth curves on K3 surfaces. However, when $g>11$, a general curve of genus g is not embedded in any K3 surface.

