
4 Sheaves of modules, vector bundles, and (quasi-)coherent
sheaves

“If you believe a ring can be understood geometrically as functions its spec-

trum, then modules help you by providing more functions with which to

measure and characterize its spectrum.” – Andrew Critch, from MathOver-
flow.net

So far we discussed general properties of sheaves, in particular, of rings. Similar as
in the module theory in abstract algebra, the notion of sheaves of modules allows us
to increase our understanding of a given ringed space (or a scheme), and to provide
further techniques to play with functions, or function-like objects. There are particularly
important notions, namely, quasi-coherent and coherent sheaves. They are analogous
notions of the usual modules (respectively, finitely generated modules) over a given ring.
They also generalize the notion of vector bundles.

Definition 38. Let (X,OX) be a ringed space. A sheaf of OX-modules, or simply an
OX -module, is a sheaf F on X such that

(i) the group F(U) is an OX(U)-module for each open set U ✓ X;

(ii) the restriction map F(U) ! F(V ) is compatible with the module structure via the
ring homomorphism OX(U) ! OX(V ).

A morphism F ! G of OX -modules is a morphism of sheaves such that the map F(U) !
G(U) is an OX(U)-module homomorphism for every open U ✓ X.

Example 39. Let (X,OX) be a ringed space, F ,G be OX -modules, and let ' : F ! G
be a morphism. Then ker', im', coker' are again OX -modules. If F 0 ✓ F is an OX -
submodule, then the quotient sheaf F/F 0 is an OX -module. Any direct sum, direct
product, direct limit, or inverse limit of OX -modules is an OX -module.

Definition 40. Let F ,G be two OX -modules. We denote the group of morphisms from
F to G by HomOX (F ,G) (or HomX(F ,G) or Hom(F ,G) if there is no confusing).
If U ✓ X is an open subset, then F|U is an OX |U -module. The presheaf

U 7! HomOX |U
(F|U ,G|U )

is indeed a sheaf, and we will call it the sheaf Hom. We denote it by HomOX (F ,G).
The sheaf associated to the presheaf U 7! F(U)⌦OX(U)G(U) is called the tensor product
F ⌦OX G. If there is no confusing, we write simply F ⌦ G.

Definition 41. An OX -module F is free if it is isomorphic to a direct sum of copies
of OX . It is locally free if X can be covered by open subsets U for which F|U is a free
OX |U -module. In the case, the rank of F is the number of free copies of the structure
sheaf needed. Note that the rank of a locally free sheaf is the same everywhere when X

is connected. A locally free sheaf of rank 1 is called an invertible sheaf.
A sheaf of ideals on X is a sheaf of modules I which is a subsheaf of OX , that is, I (U)
is an ideal in OX(U) for each open set U ✓ X.
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Example 42. Let A be a ring, and I ⇢ A be an ideal. By the definition, the set V (I) ✓
X = SpecA is a closed subset. We identify V (I) as an a�ne scheme Y = SpecA/I, so
that we have a short exact sequence of sheaves of OX -modules

0 ! I ! OX ! OY ! 0

which is the natural analogue of 0 ! I ! A ! A/I ! 0.

Indeed, if there is a closed subscheme Y
f
,! X, then the map OX ! f⇤OY induces a

surjection on its global sections A ! B. In other words, B ' A/I for some ideal I in A.
It is straightforward that the quotient A ! A/I is compatible with every localization,
hence, we may cover Y by D(fi)\Y where {D(fi)} is a collection of distinguished open
subsets of X = SpecA. In particular, Y has to coincide with the a�ne scheme SpecA/I.
The ideal sheaf I is defined from local data on distinguished open sets. Namely, if
U = D(s) where s 2 A, then we assign I (U) := Is ✓ As.

Definition 43. Let f : (X,OX) ! (Y,OY ) be a morphism of ringed spaces, let F be
an OX -module, and let G be an OY -module.
Note that the direct image f⇤F is an f⇤OX -module. Together with the morphism f

# :
OY ! f⇤OX of sheaves of rings on Y , we have a natural OY -module structure on f⇤F .
We call it the direct image of F , or the pushforward of F by f .
Also note that the inverse image sheaf f�1G is an f

�1OY -module. Thanks to the adjoint
property of f�1, there is a unique morphism f

�1OY ! OX which corresponds f
# :

OY ! f⇤OX . To provide an OX -module structure, we take the tensor product

f
⇤G := f

�1G ⌦f�1OY
OX

and call it the inverse image of G, or the pullback of G by f .

Remark 44. f⇤ and f
⇤ are adjoint functors between the category of OX -modules and

the category of OY -modules.

If we restrict our focus to the case of schemes, we already have enough general notions and
give the definition of quasi-coherent and coherent sheaves on schemes. For instance, on an
a�ne scheme SpecA, a quasi-coherent (resp., coherent) sheaf is completely determined
by an A-module (resp., a finitely generated A-module) M . If there is an A-module M ,
then it is compatible with every localization of A. In particular, for each s 2 A, the
localized module Ms is an As-module and the module structure is compatible with the
localization. This enables us to build a sheaf of OSpecA-module. However, before we
proceed forward, let us recall the notion of vector bundles and see why it is natural to
consider quasi-coherent and coherent sheaves instead of vector bundles.
Let X be a real topological manifold. A vector bundle E of rank r on X is defined as a
map ⇡ : E ! X such that for every x 2 X, there is an open neighborhood U of x and
a homeomorphism (also called a local trivialization) �U : U ⇥ Rr ! ⇡

�1(U) satisfying
(⇡ � �U )(x, v) = x for any x 2 U and v 2 Rr. In particular, the fiber ⇡�1(x) ' Rr has
the structure of a vector space. A rank 1 vector bundle is called a line bundle.
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When we have two trivializations over U1 and U2, we have an isomorphism on the
intersection ��1

U2
��U1

: (U1\U2)⇥Rr ! (U1\U2)⇥Rr which sends (x, v) to (x, T12(x)v)
for some GL(r)-valued function T12 : U1 \U2 ! GL(r) = Aut(Rr). When U3 is another
open subset of X with a local trivialization of E , then they satisfy the cocycle condition

T23|U1\U2\U3 � T12|U1\U2\U3 = T13|U1\U2\U3 .

In fact, an open cover {Ui} of X with local trivializations �Ui for each i and transition
functions {Tij} recover the vector bundle ⇡ : E ! X by “gluing together” the various
Ui ⇥ Rr along Ui \ Uj using Tij . (Compare with the gluing property of sheaves.)
Now we associate a sheaf to a vector bundle ⇡ : E ! X, called the sheaf of sections. Note
that a section of a vector bundle E on an open subset U ✓ X is a function s : U ! E
such that ⇡ � s = idU . Hence, if we take OX as the sheaf of continuous functions on X

and regard (X,OX) as a ringed space, then the sheaf F

U 7! F(U) := {s : U ! E | sections of ⇡ over U }

has an OX -module structure. In particular, when ⇡ admits a local trivialization over
U , the sections over U naturally identify with the r-tuples of functions U ! R, and we
conclude that F|U ' OX |U�r. In other words, a vector bundle of rank r gives a locally
free sheaf of rank r on X.
Let us write down a little more detail inside the above construction. Let U ⇢ X be an
open set, and let {Ui} is an open covering of U by open subsets Ui equipped with trivi-
alizations. Let s : U ! E be a section over U . The restriction s|Ui : Ui ! ⇡

�1(Ui) onto
each subset Ui induces a vector-valued function ~si : Ui ! Rr, via the local trivialization
�
�1

Ui
: ⇡�1(Ui) ! U ⇥ Rr together with the second projection. Then we have Tij ~si = ~sj :

chase the following diagram

Ui \ Uj

s|Ui\Uj // ⇡�1(Ui \ Uj)
��1
Ui // (Ui \ Uj)⇥ Rr

idUi\Uj
⇥Tij

✏✏

pr2 // Rr

Tij

✏✏
Ui \ Uj

s|Ui\Uj // ⇡�1(Ui \ Uj)
��1
Uj // (Ui \ Uj)⇥ Rr pr2 // Rr

where the composition of the horizontal maps in the top row describes ~si, and the one
for the bottom row describes ~sj . Hence, the locally free sheaf F of sections of ⇡ : E ! X

provides the same transition functions Tij 2 GL(r,O(Ui \ Uj)), and of course, they
satisfy the cocycle condition. Thus, we conclude that the data of a locally free sheaf F
of rank n equal to the data of a vector bundle ⇡ : E ! X.

Exercise 45. Let ⇡ : E ! X be a vector bundle of rank r on a manifold X, and let F
be the sheaf of sections of E . What is the espace étalé Spé(F) ! X?

Exercise 46. Let X be a smooth manifold, and let OX be the sheaf of di↵erentiable
functions on X. Describe a vector bundle on X corresponding to OX .
Let TX be a tangent bundle on X. Describe the locally free sheaf corresponding to TX .
What is the stalk TX,x at a point x 2 X?
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Definition 47. Let E be a locally free sheaf on a ringed space (X,OX). The sheaf
E_ := HomOX (E ,OX) is called the dual of E .

Exercise 48. Let E ,F be locally free sheaves on a ringed space (X,OX). Show that
HomOX (E ,F) and E ⌦ F are locally free sheaves. What are their ranks?

Exercise 49. Let F be an invertible sheaf on (X,OX). Show that F ⌦ F_ ' OX .

Proposition 50. Let E be a locally free sheaf of finite rank, and let F ,G be OX-modules.

Then Hom(F , E ⌦ G) ' Hom(E_ ⌦ F ,G).

Proof. We just leave a sketch of proof. Let U ✓ X be an open subset which is small
enough, in particular,

• E(U) and E_(U) are free OX(U)-modules of rank r;

• (E ⌦ G)(U) = E(U)⌦ G(U);

• (E_ ⌦ F)(U) = E(U)⌦ F(U).

Let {e1, · · · , er} be a free basis of E(U), and let {f1, · · · , fr} be the dual basis of E_(U).
Let ' 2 Hom(F , E ⌦ G)(U). It sends a section s 2 F(U) to '(s) =

Pr
i=1

ei ⌦ gi 2
E(U) ⌦ G(U). We assign  2 Hom(E_ ⌦ F ,G)(U) = Hom(E_(U) ⌦ F(U),G(U)) as
follows:

We first assign  (fi ⌦ s) := gi for i = 1, · · · , r, where s 2 F(U) and '(s) =Pr
i=1

ei ⌦ gi. Since {f1, · · · , fr} generates a free module E_(U), we can
naturally extend  to a homomorphism of OX(U)-modules.

One can show that the mapping ' 7!  induces an isomorphism of OX -modules.
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