
Topic 4 – Algebraic curves

Some of the numbers can be read o↵ from the Hilbert function of C, in particular:

Proposition 277. 1,1 =
�
d�g�1

2

�
and r�1,2 = g.

Proof. Since there is no linear form in the ideal IC , we have 1,1 = dim(IC)2 = dimS2�
h0(OC(2)) =

�
r+2

2

�
� (1� g + 2d). Since r = d� g, we have the desired result.

Moreover, by Green’s duality, Kr�1,2(C,OC(1)) = K0,0(C,KC ,OC(1)) = H0(KC) is
g-dimensional as stated.

Proposition 278. Let C be a curve of high degree as above. If i,1 = 0, then j,1 = 0
for every j � i. If i,2 = 0, then j,2 = 0 for every j  i.

Proof. Note that i+1,1 counts the number of independent linear relations among mini-
mal generators of S(�i�1)�i,1 ✓ Fi appearing in i-th term of the minimal free resolution
of C. Hence, if i,1 = 0, no (linear) relations can occur, which forces i+1,1 = 0.
The second statement comes from the same argument, applied on the “dual resolution”
Hom(F•, S(�r� 1)) which is a free resolution of the graded module

L
j
H0(!C(j)).

To sum up, the Betti table of a curve of high degree has the following shape:

0 1 2 · · · a a+ 1 · · · b� 1 b · · · r � 1

0 1 � � · · · � � · · · � � · · · �
1 � 1,1 2,1 · · · a,1 a+1,1 · · · b�1,1 � · · · �
2 � � � · · · � a+1,2 · · · b�1,2 b,2 · · · g

Question 279. It is natural to ask the following questions for a curve of high degree
C ⇢ Pr of degree d = 2g + 1 + p.

(1) What is the number a = a(C) so that a,2 = 0 but a+1,2 6= 0? (such a number is
called the Green-Lazarsfeld index)

(2) What is the number b so that b,1 = 0 but b�1,1 6= 0?

As we seen above, Green’s (2g+1+ p)-theorem implies that a(C) � p. An upper bound
of a(C) comes from the presence of special secants:

Definition 280. A degenerate q-secant plane of C ⇢ Pr is a linear subspace ⇤ ✓ Pr

such that length(C \ ⇤) � q, and dim⇤  q � 2.

If we choose general q points P1, · · · , Pq of C with q < r, then their linear span ⇤ =
hP1, · · · , Pqi is a linear subspace of dimension (q � 1) which intersects C exactly at
P1, · · · , Pq. Hence, a degenerate q-secant plane implies that there are q-points on C
which form a special configuration in this manner. We address a known result without
proofs:

Proposition 281. Let C be as above. If C has a degenerate q-secant plane, then a(C) 
q � 3. Furthermore, C always has a degenerate q-secant plane for the value q = p+ 3+

max
⇣
0, dg�p�3

2
e
⌘
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For the values of b(C), one has an upper bound, called Kp,1-theorem:

Theorem 282. b(C)  r, and the equality holds ( i.e., r�1,1 6= 0) if and only if C is a

rational normal curve.

A well-known proof of the Kp,1-theorem uses a notion of “syzygy scheme” and Casteln-
uovo theory, so we will skip in this lecture.
A lower bound comes from the following nonvanishing theorem by Green and Lazarsfeld.

Theorem 283 (Green-Lazarsfeld nonvanishing). Let X be a smooth projective variety,

L be a very ample line bundle. Let M1,M2 be two line bundles such that L ' M1 ⌦M2

and

ri = h0(X,Mi)� 1 � 1

for i = 1, 2. Then Kr1+r2�1,1(X,L) 6= 0.

If we are able to find certain M1,M2 for our curve of high degree, then b(C) � r1 + r2.
A nonzero cohomology class in Kr1+r2�1,1(X,L) provided from the above nonvanishing
theorem is called a Green-Lazarsfeld class.

Question 284. Let C be a curve (of high degree).

(1) Do the degenerate secant planes completely determine the value a(C)?

(2) Do the Green-Lazarsfeld classes completely determine the value b(C)?

Both of the questions seem to be extremely di�cult in general. There is an answer to
the second question when C is a curve of su�ciently high degree. We first begin with a
consequence of the Green-Lazarsfeld nonvanishing.

Corollary 285. Let C be a k-gonal curve, and let L be a very ample line bundle on C
of degree degL = 2g+1+p for p � 0, so that |L| embeds C into PN

where N = g+p+1.
Then KN�k,1(C,L) 6= 0.

Proof. Apply the Green-Lazarsfeld nonvanishing theorem for a pair M and L ⌦ M_,
whereM is a line bundle which gives a g1

k
on C. Since h0(C,L⌦M_) � g+p+2�k = N+

1�k, the Koszul cohomology groups Ki,1(C,L) cannot be zero for 1  i  h0(L�M)�1,
where the range covers i = N � k.

When degL is su�ciently large, then the divisor L�M becomes nonspecial, and hence
the number h0(L � M) � 1 coincides with N � k. Therefore, we may ask a natural
question whether this result is sharp:

Question 286. Let L be a very ample divisor on C with degL � 0, so that |L| embeds
C into PN where N = degL� g. Does Kp,1(C,L) = 0 when p > N � k?

The problem, once known as Green-Lazarsfeld’s gonality conjecture, is turned out to be
true by Ein and Lazarsfeld.
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Topic 4 – Algebraic curves

Theorem 287 (Ein-Lazarsfeld, Rathmann). Let L be any very ample divisor on C with

degL > 4g�4, so that |L| embeds C into PN
where N = degL�g. Then Kp,1(C,L) = 0

for p > N � k.

In particular, we are able to read o↵ the gonality of C from the shape of Betti table for
C ⇢ PN a curve of su�ciently high degree.

Remark 288. For a generic k-gonal curve C of genus g, Farkas and Kemeny showed
that deg(L) � 2g�1+k is enough for the degree condition for L. Their bound is sharp;
every k-gonal curve C of genus g has a line bundle of degree 2g � 2 + k which fails to
verify the statement of the gonality conjecture. However, their result cannot cover every
k-gonal curve of genus g; plane curves do not satisfy the statement (of course, they are
NOT general in the moduli).
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6 Enriques-Petri theorem and Green’s conjecture

We begin with another consequence of Green-Lazarsfeld nonvanishing theorem, asking
the Cli↵ord index:

Question 289. Is it possible to read o↵ the Cli↵ord index of C from a certain Betti
table?

Going back to the nonvanishing theorem, we have the following consequence:

Corollary 290. Let C be a nonhyperelliptic curve of genus g � 3 such that Cli↵(C) = p.
Then the Koszul cohomology group Kg�2�p,1(C,KC) 6= 0 does not vanish.

Proof. Let A be an e↵ective divisor which computes the Cli↵ord index of C. In partic-
ular, if we denote by d = degA, r = h0(A)� 1 � 1, then p = d� 2r. By Riemann-Roch,
the divisor KC � A is also a special divisor such that h0(KC � A) � 1 = g � d + r � 1.
Hence, the nonvanishing theorem implies that Kg�d+2r�2,1(C,KC) = Kg�2�p,1(C,KC)
does not vanish.

We may also ask that the above nonvanishing result is sharp, which is a famous Green’s
conjecture:

Conjecture 291 (Green’s canonical syzygy conjecture). Let C be as above. Then

Ki,1(C,KC) = 0 for i > g � 2� Cli↵(C).

Passing by Green’s duality theorem, we have an equivalent statement for Kp,2(C,KC):

Conjecture 292. Let C be as above. Then the canonical curve satisfies the property

(Np) for p < Cli↵(C).

The zeroth case p = 0 corresponds to M. Noether’s theorem. The case p = 1 corresponds
to Enriques-Petri theorem:

Theorem 293 (Enriques-Petri). Let C be a nonhyperelliptic curve of genus g � 4. The

canonical curve of C is defined only by quadric equations if and only if neither C is

trigonal and nor C is isomorphic to a plane quintic.

Proof. ()) When C is trigonal, then the divisorD associated to the 3�1 morphism C !
P1 contributes to the Cli↵ord index of C; in particular, Cli↵(C)  degD�h0(D)+2 = 1.
Since C is not hyperelliptic, the Cli↵ord index cannot be zero. Similarly, when C is
isomorphic to a plane quintic, then the hyperplane divisor D satisfies h0(D) = 3 and
degD = 5, which also contributes to the Cli↵ord index of C. In particular, Cli↵(C)  1,
and we conclude that Cli↵(C) = 1 by the same reason. In any cases, Cli↵(C) = 1, and
hence, the canonical curve fails to satisfy the property (N1) since the Koszul cohomology
group Kg�3,1(C,KC) ' K1,2(C,KC)_ does not vanish. In particular, the ideal of the
canonical curve requires a cubic equation as generators.
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(() First, consider the case g = 3 as an example. By Riemann-Roch, we have h0(KC) =
3 and h0(nKC) = 4n� 2 for n > 1. Since KC is very ample, hence, for any point P 2 C
we have ⇢

h0(KC(�P )) = 2, and
h0(KC(�2P )) = 1.

In particular, we are able to find a basis {r, s, t} of H0(KC) such that

8
<

:

ordP (r) = 2,
ordP (s) = 1,
ordP (t) = 0.

Since KC(�P ) is a base-point-free pencil, we have a short exact sequence

0 ! �KC(P ) ! H0(KC(�P ))⌦OC ! KC(�P ) ! 0.

Twisting by KC and considering the cohomology long exact sequence, one can show that
the multiplication map

H0(KC(�P ))⌦H0(KC) ! H0(2KC(�P ))

is surjective. Hence, H0(2KC(�P )) is spanned by r2, rs, rt, s2, st. Since h0(2KC) = 6,
we conclude that

H0(2KC(�P )) = hr2, rs, rt, s2, sti ⇢ hr2, rs, rt, s2, st, t2i = H0(2KC).

Similarly, the multiplication map H0(KC(�P )) ⌦ H0(2KC) ! H0(3KC(�P )) is also
surjective, and we have

H0(3KC(�P )) = hr3, r2s, r2t, rs2, rst, rt2, s3, s2t, st2i,
H0(3KC) = hr3, r2s, r2t, rs2, rst, rt2, s3, s2t, st2, t3i.

We will show the statement by a similar argument. Now let C be a non-hyperelliptic
curve of genus g � 3. Choose a general set of points P1, P2, · · · , Pg 2 C such that the
divisor D = P3 + · · ·+ Pg satisfies

• KC(�D) is globally generated;

• h0(KC(�D)) = 2, that is, |KC(�D)| is a base-point-free g1g.

Since Vi := H0(KC(�P1� · · ·�Pg+Pi)) ⇢ H0(KC) is 1-dimensional for each 1  i  g,
we may pick a basis {!1, · · · ,!g} of H0(KC) from generators of Vi. We have

⇢
!i(Pi) 6= 0,
!i(Pj) = 0 if i 6= j,

and H0(KC(�D)) = h!1,!2i (in particular, !1 and !2 vanish with order exactly 1 on
P3, · · · , Pg).
We apply the base-point-free pencil trick for the following multiplicative map

µn : H0(KC(�D))⌦H0((n� 1)KC) ! H0(nKC(�D))

for each n � 2, we have
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• !n

3
, · · · ,!n

g 2 H0(nKC) \H0(nKC(�D));

• !n

3
, · · · ,!n

g are linearly independent;

• h0(nKC)� h0(nKC(�D)) = g � 2.

Hence, H0(nKC) is spanned by forms in H0(nKC(�D)) and !n

3
, · · · ,!n

g . As a conse-
quence, for any n � 2, the multiplicative map

H0(KC)⌦H0((n� 1)KC) ! H0(nKC)

is surjective, which proves the “projective normality part” of M. Noether’s theorem.
We are particularly interested in quadratic forms. Indeed, the (3g � 3)-dimensional
vector space H0(2KC) is spanned by:

H0(2KC) = h!2

1,!1!2, · · · ,!1!g,!
2

2,!2!3, · · · ,!2!g,!
2

3, · · · ,!2

gi.

Let i, j 2 {3, · · · , g} be distinct indices. Since !i vanishes on Pk 6= Pi and !j vanishes
on Pk 6= Pj , their multiplication !i!j 2 H0(2KC) vanishes at P1, · · · , Pg. Therefore,
!2

k
-term cannot appear (which vanishes at every P1, · · · , Pg but not at Pk). In other

words, there exist �ijs, µijs, bij 2 C such that !i!j is expressed as a linear sum

!i!j = bij!1!2 +
gX

s=3

(�ijs!1 + µijs!2)!s.

In particular, a quadratic form

fij := !i · !j � bij!1 · !2 �
gX

s=3

(�ijs!1 + µijs!2) · !s 2 Sym2H0(KC)

is in the kernel I of the natural map ' : SymH0(KC) !
L

n
H0(nKC). The elements

fij are linearly independent, and hence, we have
�
g�2

2

�
quadratic equations which form

a basis for the ideal I2 of C.
We are now going to construct a set of cubic relations Gjk such that fij ’s and Gjk’s form
a generating set for the whole I. However, the multiplication map

H0(KC �D)⌦H0(2KC �D) ! H0(3KC � 2D)

is not surjective. Inside the (3g�1)-dimensional vector space H0(3KC �2D), the image
forms a (3g � 2)-dimensional subspace

W := h!3

1,!
2

1!2 · · · ,!2

1!g,!1!
2

2, · · · ,!1!2!g,!
3

2, · · · ,!2

2!gi

(corresponding to cubic monomials which contains !3, · · · ,!g at most once; we skipped a
proof for their linear independence). Take ⌘ 2 H0(3KC(�2D))\W so thatH0(3KC(�2D)) =
hW, ⌘i. Hence, we have a filtration

W 3g�2 ⇢ H0(3KC � 2D)3g�1 ⇢ H0(3KC �D)4g�3 ⇢ H0(3KC)
5g�5

of vector spaces. For each i 2 {3, · · · , g}, there is an element ↵i 2 H0(KC(�D)) =
h!1,!2i such that ↵i!2

i
2 H0(3KC � 2D) \W .
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Note that both !1!2

i
and !2!2

i
has a zero of order 1 at Pi. Hence, by taking

a suitable linear combination of them, there is a unique nonzero element
↵i 2 h!1,!2i such that ↵i!2

i
has a zero of order � 2 at Pi. Clearly it has a

zero of order 2 at the other Pj , j 6= i. In particular, ↵i!2

i
2 H0(3KC(�2D)).

If it is an element in W , one can express ↵i!2

i
as a linear combination

↵i!
2

i = ↵i!1'1 + ↵i!2'2 + !2

2✓

for some linear forms '1,'2, ✓ 2 H0(KC). Consider the (e↵ective) divisor
of zeros of ↵i. Then (↵i)0 = D + Pi + Di; ↵i vanishes along P3, · · · , Pg,
and vanishes twice at Pi. Since |KC � D| is base-point-free, the divisors
Di and (!2)0 are disjoint. Hence, if Q is a point such that ↵i(Q) = 0 but
!2(Q) 6= 0, then ✓(Q) = 0, that is, ✓ 2 H0(KC �Di). Among the elements
in H0(KC � D), the only possible choice is: ✓ is a constant multiple of ↵i.
Hence the relation reduces into

↵i!
2

i = ↵i(
X

�j!1!j +
X

µj!2!j),

which gives a contradiction by observing the vanishing order at Pi.

We conclude that there is an element ✓i 2 W such that ↵i!2

i
= ⌘+ ✓i for each i  3  g.

Therefore, for any given distinct j, k 2 {3, · · · , g}, the cubic relation

Gjk := (↵j · !j · !j � ✓j)� (↵k · !k · !k � ✓k) 2 Sym3H0(KC)

lies in the kernel I of '. In particular, I3 is generated by !k · fij and Gjk’s.

Vector space (additional) Generators
W !3

1
,!2

1
!2 · · · ,!2

1
!g,!1!2

2
, · · · ,!1!2!g,!3

2
, · · · ,!2

2
!g

H0(3KC � 2D) ⌘
H0(3KC �D) �i!2

i
(3  i  g),�i 2 H0(KC(�D)) \ h↵ii

H0(3KC) !3

i
(3  i  g)

When n � 4, the multiplication map

H0(KC �D)⌦H0((n� 1)KC + (2� n)D) ! H0(nKC + (1� n)D)

becomes surjective by the bpf pencil trick, since the divisor (n � 2)KC + (3 � n)D is
always nonspecial. By induction, one can compute the bases of vector spaces as in the
following table:

Vector space (additional) Generators
!l

1
!m

2
(l +m = n),

H0(nKC + (1� n)D) !s

1
!t

2
!i (s+ t = n� 1, 3  i  g),

!h

1
!k

2
⌘ (h+ k = n� 3)

H0(nKC + (2� n)D) �n�2

i
!2

i
(3  i  g)

...
...

H0(nKC �D) �i!
n�1

i
(3  i  g)

H0(nKC) !n

i
(3  i  g)
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This explicit computation of bases allows us to find the generators of the ideal I of the
canonical curve of C. Indeed, I is generated by the fij (quadratic equations) and Gjk

(cubic equations):

fij = !i · !j � bij!1!2 �
gX

s=3

(�ijs!1 + µijs!2) · !s

Gjk = (↵j · !j · !j � ✓j)� (↵k · !k · !k � ✓k)

Note that fij are linearly independent, but Gjk are mostly not; it satisfies the cocycle
condition Gjk +Gkl = Gjl.

First we show that they generate I. Consider an element R =
P

�ijk!i · !j ·
!k 2 I3. Since !3

i
(3  i  g) are linearly independent modulo H0(3KC�D),

we have �iii = 0 for i = 3, · · · , g. Thus

R =
X

�ijkfij!k +
gX

i=3

(µi↵i + ⌫i�i)!
2

i + w

where w 2 W . Restricting to C and use the relation ↵i!2

i
= ⌘ + ✓i, we haveP

µi = 0 and ⌫i = 0, and hence we may write it as

R =
X

�ijkfij!k +
X

�jkGjk + w0

with some w0 2 W . Restricting again to C, we see that w0 2 I3. However, by
the construction of W , we have W \ I = {0} so w0 must be 0. In particular,
R is generated by fij and Gjk’s.

Similarly, one can check that In is generated by fij and Gjk for n � 4.

To complete the proof, we need to exhibit the syzygies among them. First assume that
g � 5; a canonical curve of genus 4 is always trigonal, since it is a complete intersection
of a quadric and a cubic hypersurface, so that the rulings of the quadric cut out on C a
g1
3
.

Consider the relation

!i!j =
gX

s=3

(↵ijs)!s + bij!1!2

determined by the quadratic equation fij . For any triple of distinct integers i, j, k, the
linear form (di↵erential) ↵ijk vanishes doubly at Pk, so there are scalars ⇢ijk such that
↵ijk = ⇢ijk↵k. Hence, we have Petri syzygies

fij!k � fik!j =
gX

s=3

(↵iksfsj � ↵ijsfsk) + ⇢ijkGjk

for any triple of distinct indices 3  i, j, k  g (here, in the summation appearing in
the right-hand-side, fjj = fkk = 0). One can also check that the coe�cients ⇢ijk are
symmetric in i, j, k.

119



Topic 4 – Algebraic curves

To complete the theorem, we have to ask under which condition the coe�cients ⇢ijk are
zero/nonzero. Let 3  j  g. Denote Vj ✓ Pg�1 be the algebraic set defined by (g � 3)
quadratic equations

fij = 0, 3  i  g, i 6= j.

Note that fij 2 I; hence the canonical curve of C lies in Vj . Then one can check that Vj

has a unique surface component Fj which contains the canonical curve C;

Since Vj is defined by (g � 3) equations in Pg�1, every component of Vj is
of dimension � 2, and there is a component which contains C since Vj � C.
Write the equations {fij} defining Vj in the following way:

gX

s=3,s 6=j

(�is!j � ↵ijs)!s = bij!1!2 + ↵ijj!j , 3  i  g, i 6= j

where �is is the Kronecker delta symbol. Consider the determinant �j of the
(g � 3)⇥ (g � 3) matrix

Mj = (�is!j � ↵ijs)3i,sg,i 6=j,s 6=j

Then �j is a polynomial in !1,!2,!j such that �j(Pj) 6= 0. In particular,
the hypersurface (�j = 0) does not contain the canonical curve C ✓ Pg�1.
In particular, we can solve the above system of equations in the !s. As a
result, we obtain a rational surface Fj with rational parametric equations,
away from the hypersurface �j = 0,

8
>>><

>>>:

!1 = !1;
!2 = !2;
!j = !j ;

!s =
h
M�1

j

�
bij!1!2 + ↵ijj!j

�i

s

, 3  s  g, s 6= j.

By construction, it is the only component of Vj which is not contained in the
hypersurface V (�j). Since Pj 2 C ✓ Vj and Pj 62 V (�j), the only possibility
is that Fj is the only component containing C.

Petri’s key idea is encoded in the vanishing condition of ⇢ijk in terms of those surfaces,
namely:

Let 3  j, k  g, j 6= k. Two surfaces Fj and Fk coincide if and only if
⇢ijk = 0 for every i 2 {3, · · · , g} \ {j, k}.

We will see how the above statement concludes the proof. If ⇢ijk 6= 0, from the Petri
syzygy we have

⇢ijkGjk = fij!k � fik!j �
gX

s=3

(↵iksfsj � ↵ijsfsk),
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hence Gjk is generated by quadratic equations {fij}, which are quadratic generators of I.
Since ⇢ijk is symmetric up to permutations of indices, we may have the same conclusion
for Gij and Gik = Gij+Gjk. Hence, it remains to see that all the coe�cients ⇢ijk cannot
vanish simultaneously. Suppose not, then the surfaces F3 = · · · = Fg = F , it means that
all the quadrics containing C contain a surface F . Such an irreducible surface F has
the maximal number of quadric generators it can have (equals to

�
codim(F )+1

2

�
=

�
g�2

2

�
).

Castelnuovo theory implies that degF = g � 2, and F is either one of the following:

• a cone over a rational normal curve;

• a rational normal scroll;

• Veronese surface in P5.

However, the first case does not appear (by a projection argument). If F = v2(P2) ⇢ P5

is the Veronese surface, then C ⇢ F ⇢ P5 implies that the genus g(C) = 6, and C is
isomorphic to a plane curve since F ' P2. Therefore, C must be isomorphic to a plane
quintic curve.
Finally, suppose that F is a rational normal scroll F ' Fn = P(OP1 �OP1(�n)) (n � 0),
embedded in Pg�1 by a complete linear series |H| = |� + (n+ 1 + k)f | for some k � 0,
where f is the fiber of the ruling Fn ! P1 and � is the unique irreducible section so
that �2 = �n. Note that the canonical divisor is given by KFn = �2�� (n+2)f . Since
degF = H2 = g � 2, we have

g � 2 = �2 + 2(n+ 1 + k)�.f + (n+ 1 + k)2f2 = n+ 2k + 2.

Since C ⇢ F is a divisor, C 2 |r�+sf | for integers r, s, given by the intersection number
r = C.f and s = C.� + rn. By the adjunction formula, we have

degKC = 2g � 2 = �r(r � 2)n+ (r � 2)s+ r(s� n� 2).

On the other hand, C is a canonical curve, hence its degree 2g � 2;

degC = C.H = 2g � 2 = �rn+ s+ r(n+ 1 + k).

Therefore, we have

k =
g � n� 4

2
,

s = (2g � 2)� r

2
(g � n� 2),

0 = (g � 2)r2 + (8� 5g)r + (6g � 6) = (r � 3)[(g � 2)r � 2(g � 1)].

Since g � 4, the only integral solution is r = 3. Thus the fiber of the ruling ⇡ : F ! P1

intersects 3 times with C, induces a triple cover ⇡C : C ! P1. Therefore C is trigonal.
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Remark 294. One can imitate the above arguments for a curve which is not trigonal
nor isomorphic to a plane quintic. Then, each Gjk is generated by quadratic equations
{fij} as in the proof of the Enriques-Petri theorem, and hence give a linear syzygy among
{fij} from the cocycle condition on {Gjk}. To classify potential counterexamples, there
are more subcases; for instance, C is contained in a threefold of minimal degree. All the
possible cases of curves C are classified by Ehbauer.

Remark 295. For general and special curves, there are several attempts on Green’s
conjecture. The next case to the Enriques-Petri theorem, describing the property (N2)
with the exceptional cases of tetragonal curves/plane sextics, is known to be true by
Voisin and Schreyer independently. During 90s, several people containing Bayer and
Eisenbud studied a degeneration of curves and observed the behavior of syzygies. They
tried to solve Green’s conjecture for general curves, by considering a family of curves
whose limit is fairly easy to compute; for instance, tends to be a hyperelliptic curve, or a
degenerate hyperelliptic curve (ribbon). Unfortunately, it was not very much successful
at the time.
Voisin showed that Green’s conjecture holds for a general curve of genus g (as a gen-
eral element of the moduli space Mg). Using Lefschetz theorem on Koszul cohomology
groups, the syzygies Kp,q(C,KC) can be computed from the syzygies of K3 surfaces. To-
gether with computational techniques using the Hilbert scheme of points on K3 surfaces,
she found a K3 surface whose general hyperplane section is a canonical curve of genus
g for each g. Aprodu showed that the conjecture holds for a general k-gonal curve of
genus g (as an element of the gonality strata Mg,k ⇢ Mg). Aprodu and Farkas showed
that the conjecture holds for arbitrary smooth curves on K3 surfaces. However, when
g > 11, a general curve of genus g is not embedded in any K3 surface.
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