Some of the numbers can be read off from the Hilbert function of C, in particular:

Proposition 277. $\kappa_{1,1} = \begin{pmatrix} d-g-1 \\ 2 \end{pmatrix}$ and $\kappa_{r-1,2} = g$.

Proof. Since there is no linear form in the ideal I_C , we have $\kappa_{1,1} = \dim(I_C)_2 = \dim S_2 - h^0(\mathcal{O}_C(2)) = \binom{r+2}{2} - (1-g+2d)$. Since r = d-g, we have the desired result. Moreover, by Green's duality, $K_{r-1,2}(C, \mathcal{O}_C(1)) = K_{0,0}(C, K_C, \mathcal{O}_C(1)) = H^0(K_C)$ is *q*-dimensional as stated.

Proposition 278. Let C be a curve of high degree as above. If $\kappa_{i,1} = 0$, then $\kappa_{j,1} = 0$ for every $j \ge i$. If $\kappa_{i,2} = 0$, then $\kappa_{j,2} = 0$ for every $j \le i$.

Proof. Note that $\kappa_{i+1,1}$ counts the number of independent linear relations among minimal generators of $S(-i-1)^{\oplus \kappa_{i,1}} \subseteq F_i$ appearing in *i*-th term of the minimal free resolution of *C*. Hence, if $\kappa_{i,1} = 0$, no (linear) relations can occur, which forces $\kappa_{i+1,1} = 0$. The second statement comes from the same argument, applied on the "dual resolution"

Hom $(F_{\bullet}, S(-r-1))$ which is a free resolution of the graded module $\bigoplus_{j} H^{0}(\omega_{C}(j))$. \Box

To sum up, the Betti table of a curve of high degree has the following shape:

	0	1	2	•••	a	a+1	•••	b-1	b	•••	r-1
0	1	—	—	•••	—	_	•••	_	—	•••	_
						$\kappa_{a+1,1}$					
2	_	_	_	•••	_	$\kappa_{a+1,2}$		$\kappa_{b-1,2}$	$\kappa_{b,2}$	•••	g

Question 279. It is natural to ask the following questions for a curve of high degree $C \subset \mathbb{P}^r$ of degree d = 2g + 1 + p.

- (1) What is the number a = a(C) so that $\kappa_{a,2} = 0$ but $\kappa_{a+1,2} \neq 0$? (such a number is called the Green-Lazarsfeld index)
- (2) What is the number b so that $\kappa_{b,1} = 0$ but $\kappa_{b-1,1} \neq 0$?

As we seen above, Green's (2g+1+p)-theorem implies that $a(C) \ge p$. An upper bound of a(C) comes from the presence of special secants:

Definition 280. A degenerate q-secant plane of $C \subset \mathbb{P}^r$ is a linear subspace $\Lambda \subseteq \mathbb{P}^r$ such that $length(C \cap \Lambda) \geq q$, and $\dim \Lambda \leq q - 2$.

If we choose general q points P_1, \dots, P_q of C with q < r, then their linear span $\Lambda = \langle P_1, \dots, P_q \rangle$ is a linear subspace of dimension (q - 1) which intersects C exactly at P_1, \dots, P_q . Hence, a degenerate q-secant plane implies that there are q-points on C which form a special configuration in this manner. We address a known result without proofs:

Proposition 281. Let C be as above. If C has a degenerate q-secant plane, then $a(C) \leq q-3$. Furthermore, C always has a degenerate q-secant plane for the value $q = p+3 + \max\left(0, \lceil \frac{g-p-3}{2} \rceil\right)$

For the values of b(C), one has an upper bound, called $K_{p,1}$ -theorem:

Theorem 282. $b(C) \leq r$, and the equality holds (i.e., $\kappa_{r-1,1} \neq 0$) if and only if C is a rational normal curve.

A well-known proof of the $K_{p,1}$ -theorem uses a notion of "syzygy scheme" and Castelnuovo theory, so we will skip in this lecture.

A lower bound comes from the following nonvanishing theorem by Green and Lazarsfeld.

Theorem 283 (Green-Lazarsfeld nonvanishing). Let X be a smooth projective variety, L be a very ample line bundle. Let M_1, M_2 be two line bundles such that $L \simeq M_1 \otimes M_2$ and

$$r_i = h^0(X, M_i) - 1 \ge 1$$

for i = 1, 2. Then $K_{r_1+r_2-1,1}(X, L) \neq 0$.

If we are able to find certain M_1, M_2 for our curve of high degree, then $b(C) \ge r_1 + r_2$. A nonzero cohomology class in $K_{r_1+r_2-1,1}(X, L)$ provided from the above nonvanishing theorem is called a *Green-Lazarsfeld class*.

Question 284. Let C be a curve (of high degree).

(1) Do the degenerate secant planes completely determine the value a(C)?

(2) Do the Green-Lazarsfeld classes completely determine the value b(C)?

Both of the questions seem to be extremely difficult in general. There is an answer to the second question when C is a curve of sufficiently high degree. We first begin with a consequence of the Green-Lazarsfeld nonvanishing.

Corollary 285. Let C be a k-gonal curve, and let L be a very ample line bundle on C of degree deg L = 2g+1+p for $p \ge 0$, so that |L| embeds C into \mathbb{P}^N where N = g+p+1. Then $K_{N-k,1}(C,L) \ne 0$.

Proof. Apply the Green-Lazarsfeld nonvanishing theorem for a pair M and $L \otimes M^{\vee}$, where M is a line bundle which gives a \mathfrak{g}_k^1 on C. Since $h^0(C, L \otimes M^{\vee}) \geq g + p + 2 - k = N + 1 - k$, the Koszul cohomology groups $K_{i,1}(C, L)$ cannot be zero for $1 \leq i \leq h^0(L-M) - 1$, where the range covers i = N - k.

When deg L is sufficiently large, then the divisor L - M becomes nonspecial, and hence the number $h^0(L - M) - 1$ coincides with N - k. Therefore, we may ask a natural question whether this result is sharp:

Question 286. Let *L* be a very ample divisor on *C* with deg $L \gg 0$, so that |L| embeds *C* into \mathbb{P}^N where $N = \deg L - g$. Does $K_{p,1}(C, L) = 0$ when p > N - k?

The problem, once known as Green-Lazarsfeld's gonality conjecture, is turned out to be true by Ein and Lazarsfeld.

Theorem 287 (Ein-Lazarsfeld, Rathmann). Let L be any very ample divisor on C with $\deg L > 4g-4$, so that |L| embeds C into \mathbb{P}^N where $N = \deg L - g$. Then $K_{p,1}(C, L) = 0$ for p > N - k.

In particular, we are able to read off the gonality of C from the shape of Betti table for $C \subset \mathbb{P}^N$ a curve of sufficiently high degree.

Remark 288. For a generic k-gonal curve C of genus g, Farkas and Kemeny showed that $\deg(L) \geq 2g - 1 + k$ is enough for the degree condition for L. Their bound is sharp; every k-gonal curve C of genus g has a line bundle of degree 2g - 2 + k which fails to verify the statement of the gonality conjecture. However, their result cannot cover every k-gonal curve of genus g; plane curves do not satisfy the statement (of course, they are NOT general in the moduli).

6 Enriques-Petri theorem and Green's conjecture

We begin with another consequence of Green-Lazarsfeld nonvanishing theorem, asking the Clifford index:

Question 289. Is it possible to read off the Clifford index of C from a certain Betti table?

Going back to the nonvanishing theorem, we have the following consequence:

Corollary 290. Let C be a nonhyperelliptic curve of genus $g \ge 3$ such that Cliff(C) = p. Then the Koszul cohomology group $K_{g-2-p,1}(C, K_C) \ne 0$ does not vanish.

Proof. Let A be an effective divisor which computes the Clifford index of C. In particular, if we denote by $d = \deg A$, $r = h^0(A) - 1 \ge 1$, then p = d - 2r. By Riemann-Roch, the divisor $K_C - A$ is also a special divisor such that $h^0(K_C - A) - 1 = g - d + r - 1$. Hence, the nonvanishing theorem implies that $K_{g-d+2r-2,1}(C, K_C) = K_{g-2-p,1}(C, K_C)$ does not vanish.

We may also ask that the above nonvanishing result is sharp, which is a famous Green's conjecture:

Conjecture 291 (Green's canonical syzygy conjecture). Let C be as above. Then $K_{i,1}(C, K_C) = 0$ for i > g - 2 - Cliff(C).

Passing by Green's duality theorem, we have an equivalent statement for $K_{p,2}(C, K_C)$:

Conjecture 292. Let C be as above. Then the canonical curve satisfies the property (N_p) for p < Cliff(C).

The zeroth case p = 0 corresponds to M. Noether's theorem. The case p = 1 corresponds to Enriques-Petri theorem:

Theorem 293 (Enriques-Petri). Let C be a nonhyperelliptic curve of genus $g \ge 4$. The canonical curve of C is defined only by quadric equations if and only if neither C is trigonal and nor C is isomorphic to a plane quintic.

Proof. (⇒) When *C* is trigonal, then the divisor *D* associated to the 3–1 morphism $C \to \mathbb{P}^1$ contributes to the Clifford index of *C*; in particular, $\operatorname{Cliff}(C) \leq \deg D - h^0(D) + 2 = 1$. Since *C* is not hyperelliptic, the Clifford index cannot be zero. Similarly, when *C* is isomorphic to a plane quintic, then the hyperplane divisor *D* satisfies $h^0(D) = 3$ and $\deg D = 5$, which also contributes to the Clifford index of *C*. In particular, $\operatorname{Cliff}(C) \leq 1$, and we conclude that $\operatorname{Cliff}(C) = 1$ by the same reason. In any cases, $\operatorname{Cliff}(C) = 1$, and hence, the canonical curve fails to satisfy the property (N_1) since the Koszul cohomology group $K_{g-3,1}(C, K_C) \simeq K_{1,2}(C, K_C)^{\vee}$ does not vanish. In particular, the ideal of the canonical curve requires a cubic equation as generators.

(\Leftarrow) First, consider the case g = 3 as an example. By Riemann-Roch, we have $h^0(K_C) = 3$ and $h^0(nK_C) = 4n - 2$ for n > 1. Since K_C is very ample, hence, for any point $P \in C$ we have

$$\begin{cases} h^0(K_C(-P)) = 2, \text{ and} \\ h^0(K_C(-2P)) = 1. \end{cases}$$

In particular, we are able to find a basis $\{r, s, t\}$ of $H^0(K_C)$ such that

$$\begin{cases} ord_P(r) = 2, \\ ord_P(s) = 1, \\ ord_P(t) = 0. \end{cases}$$

Since $K_C(-P)$ is a base-point-free pencil, we have a short exact sequence

$$0 \to -K_C(P) \to H^0(K_C(-P)) \otimes \mathcal{O}_C \to K_C(-P) \to 0.$$

Twisting by K_C and considering the cohomology long exact sequence, one can show that the multiplication map

$$H^0(K_C(-P)) \otimes H^0(K_C) \to H^0(2K_C(-P))$$

is surjective. Hence, $H^0(2K_C(-P))$ is spanned by r^2, rs, rt, s^2, st . Since $h^0(2K_C) = 6$, we conclude that

$$H^0(2K_C(-P)) = \langle r^2, rs, rt, s^2, st \rangle \subset \langle r^2, rs, rt, s^2, st, t^2 \rangle = H^0(2K_C).$$

Similarly, the multiplication map $H^0(K_C(-P)) \otimes H^0(2K_C) \to H^0(3K_C(-P))$ is also surjective, and we have

$$\begin{aligned} H^{0}(3K_{C}(-P)) &= \langle r^{3}, r^{2}s, r^{2}t, rs^{2}, rst, rt^{2}, s^{3}, s^{2}t, st^{2} \rangle, \\ H^{0}(3K_{C}) &= \langle r^{3}, r^{2}s, r^{2}t, rs^{2}, rst, rt^{2}, s^{3}, s^{2}t, st^{2}, t^{3} \rangle. \end{aligned}$$

We will show the statement by a similar argument. Now let C be a non-hyperelliptic curve of genus $g \ge 3$. Choose a general set of points $P_1, P_2, \dots, P_g \in C$ such that the divisor $D = P_3 + \dots + P_g$ satisfies

- $K_C(-D)$ is globally generated;
- $h^0(K_C(-D)) = 2$, that is, $|K_C(-D)|$ is a base-point-free \mathfrak{g}_q^1 .

Since $V_i := H^0(K_C(-P_1 - \cdots - P_g + P_i)) \subset H^0(K_C)$ is 1-dimensional for each $1 \leq i \leq g$, we may pick a basis $\{\omega_1, \cdots, \omega_g\}$ of $H^0(K_C)$ from generators of V_i . We have

$$\begin{cases} \omega_i(P_i) \neq 0, \\ \omega_i(P_j) = 0 \text{ if } i \neq j, \end{cases}$$

and $H^0(K_C(-D)) = \langle \omega_1, \omega_2 \rangle$ (in particular, ω_1 and ω_2 vanish with order exactly 1 on P_3, \dots, P_g).

We apply the base-point-free pencil trick for the following multiplicative map

$$\mu_n: H^0(K_C(-D)) \otimes H^0((n-1)K_C) \to H^0(nK_C(-D))$$

for each $n \ge 2$, we have

- $\omega_3^n, \cdots, \omega_q^n \in H^0(nK_C) \setminus H^0(nK_C(-D));$
- $\omega_3^n, \cdots, \omega_a^n$ are linearly independent;
- $h^0(nK_C) h^0(nK_C(-D)) = g 2.$

Hence, $H^0(nK_C)$ is spanned by forms in $H^0(nK_C(-D))$ and $\omega_3^n, \dots, \omega_g^n$. As a consequence, for any $n \ge 2$, the multiplicative map

$$H^0(K_C) \otimes H^0((n-1)K_C) \to H^0(nK_C)$$

is surjective, which proves the "projective normality part" of M. Noether's theorem. We are particularly interested in quadratic forms. Indeed, the (3g - 3)-dimensional vector space $H^0(2K_C)$ is spanned by:

$$H^{0}(2K_{C}) = \langle \omega_{1}^{2}, \omega_{1}\omega_{2}, \cdots, \omega_{1}\omega_{g}, \omega_{2}^{2}, \omega_{2}\omega_{3}, \cdots, \omega_{2}\omega_{g}, \omega_{3}^{2}, \cdots, \omega_{g}^{2} \rangle$$

Let $i, j \in \{3, \dots, g\}$ be distinct indices. Since ω_i vanishes on $P_k \neq P_i$ and ω_j vanishes on $P_k \neq P_j$, their multiplication $\omega_i \omega_j \in H^0(2K_C)$ vanishes at P_1, \dots, P_g . Therefore, ω_k^2 -term cannot appear (which vanishes at every P_1, \dots, P_g but not at P_k). In other words, there exist $\lambda_{ijs}, \mu_{ijs}, b_{ij} \in \mathbb{C}$ such that $\omega_i \omega_j$ is expressed as a linear sum

$$\omega_i \omega_j = b_{ij} \omega_1 \omega_2 + \sum_{s=3}^g (\lambda_{ijs} \omega_1 + \mu_{ijs} \omega_2) \omega_s.$$

In particular, a quadratic form

$$f_{ij} := \omega_i \cdot \omega_j - b_{ij}\omega_1 \cdot \omega_2 - \sum_{s=3}^g (\lambda_{ijs}\omega_1 + \mu_{ijs}\omega_2) \cdot \omega_s \in \operatorname{Sym}^2 H^0(K_C)$$

is in the kernel I of the natural map $\varphi : \operatorname{Sym} H^0(K_C) \to \bigoplus_n H^0(nK_C)$. The elements f_{ij} are linearly independent, and hence, we have $\binom{g-2}{2}$ quadratic equations which form a basis for the ideal I_2 of C.

We are now going to construct a set of cubic relations G_{jk} such that f_{ij} 's and G_{jk} 's form a generating set for the whole I. However, the multiplication map

$$H^{0}(K_{C}-D) \otimes H^{0}(2K_{C}-D) \to H^{0}(3K_{C}-2D)$$

is not surjective. Inside the (3g-1)-dimensional vector space $H^0(3K_C - 2D)$, the image forms a (3g-2)-dimensional subspace

$$W := \langle \omega_1^3, \omega_1^2 \omega_2 \cdots, \omega_1^2 \omega_g, \omega_1 \omega_2^2, \cdots, \omega_1 \omega_2 \omega_g, \omega_2^3, \cdots, \omega_2^2 \omega_g \rangle$$

(corresponding to cubic monomials which contains $\omega_3, \dots, \omega_g$ at most once; we skipped a proof for their linear independence). Take $\eta \in H^0(3K_C(-2D)) \setminus W$ so that $H^0(3K_C(-2D)) = \langle W, \eta \rangle$. Hence, we have a filtration

$$W^{3g-2} \subset H^0(3K_C - 2D)^{3g-1} \subset H^0(3K_C - D)^{4g-3} \subset H^0(3K_C)^{5g-5}$$

of vector spaces. For each $i \in \{3, \dots, g\}$, there is an element $\alpha_i \in H^0(K_C(-D)) = \langle \omega_1, \omega_2 \rangle$ such that $\alpha_i \omega_i^2 \in H^0(3K_C - 2D) \setminus W$.

Note that both $\omega_1 \omega_i^2$ and $\omega_2 \omega_i^2$ has a zero of order 1 at P_i . Hence, by taking a suitable linear combination of them, there is a unique nonzero element $\alpha_i \in \langle \omega_1, \omega_2 \rangle$ such that $\alpha_i \omega_i^2$ has a zero of order ≥ 2 at P_i . Clearly it has a zero of order 2 at the other P_j , $j \neq i$. In particular, $\alpha_i \omega_i^2 \in H^0(3K_C(-2D))$. If it is an element in W, one can express $\alpha_i \omega_i^2$ as a linear combination

$$\alpha_i \omega_i^2 = \alpha_i \omega_1 \varphi_1 + \alpha_i \omega_2 \varphi_2 + \omega_2^2 \theta$$

for some linear forms $\varphi_1, \varphi_2, \theta \in H^0(K_C)$. Consider the (effective) divisor of zeros of α_i . Then $(\alpha_i)_0 = D + P_i + D_i$; α_i vanishes along P_3, \dots, P_g , and vanishes twice at P_i . Since $|K_C - D|$ is base-point-free, the divisors D_i and $(\omega_2)_0$ are disjoint. Hence, if Q is a point such that $\alpha_i(Q) = 0$ but $\omega_2(Q) \neq 0$, then $\theta(Q) = 0$, that is, $\theta \in H^0(K_C - D_i)$. Among the elements in $H^0(K_C - D)$, the only possible choice is: θ is a constant multiple of α_i . Hence the relation reduces into

$$\alpha_i \omega_i^2 = \alpha_i (\sum \lambda_j \omega_1 \omega_j + \sum \mu_j \omega_2 \omega_j),$$

which gives a contradiction by observing the vanishing order at P_i .

We conclude that there is an element $\theta_i \in W$ such that $\alpha_i \omega_i^2 = \eta + \theta_i$ for each $i \leq 3 \leq g$. Therefore, for any given distinct $j, k \in \{3, \dots, g\}$, the cubic relation

$$G_{jk} := (\alpha_j \cdot \omega_j \cdot \omega_j - \theta_j) - (\alpha_k \cdot \omega_k \cdot \omega_k - \theta_k) \in \operatorname{Sym}^3 H^0(K_C)$$

lies in the kernel I of φ . In particular, I_3 is generated by $\omega_k \cdot f_{ij}$ and G_{jk} 's.

Vector space	(additional) Generators
W	$\omega_1^3, \omega_1^2 \omega_2 \cdots, \omega_1^2 \omega_g, \omega_1 \omega_2^2, \cdots, \omega_1 \omega_2 \omega_g, \omega_2^3, \cdots, \omega_2^2 \omega_g$
$H^0(3K_C - 2D)$	η
$H^0(3K_C - D)$	$\beta_i \omega_i^2 (3 \le i \le g), \beta_i \in H^0(K_C(-D)) \setminus \langle \alpha_i \rangle$
$H^0(3K_C)$	$\omega_i^3 (3 \le i \le g)$

When $n \ge 4$, the multiplication map

$$H^{0}(K_{C}-D) \otimes H^{0}((n-1)K_{C}+(2-n)D) \to H^{0}(nK_{C}+(1-n)D)$$

becomes surjective by the bpf pencil trick, since the divisor $(n-2)K_C + (3-n)D$ is always nonspecial. By induction, one can compute the bases of vector spaces as in the following table:

Vector space	(additional) Generators
	$\omega_1^l \omega_2^m (l+m=n),$
$H^0(nK_C + (1-n)D)$	
	$\omega_1^h \omega_2^k \eta (h+k=n-3)$
$H^0(nK_C + (2-n)D)$	$\beta_i^{n-2}\omega_i^2 (3 \le i \le g)$
:	:
•	•
$H^0(nK_C - D)$	$\beta_i \omega_i^{n-1} (3 \le i \le g)$
$H^0(nK_C)$	$\omega_i^n (3 \le i \le g)$

This explicit computation of bases allows us to find the generators of the ideal I of the canonical curve of C. Indeed, I is generated by the f_{ij} (quadratic equations) and G_{jk} (cubic equations):

$$f_{ij} = \omega_i \cdot \omega_j - b_{ij}\omega_1\omega_2 - \sum_{s=3}^g (\lambda_{ijs}\omega_1 + \mu_{ijs}\omega_2) \cdot \omega_s$$
$$G_{jk} = (\alpha_j \cdot \omega_j \cdot \omega_j - \theta_j) - (\alpha_k \cdot \omega_k \cdot \omega_k - \theta_k)$$

Note that f_{ij} are linearly independent, but G_{jk} are mostly not; it satisfies the cocycle condition $G_{jk} + G_{kl} = G_{jl}$.

First we show that they generate *I*. Consider an element $R = \sum \gamma_{ijk} \omega_i \cdot \omega_j \cdot \omega_k \in I_3$. Since $\omega_i^3 (3 \le i \le g)$ are linearly independent modulo $H^0(3K_C - D)$, we have $\gamma_{iii} = 0$ for $i = 3, \dots, g$. Thus

$$R = \sum \delta_{ijk} f_{ij} \omega_k + \sum_{i=3}^{g} (\mu_i \alpha_i + \nu_i \beta_i) \omega_i^2 + w$$

where $w \in W$. Restricting to C and use the relation $\alpha_i \omega_i^2 = \eta + \theta_i$, we have $\sum \mu_i = 0$ and $\nu_i = 0$, and hence we may write it as

$$R = \sum \sigma_{ijk} f_{ij} \omega_k + \sum \lambda_{jk} G_{jk} + w'$$

with some $w' \in W$. Restricting again to C, we see that $w' \in I_3$. However, by the construction of W, we have $W \cap I = \{0\}$ so w' must be 0. In particular, R is generated by f_{ij} and G_{jk} 's.

Similarly, one can check that I_n is generated by f_{ij} and G_{jk} for $n \ge 4$.

To complete the proof, we need to exhibit the syzygies among them. First assume that $g \geq 5$; a canonical curve of genus 4 is always trigonal, since it is a complete intersection of a quadric and a cubic hypersurface, so that the rulings of the quadric cut out on C a \mathfrak{g}_3^1 .

Consider the relation

$$\omega_i \omega_j = \sum_{s=3}^g (\alpha_{ijs})\omega_s + b_{ij}\omega_1\omega_2$$

determined by the quadratic equation f_{ij} . For any triple of distinct integers i, j, k, the linear form (differential) α_{ijk} vanishes doubly at P_k , so there are scalars ρ_{ijk} such that $\alpha_{ijk} = \rho_{ijk}\alpha_k$. Hence, we have Petri syzygies

$$f_{ij}\omega_k - f_{ik}\omega_j = \sum_{s=3}^g (\alpha_{iks}f_{sj} - \alpha_{ijs}f_{sk}) + \rho_{ijk}G_{jk}$$

for any triple of distinct indices $3 \leq i, j, k \leq g$ (here, in the summation appearing in the right-hand-side, $f_{jj} = f_{kk} = 0$). One can also check that the coefficients ρ_{ijk} are symmetric in i, j, k.

To complete the theorem, we have to ask under which condition the coefficients ρ_{ijk} are zero/nonzero. Let $3 \leq j \leq g$. Denote $V_j \subseteq \mathbb{P}^{g-1}$ be the algebraic set defined by (g-3) quadratic equations

$$f_{ij} = 0, \quad 3 \le i \le g, \quad i \ne j.$$

Note that $f_{ij} \in I$; hence the canonical curve of C lies in V_j . Then one can check that V_j has a unique surface component F_j which contains the canonical curve C;

Since V_j is defined by (g-3) equations in \mathbb{P}^{g-1} , every component of V_j is of dimension ≥ 2 , and there is a component which contains C since $V_j \supset C$. Write the equations $\{f_{ij}\}$ defining V_j in the following way:

$$\sum_{s=3,s\neq j}^{g} (\delta_{is}\omega_j - \alpha_{ijs})\omega_s = b_{ij}\omega_1\omega_2 + \alpha_{ijj}\omega_j, \quad 3 \le i \le g, i \ne j$$

where δ_{is} is the Kronecker delta symbol. Consider the determinant Δ_j of the $(g-3) \times (g-3)$ matrix

$$M_j = (\delta_{is}\omega_j - \alpha_{ijs})_{3 \le i,s \le g, i \ne j, s \ne j}$$

Then Δ_j is a polynomial in $\omega_1, \omega_2, \omega_j$ such that $\Delta_j(P_j) \neq 0$. In particular, the hypersurface $(\Delta_j = 0)$ does not contain the canonical curve $C \subseteq \mathbb{P}^{g-1}$. In particular, we can solve the above system of equations in the ω_s . As a result, we obtain a rational surface F_j with rational parametric equations, away from the hypersurface $\Delta_j = 0$,

$$\begin{cases} \omega_1 = \omega_1; \\ \omega_2 = \omega_2; \\ \omega_j = \omega_j; \\ \omega_s = \left[M_j^{-1} \left(b_{ij}\omega_1\omega_2 + \alpha_{ijj}\omega_j \right) \right]_s, \quad 3 \le s \le g, s \ne j \end{cases}$$

By construction, it is the only component of V_j which is not contained in the hypersurface $V(\Delta_j)$. Since $P_j \in C \subseteq V_j$ and $P_j \notin V(\Delta_j)$, the only possibility is that F_j is the only component containing C.

Petri's key idea is encoded in the vanishing condition of ρ_{ijk} in terms of those surfaces, namely:

Let $3 \leq j, k \leq g, j \neq k$. Two surfaces F_j and F_k coincide if and only if $\rho_{ijk} = 0$ for every $i \in \{3, \dots, g\} \setminus \{j, k\}$.

We will see how the above statement concludes the proof. If $\rho_{ijk} \neq 0$, from the Petri syzygy we have

$$\rho_{ijk}G_{jk} = f_{ij}\omega_k - f_{ik}\omega_j - \sum_{s=3}^g (\alpha_{iks}f_{sj} - \alpha_{ijs}f_{sk}),$$

120

hence G_{jk} is generated by quadratic equations $\{f_{ij}\}$, which are quadratic generators of I. Since ρ_{ijk} is symmetric up to permutations of indices, we may have the same conclusion for G_{ij} and $G_{ik} = G_{ij} + G_{jk}$. Hence, it remains to see that all the coefficients ρ_{ijk} cannot vanish simultaneously. Suppose not, then the surfaces $F_3 = \cdots = F_g = F$, it means that all the quadrics containing C contain a surface F. Such an irreducible surface F has the maximal number of quadric generators it can have (equals to $\binom{\operatorname{codim}(F)+1}{2} = \binom{g-2}{2}$). Castelnuovo theory implies that deg F = g - 2, and F is either one of the following:

- a cone over a rational normal curve;
- a rational normal scroll;
- Veronese surface in \mathbb{P}^5 .

However, the first case does not appear (by a projection argument). If $F = v_2(\mathbb{P}^2) \subset \mathbb{P}^5$ is the Veronese surface, then $C \subset F \subset \mathbb{P}^5$ implies that the genus g(C) = 6, and C is isomorphic to a plane curve since $F \simeq \mathbb{P}^2$. Therefore, C must be isomorphic to a plane quintic curve.

Finally, suppose that F is a rational normal scroll $F \simeq \mathbb{F}_n = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-n))$ $(n \ge 0)$, embedded in \mathbb{P}^{g-1} by a complete linear series $|H| = |\sigma + (n+1+k)f|$ for some $k \ge 0$, where f is the fiber of the ruling $\mathbb{F}_n \to \mathbb{P}^1$ and σ is the unique irreducible section so that $\sigma^2 = -n$. Note that the canonical divisor is given by $K_{\mathbb{F}_n} = -2\sigma - (n+2)f$. Since deg $F = H^2 = g - 2$, we have

$$g - 2 = \sigma^{2} + 2(n + 1 + k)\sigma \cdot f + (n + 1 + k)^{2}f^{2} = n + 2k + 2.$$

Since $C \subset F$ is a divisor, $C \in |r\sigma + sf|$ for integers r, s, given by the intersection number r = C.f and $s = C.\sigma + rn$. By the adjunction formula, we have

$$\deg K_C = 2g - 2 = -r(r-2)n + (r-2)s + r(s-n-2).$$

On the other hand, C is a canonical curve, hence its degree 2g - 2;

$$\deg C = C.H = 2g - 2 = -rn + s + r(n + 1 + k).$$

Therefore, we have

$$k = \frac{g - n - 4}{2},$$

$$s = (2g - 2) - \frac{r}{2}(g - n - 2),$$

$$0 = (g - 2)r^2 + (8 - 5g)r + (6g - 6) = (r - 3)[(g - 2)r - 2(g - 1)]$$

Since $g \ge 4$, the only integral solution is r = 3. Thus the fiber of the ruling $\pi : F \to \mathbb{P}^1$ intersects 3 times with C, induces a triple cover $\pi_C : C \to \mathbb{P}^1$. Therefore C is trigonal.

Remark 294. One can imitate the above arguments for a curve which is not trigonal nor isomorphic to a plane quintic. Then, each G_{jk} is generated by quadratic equations $\{f_{ij}\}$ as in the proof of the Enriques-Petri theorem, and hence give a linear syzygy among $\{f_{ij}\}$ from the cocycle condition on $\{G_{jk}\}$. To classify potential counterexamples, there are more subcases; for instance, C is contained in a threefold of minimal degree. All the possible cases of curves C are classified by Ehbauer.

Remark 295. For general and special curves, there are several attempts on Green's conjecture. The next case to the Enriques-Petri theorem, describing the property (N_2) with the exceptional cases of tetragonal curves/plane sextics, is known to be true by Voisin and Schreyer independently. During 90s, several people containing Bayer and Eisenbud studied a degeneration of curves and observed the behavior of syzygies. They tried to solve Green's conjecture for general curves, by considering a family of curves whose limit is fairly easy to compute; for instance, tends to be a hyperelliptic curve, or a degenerate hyperelliptic curve (ribbon). Unfortunately, it was not very much successful at the time.

Voisin showed that Green's conjecture holds for a general curve of genus g (as a general element of the moduli space \mathcal{M}_g). Using Lefschetz theorem on Koszul cohomology groups, the syzygies $K_{p,q}(C, K_C)$ can be computed from the syzygies of K3 surfaces. Together with computational techniques using the Hilbert scheme of points on K3 surfaces, she found a K3 surface whose general hyperplane section is a canonical curve of genus g for each g. Aprodu showed that the conjecture holds for a general k-gonal curve of genus g (as an element of the gonality strata $\mathcal{M}_{g,k} \subset \mathcal{M}_g$). Aprodu and Farkas showed that the conjecture holds for arbitrary smooth curves on K3 surfaces. However, when g > 11, a general curve of genus g is not embedded in any K3 surface.