
The lemma below, called the projection formula, is very useful to compute a pushforward.

Lemma 51 (Projection formula). Let f : (X,OX) ! (Y,OY ) be a morphism of ringed

spaces. Let F be an OX-module, E be a locally free OY -module of finite rank. Then there

is a natural isomorphism

f⇤(F ⌦OX f
⇤E) ' f⇤F ⌦OY E .

Proof. Since f
⇤(f⇤F ⌦ E) ' f

⇤
f⇤F ⌦ f

⇤E , there is a natural morphism f
⇤
f⇤F ⌦ f

⇤E !
F ⌦ f

⇤E . Since f
⇤ and f⇤ are adjoint to each other, there is a corresponding natural

morphism ' : f⇤F ⌦ E ! f⇤(F ⌦ f
⇤E). Note that being ' an isomorphism is a local

property, hence, we may replace Y by a su�ciently small open subset. Since f⇤ and the
tensor product commutes with the direct sum, we may assume furthermore that E = OY .
The conclusion follows from the fact that f⇤OY = f

�1OY ⌦f�1OY
OX = OX .

Note that the category of OX -modules is an abelian category: we can talk about kernel,
cokernel, and so on. In particular, we are able to consider (cochain) complexes of OX -
modules, and do homological algebra. Fiberwisely, vector bundles on OX give vector
spaces; and similarly, vector spaces also form an abelian category. However, when we
focus on their global nature (= vector bundles themselves, or equivalently, locally free
sheaves), they do not form an abelian category.

Example 52. Let X = P1 = ProjC[x, y], and let Z = V (x) ⇢ X be a closed subset of
X. The ideal sheaf IZ is indeed locally free:

On an a�ne open subset Ux ' SpecC[y/x], which corresponds to the set of
points [x : y] 2 P1 where x 6= 0, we have IZ(Ux) = C[y/x] since there is no
condition. On the other hand, on an a�ne open subset Uy ' SpecC[x/y],
which corresponds to the set of points [x : y] 2 P1 where y 6= 0, an element of
IZ(Uy) is a regular function on P1 \{[1 : 0]} which has zero at Z = [0 : 1]. In
particular, IZ(Uy) ' x

y · C[x/y]. We conclude that IZ is locally free, since
it can be covered by open (a�ne) subsets such that on IZ is free on each
open subset.

We have a natural inclusion IZ ! OX , whose cokernel is isomorphic to OZ which is
not a locally free sheaf on OX .

Hence, it is natural to extend the category of locally free sheaves by adding more objects
so that the cokernels of maps of locally free sheaves appear as objects in the enlarged
category. In most places, we are in the (locally) Noetherian setting, so that the finite
rank case will behave much better. Therefore, it is also reasonable to extend the category
of locally free sheaves of finite rank in this manner. In general, there are three finiteness
conditions for an A-module M :

(1) finitely generated, there is a surjection A
�n ! M ! 0 for some integer

n;
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(2) finitely presented, so that the finite number of generators have only
finitely many relations, i.e., there is a right exact sequence A

�m !
A

�n ! M ! 0 for some integer m,n;

(3) coherent, M is finitely generated, and any homomorphism A
�n ! M

(not necessarily surjective) has the finitely generated kernel.

When A is a Noetherian ring, all these conditions are equivalent. Since we will only work
over Noetherian schemes (= schemes which can be covered by a finite number of open
a�ne subschemes SpecAi where Ai are Noetherian), or even better: a�ne/projective
varieties over a field (of finite dimension), we do not need to distinguish them.

Definition 53. Let (X,OX) be a ringed space. An OX -module F is quasi-coherent it
has a local presentation, that is, for every point x 2 X, there is an open neighborhood
U ✓ X and a right exact sequence

OX |U�I ! OX |U�J ! F|U ! 0

for some (possibly infinite) set I and J . In other words, a quasi-coherent sheaf is locally
a cokernel of (locally) free sheaves.
An OX -module F is coherent if it is quasi-coherent, and locally coherent, that is, it
satisfies the following properties:

(i) F is of finite type, i.e., for every point x 2 X, there is an open neigh-
borhood U ✓ X and a surjection OX |U�n ! F|U ! 0 for some integer
n;

(ii) for any open subset U ✓ X, any integer n, and any morphism ' :
OX |U�n ! F|U , the kernel ker' is of finite type.

As we discussed above, the notion becomes much simpler for noetherian schemes. We
start by defining the sheaf of modules fM on SpecA associated to an A-module M .

Definition 54. Let A be a ring and let M be an A-module. The sheaf associated to M ,
denoted by fM , is defined by

D(s) 7! Ms

for each s 2 A and the distinguished open subset D(s) ✓ SpecA, together with the
natural restriction maps.

In particular, the stalk at p 2 SpecA is isomorphic to the localized module (fM)p = Mp,

and �(SpecA, fM) = M .

We first see that the map M 7! fM is functorial:

Proposition 55. Let A,B be rings, ' : B ! A be a ring homomorphism, and let

f : SpecA ! SpecB be the corresponding morphism of spectra. Then,

(1) the map M 7! fM gives an exact, fully faithful functor from the category of A-modules

to the category of OSpecA-modules;

22



(2) if M and N are two A-modules, then (M ⌦A N)⇠ ' fM ⌦OSpecA
eN ;

(3) if {Mi} a family of A-modules, then (�Mi)⇠ ' �fMi;

(4) for any A-module M , we have f⇤(fM) ' (BM)⇠, where BM means M considered as

B-modules;

(5) for any B-module N , we have f
⇤( eN) ' (N ⌦B A)⇠.

Proof. Note that the map M 7! fM gives a functor since a homomorphism of A-modules
M ! N commutes with the localization Ms ! Ns for each s 2 A. It is exact, since
it commutes with every localization at a prime ideal p ⇢ A, and the exactness can be
measured at the stalks. It is also fully faithful:

• the functor ⇠ gives a natural map HomA(M,N) ! HomOSpecA(fM, eN);

• the global section functor �(SpecA,�) gives the inverse map HomOSpecA(fM, eN) !
HomA(M,N).

In particular, we embed the category of A-modules into the category of OSpecA-modules.
All the other statement follow from the definitions and statements in terms of modules.

Definition 56. Let (X,OX) be a scheme. An OX -module F is quasi-coherent if X

can be covered by a�ne open subsets Ui = SpecAi such that F|Ui ' fMi for some Ai-
module Mi for each i. F is coherent if furthermore each Mi can be taken to be a finitely
generated Ai-module.

Example 57. (1) Let X be any scheme. The structure sheaf OX is quasi-coherent and
coherent.

(2) Let X = SpecA be an a�ne scheme, Y = SpecA/I be the closed subscheme of X
defined by an ideal I ✓ A, together with a closed immersion i : Y ! X. The sheaf

i⇤OY is a quasi-coherent (and coherent) OX -module, which is isomorphic to (̂A/I).

(3) Let Y be a closed subscheme of a scheme X with the inclusion i : Y ,! X. The
sheaf OX |Y = i

�1OX is not a quasi-coherent sheaf on Y in general. In fact, it needs
not to be an OY -module.

(4) Let X = An = Spec k[x1, · · · , xn]. Let K be the constant sheaf associated to the
groupK = k(x1, · · · , xn) which is the function field (= the field of rational functions)
of X. Then K is a quasi-coherent OX -module, but not coherent unless n = 0.

Maybe the following proposition seems to be too strong, and in fact, we have to check
carefully that their global property comes from their localizations. The idea of proof is
almost the same as using the “partition of unity” when we define the structure sheaf
OSpecA of a spectrum, so we will skip its proof.
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Proposition 58. Let X be a scheme. An OX-module F is quasi-coherent if and only

if for every a�ne open subset U = SpecA of X, there is an A-module M such that

F|U ' fM . If X is noetherian, then F is coherent if and only if furthermore we can take

M as a finitely generated A-module.

We mentioned several times that the global section functor X 7! �(X,�) is left exact.
The sheaf cohomology we will see later measures how �(X,�) is di↵erent from the exact
functor. One distinguished example we seen is a flasque sheaf, that is, a sheaf such
that every restriction map is surjective. When F 0 is flasque, and we have a short exact
sequence 0 ! F 0 ! F ! F 00 ! 0, then we check that the induced maps on global
sections again form a short exact sequence

0 ! �(X,F 0) ! �(X,F) ! �(X,F 00) ! 0.

Naively speaking, a flasque sheaf forces that the global section functor becomes “exact”.
Hence, it is the “simplest” sheaf in this viewpoint. We also give a remark that the a�ne
schemes and quasi-coherent sheaves are “simple”, following a similar manner. In other
words, they will play a role of basic building blocks.

Proposition 59. Let X = SpecA be an a�ne scheme, and let 0 ! F 0 ! F ! F 00 ! 0
be a short exact sequence of OX-modules. Assume that F 0

is quasi-coherent. Then the

sequence

0 ! �(X,F 0) ! �(X,F) ! �(X,F 00) ! 0

is exact.

Proof. Only need to check that the last map is surjective. Let s
00 2 �(X,F 00). Since

F ! F 00 is surjective, for any point x 2 X there is an open neighborhood D(f) ✓ X

such that s
00|D(f) lifts to a section s 2 F(D(f)). Choose one and fix f 2 A. We first

claim that a multiple fN
s
00 is the image of a global section ⇣ 2 �(X,F) for some N > 0.

Since X = SpecA is quasi-compact, we may cover X with a finitely many D(gi)’s
such that for each i, s

00|D(gi) lifts to a section si 2 F(D(gi)). On the intersection
D(f) \D(gi) = D(fgi), both sections s|D(fgi) and si|D(fgi) map to the same s

00|D(fgi).
In particular, s0i := (s|D(fgi) � si|D(fgi)) 2 F 0(D(fgi)) if we regard F 0 as a subsheaf of
F .
Now F 0 is quasi-coherent, there is an A-module M

0 such that F 0 = fM 0. In particular,
F 0(D(fgi)) = M

0

fgi
. Hence, s0i is represented as a quotient ti/(fgi)ni where ti 2 M

0.
Thus a section obtained by a multiplication f

nis
0
i 2 M

0

fgi
extends to a section ti/(gi)ni 2

F 0(D(gi)) = M
0
gi . By taking a large enough n and a suitable choice of ti, we may assume

that fn
s
0

i extends to a section ti/g
n
i 2 F 0(D(gi)). Let ⇠i := f

n
si+ti/g

n
i 2 F(D(gi)). Note

that on D(fgi) we see that the two sections ⇠i = f
n(si + ti/(fgi)n) = f

n(si + s
0

i) = f
n
s

coincide.
On every intersection D(gi) \D(gj) = D(gigj), note that the images of ⇠i and ⇠j in F 00

are same as fn
s
00, since each ti/g

n
i part will map to 0, and si will maps to s

00 on D(gi).
In other words, ⇠i|D(gigj)�⇠j |D(gigj) 2 F 0(D(gigj)) = M

0
gigj . Since ⇠i and ⇠j are equal (to

f
n
s|D(fgigj)) on D(fgigj), it means that fmij (⇠i|D(gigj)�⇠j |D(gigj)) = 0 for some mij > 0
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when we regard it as an element of the module M
0
gigj . We also take m large enough if

necessary, we may assume that the sections fm
⇠i and f

m
⇠j coincide on the intersection

D(gigj). The sections f
m
⇠i will glue together, and form a global section ⇣ 2 �(X,F).

Its image in F 00 equals to f
n+m

s
00.

Now we cover X by a finitely many f1, · · · , fr so that s00|D(fi) lifts to a section of F over
D(fi) for each i. By the claim, we can find a single integer N > 0 and global sections
⇣i 2 �(X,F) such that ⇣i is a lifting of fN

i s
00. Since the open sets D(fi) cover X, in

particular, the ideal (fN
1
, · · · , fN

r ) = (1) is the unit ideal. We write 1 =
Pr

i=1
aif

N
i for

some ai 2 A, and we define ⇣ =
Pr

i=1
ai⇣i 2 �(X,F). Then the image of ⇣ in F 00 equals

to
Pr

i=1
aif

N
i s

00 = s
00, as desired.

We check that the category of quasi-coherent (respectively, coherent) OX -modules is
good enough to do homological algebra.

Proposition 60. Let X be a noetherian scheme. The kernel, image, and cokernel

of any morphism of quasi-coherent (resp., coherent) sheaves are quasi-coherent (resp.,

coherent). Any extension of quasi-coherent (resp., coherent) sheaves are quasi-coherent

(resp., coherent).

Proof. The question is local, that is, it is enough to show that the property holds for
(su�ciently small) open subsets. In particular, we may assume thatX = SpecA is a�ne,
and A is noetherian. The kernel, image, and cokernel can be successfully translated in
terms of A-modules.
Let 0 ! F 0 ! F ! F 00 ! 0 be an exact sequence of OX -modules, where F 0 and F 00 are
quasi-coherent (resp., coherent). Since the induced map on global sections 0 ! M

0 :=
�(X,F 0) ! M := �(X,F) ! M

00 := �(X,F 00) ! 0 is exact, we have the following
commutative diagram

0 // fM 0 //

✏✏

fM //

✏✏

gM 00 //

✏✏

0

0 // F 0 // F // F 00 // 0.

Now the 5-lemma implies that the middle arrow is also an isomorphism.

We also leave a statement for pushforwards and pullbacks without a proof:

Proposition 61. Let f : X ! Y be a morphism of noetherian schemes.

(1) If G is a quasi-coherent (resp., coherent) OY -module, then the pullback f
⇤G is a

quasi-coherent (resp., coherent) OX-module.

(2) If F is a quasi-coherent OX-module, then the pushforward f⇤F is a quasi-coherent

OY -module.

(3) When f is projective(e.g., both X and Y are projective varieties), a pushforward

f⇤F of a coherent OX-module F is a coherent OY -module.
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Example 62. When X = SpecA is an a�ne scheme, we discussed that the a�ne
schemes of the form Y = SpecA/I for some ideal I ⇢ A are the closed subschemes of X.
In particular, the morphism i

# : OX ! i⇤OY associated to the inclusion i : Y ,! X is
equivalent to the data consisted of the ring quotient map A ! A/I and its localizations.
In general, by patching local a�ne open pieces, a closed subscheme Y of a scheme X

is defined as a morphism i : Y ,! X of locally ringed spaces such that the morphism
of sheaves i

# : OX ! i⇤OY is surjective. The kernel of i#, denoted by IY , is called
the ideal sheaf of Y (Check: compare with the definition of an ideal sheaf in previous
lectures). When X is a noetherian scheme, any ideal sheaf is coherent. Conversely, any
(quasi-)coherent sheaf of ideals on X is the ideal sheaf of a uniquely determined closed
subscheme of X.

Example 63. Let X be a scheme, E be a coherent sheaf on X. As we seen above,
E_ := HomOX (E ,OX) is called the dual of E . It is easy to check that E_ is also a
coherent sheaf on X.
One can check that there is a natural morphism to its double dual E ! (E_)_. If E
is a vector bundle of finite rank, it is an isomorphism. In general, it needs not to be
an isomorphism. For instance, let X = Spec k[x], E is a sheaf associated to the k[x]-
module k ' k[x]/(x). Since there is no nontrivial k[x]-module homomorphism from
k[x]/(x) ! k[x], the dual E_ is zero. A coherent sheaf E for which the double dual
morphism is an isomorphism is called a reflexive sheaf. A locally free sheaf of finite rank
is immediately reflexive, however, the converse is not true in general. The canonical map
E ⌦ E_ ! OX is called the trace map.

Exercise 64 (Geometric Nakayama’s lemma). LetX be a scheme, F be a coherent sheaf.
Let U ⇢ X be an open neighborhood of a point P 2 X, and let s1, · · · , sn 2 F(U) be
sections such that their images s1|P , · · · , sn|P 2 F|P := FP ⌦ (OX,P /mX,P ) generate the
geometric fiber F|P . Show that there is an a�ne open neighborhood P 2 SpecA ✓ U

such that s1|SpecA, · · · , sn|SpecA generate F|SpecA in the following sense:

(i) s1|SpecA, · · · , sn|SpecA generate F|SpecA as an A-module;

(ii) for any Q 2 SpecA, s1, · · · , sn generate the stalk FQ as an OX,Q-
module.

As a special case, we want to associate a (quasi-)coherent sheaf on ProjS from a graded
S-module over a graded ring S. As in the case of Spec, it comes from a module structure
over a ring, however, we should choose only degree 0 elements as similar as we construct
ProjS.

Definition 65. Let S be a graded ring and let M be a graded S-module. We define
the sheaf associated to M on ProjS, denoted by fM , by assigning fM(D+(f)) = M(f),
where M(f) ✓ Mf denotes the group of degree 0 elements in the localized module Mf .

One can check that fM is a quasi-coherent OProjS-module. If S is noetherian and M is

finitely generated, then fM is coherent.

26



On ProjS, we have the notion of “twisting”, which does not change the ring S itself but
translate only the grading structure on S.

Definition 66. Let S = �Sd be a graded ring, and let M be any graded S-module. For
any n 2 Z, we define its n-twist M(n) by

M(n)d := Md+n.

It is clear that M(n) is a graded S-module.

Definition 67. Let S be a graded ring, X = ProjS, and let n 2 Z be an integer. We

define the sheaf OX(n) := ]S(n). The sheaf OX(1) is called the twisting sheaf of Serre.
For any sheaf F of OX -module, we denote by F(n) the twisted sheaf F ⌦OX OX(n).

Proposition 68. Let S be a graded ring and let X = ProjS. Assume that S is generated

by S1 as an S0-algebra.

(1) The sheaf OX(n) is an invertible sheaf on X.

(2) For any graded S-module M , we have fM(n) ' M̂(n). In particular, OX(m) ⌦
OX(n) ' OX(m+ n).

Proof. Since S is generated by S1 as an S0-algebra, X is covered by the distinguished
open sets D+(f) where f 2 S1. Consider the restriction OX(n)|D+(f). Since D+(f) '
SpecS(f), this is isomorphic to Ŝ(n)(f). It is a free S(f)-module of rank 1 since there is
an isomorphism sending a degree 0 element s 2 S(f) to a degree n element f

n
s 2 Sf ,

where the later one is a degree 0 element in S(n)(f). Hence, OX(n) is locally free of rank
1.
The second statement follows from the fact that (M ⌦S N)(f) = M(f) ⌦S(f)

N(f). Since
D+(f), f 2 S1 covers X, we are done.

The twisting operation allows us to recover a graded S-module from a sheaf of OProjS-
modules. Note that we made it just by taking the global section of a sheaf of modules
on an a�ne scheme. On the other hand, on Proj, taking the global section only recovers
the degree 0 elements, not for the whole graded module. Hence, we have to adjust its
grading and collect all the elements of various degrees.

Definition 69. Let S be a graded ring, X = ProjS, and let F be an OX -module. We
define the graded S-module associated to F to be �⇤(F) =

L
n2Z �(X,F(n)). If s 2 Sd

is a degree d element, it gives a global section s 2 �(X,OX(d)) in a natural way. Hence,
for any t 2 �(X,F(n)), we define the product s · t 2 �(X,F(n+d)) by taking the image
of s⌦ t under the natural isomorphism F(n)⌦OX(d) ' F(n+ d).

Proposition 70. Let A be a ring, S = A[x0, · · · , xr], r � 1 be a polynomial ring over

A, and let X = ProjS be a projective r-space over A. Then �⇤(OX) ' S.
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Proof. Note that a global section t 2 �(X,OX(n)) is equivalent to a finite collection of
sections ti 2 OX(n)(D+(xi)) = S(n)(xi)

which agree on the intersection D+(xixj). Since
the localization maps S ! Sxi , Sxi ! Sxixj are injective, all these rings are subrings of
S
0 = Sx0···xr . In particular, an element of �⇤(OX) is a finite collection of sections ti 2 Sxi

whose images in S
0 are same. Since any homogeneous element in S

0 can be uniquely
expressed by a product xm0

0
· · ·xmr

r f(x0, · · · , xr), where mi 2 Z and f is a homogeneous
polynomial not divisible by any of xi. It is an element of Sxi if and only if the exponent
mj is nonnegative for j 6= i. Hence, �⇤(OX) =

Tr
i=0

Sxi = S.

Caution. If S is a graded ring which is not a polynomial ring, then �⇤(OX) does not
coincide with S in general.

Let F = fM for some graded S-module M . In general, it is not true that the module of
twisted sections �⇤(F) and the original S-module M coincide. However, in most cases,
they define the same sheaf of OProjS-modules.

Proposition 71. Let S be a graded ring, which is finitely generated by S1 as an S0-

algebra. Let X = ProjS, and let F be a quasi-coherent sheaf on X. Then there is a

natural isomorphism � : �⇤(F)⇠ ! F .

Proof. Let f 2 S1. A section of �⇤(F)⇠ on D+(f) is represented by a fraction m/f
d,

where m 2 �(X,F(d)) for some d � 0. We may think 1/fd as a section of OX(�d),
defined on D+(f), hence, we obtain a section m⌦ f

�d 2 �(D+(f),F). This defines �.
Now let F be quasi-coherent. To show that � is an isomorphism, it is su�cient to
identify the module �⇤(F)(f) with the sections F(D+(f)).
Note that f is a global section of an invertible sheaf OX(1). Since S is finitely generated
by elements in S1, we may choose finitely many elements f0, · · · , fr 2 S1 such that X

is covered by open a�ne subsets D+(f0), · · · , D+(fr). Similar as in the a�ne case, any
section t 2 �(D+(f),F) admits an extension from f

n
t 2 �(D+(f),F(n)) to a global

section s of F ⌦ OX(n) for a su�ciently large n (using the partition of unity given by
powers of fi). In other words, a section t 2 �(D+(f),F) can be expressed as s/f

n, a
section of �⇤(F)⇠ on D+(f). We conclude that F(D+(f)) ' �⇤(F)(f) as desired.

Corollary 72. Let A be a ring, S = A[x0, · · · , xr], and let X = ProjS. If Y is a closed

subscheme of X = Pr
A, then there is a homogeneous ideal I ✓ S such that Y is a closed

subscheme determined by I.

Proof. Let IY be the ideal sheaf of Y on X. Since the global section functor is left
exact, and the twisting functor is exact, the graded module �⇤(IY ) is a submodule of
�⇤(OX) = S. In particular, I := �⇤(IY ) is a homogeneous ideal of S. Now I induces
a closed subscheme V (I) ' ProjS/I, whose sheaf of ideals will be eI. Since IY is
quasi-coherent, we have eI ' IY . In fact, I = �⇤(IY ) is the largest ideal in S defining
Y .

Exercise 73. Let X be a scheme, and A be a quasi-coherent sheaf of OX -algebras, that
is, a sheaf of rings which is a quasi-coherent OX -module simultaneously.
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(1) Show that there is a unique scheme Y and a morphism f : Y ! X such that for
every a�ne open U ✓ X, f�1(U) ' SpecA (U), and for every inclusion V ,! U of
open a�nes of X, the morphism f

�1(V ) ,! f
�1(U) corresponds to the restriction

homomorphism A (U) ! A (V ). The scheme Y is called the global Spec, or the
relative Spec, and denoted by Spec A .

(2) Let E be a locally free sheaf of rank r on a scheme X. Take A = Sym E_ be the
sheaf associated to the presheaf U 7! Sym(E_(U)). Show that this is a sheaf of
OX -algebra.

(3) Check that the morphism Spec A ! X gives a vector bundle of rank r. This is
called the total space of a locally free sheaf E of a finite rank, or the vector bundle

associated to a locally free sheaf E .

Exercise 74. Let X be a noetherian scheme, and S be a quasi-coherent sheaf of graded
OX -algebras, that is, S '

L
d�0

Sd where Sd is the homogeneous part of degree
d. Assume that S0 = OX , and S1 is a coherent OX -module, and that S is locally
generated by S1 as an OX -algebra. Complete the details of the following construction.

(1) For each open a�ne open subset U = SpecA ✓ X, let S (U) be the graded A-
algebra �(U,S |U ). We have a natural morphism ⇡U : ProjS (U) ! U . Check that
this is compatible with a further localization, that is, ProjS (Uf ) ' ⇡

�1

U (Uf ) where
Uf = SpecAf ✓ U for some element f 2 A.

(2) Let U, V be two a�ne open subsets of X. Check that ⇡
�1

U (U \ V ) ' ⇡
�1

V (U \ V ).
In particular, the schemes ProjS (U) glue together and form a scheme Proj S ,
together with a morphism ⇡ : Proj S ! X.

(3) Check that the invertible sheaves O(1) on each ProjS (U) are also compatible under
the above construction. They give rise to an invertible sheaf O(1) on Proj S .

(4) Let E be a locally free sheaf of rank (r+ 1) on X. Take S =
L

d�0
Symd E_ be the

symmetric algebra. Check that this is a quasi-coherent sheaf of OX -algebras. We
denote by P(E) := Proj S be the projective space bundle, together with a natural
projection ⇡ : P(E) ! X. If E is free over a su�ciently small open a�ne subset
U ' SpecA, then ⇡

�1(U) ' Pr
A = ProjA[x0, · · · , xr+1].

(5) Let Y be a closed subscheme ofX, and let I be the ideal sheaf. Take S =
L

d�0
I d,

where I 0 = OX . Check that S is a quasi-coherent sheaf of OX -algebras. The
scheme eX := Proj S , together with a natural morphism ⇡I : eX ! X, is called
the blowing-up of X with respect to I . Compute it when X is an a�ne n-space,
and Y is the origin of X.

Remark 75. Using the above constructions, one may define “a�neness” and “projec-
tiveness” of a morphism of schemes. A morphism ⇡ : X ! Y is a�ne if there is an

29



Topic 1 : Sheaf

isomorphism

X
' //

⇡

��

Spec A

zz
Y

for some quasi-coherent sheaf A of OX -algebras. Similarly, A morphism ⇡ : X ! Y is
projecive if there is an isomorphism

X
' //

⇡

��

Proj S

zz
Y

for some quasi-coherent sheaf S of graded OX -algebras, finitely generated by the degree
1 part.

Example 76. Let V = C�(N+1) be a vector space of dimension N + 1 with basis
e0, · · · , eN . Its projectivization PV := Proj Sym(V _) becomes a projective N -space
over C. If we denote x0, · · · , xN be the dual basis, then PV = ProjS, where S =
C[x0, · · · , xN ] be the polynomial ring with variables x0, · · · , xN . This space is a scheme-
theoretical analogue of the quotient space V \{0}/C⇥, which parametrizes the set of lines
passing through the origin 0 2 V . Hence, a point P = [a0 : · · · : aN ] 2 PV corresponds
to a line passing through the origin 0 2 V and the point (a0, · · · , aN ) 2 V . One may
consider the incidence correspondence

I := {([a0 : · · · : aN ], v) 2 PV ⇥ V | v = c(a0, · · · , aN ) for some c 2 C}.

One can check that this is a line bundle, together with the first projection pr1 : I ! PV ,
and is called the tautological line bundle L on the projective space. L is not the twisting
sheaf O(1) of Serre, since it does not have any nonzero global section:

If then, a section s : PV ! I ⇢ PV ⇥V is a map which sends a point x 2 PV
to a pair (x,�s(x)) where �s : PV ! V is a regular map. Since a projective
space PV is complete, and thanks to the open mapping theorem, �s must
be a constant map. In particular, v := �s(x) must be a point which lies on
every line determined by a choice of a point x 2 PV , hence, v must be 0.

On the other hand, L ' O(�1) = (O(1))_ as in the following way:

Let Ui = D+(xi). I trivializes over Ui by a local trivialization �Ui : Ui⇥C !
pr

�1

1
(Ui) by sending

([x0 : · · · : xN ], c) =

✓
[x0 : · · · : xN ],

✓
c
x0

xi
, · · · , c = c

xi

xi
, · · · , cxN

xi

◆◆
.

Hence, the transition function on D+(xi) \ D+(xj) is : Tij = xi/xj . One
can immediately see that this is the multiplicative inverse of the transition
function for O(1), in particular, L ' O(1)_ = O(�1).
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One can check that if we do not take the symmetric algebra over a dual invertible sheaf
in the construction of global Spec, namely, take a global Spec construction applied into
SymO(1), then the sheaf of sections we will obtain is not O(1), but O(�1).
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Topic 2 – Line bundles, sections, and
divisors

Line bundles, or equivalently, invertible sheaves are one of the most important objects
in algebraic geometry. A ringed space (X,OX) can be regarded as a triple (X,OX ,OX),
together with a choice of a line bundle. In the last section, we learned one of the most
important line bundles in projective geometry, namely, the twisting sheaf of Serre OX(1)
on a projective variety (scheme) X. We want to look X as a triple (X,OX ,OX(1)). This
idea leads us to projective geometry inside a projective space, in other words, X as a
projective variety embedded in a certain projective space. We will see a systematic way
to study line bundles by observing its global sections. We will also study divisors, in the
both sense of Weil and Cartier, and how they are related to line bundles.

1 Global sections of coherent sheaves

We will call a scheme X is projective over SpecA if it is isomorphic to ProjS for some
graded ring S, where S0 = A and S is finitely generated by S1 as an A-algebra. In
particular, S is a quotient of a polynomial ring over A by a homogeneous ideal in S.

Definition 77. Let X is a scheme over a ring A, that means, there is a morphism
X ! SpecA. An invertible sheaf L is very ample if there is an immersion i : X ! Pr

A
for some r, such that i⇤OPr

A
(1) ' L. Note that a morphism i : X ! Z is an immersion

if it gives an isomorphism of X with an open subscheme of a closed subscheme of Z.
We say F is generated by global sections, or globally generated if there is a family of
sections si 2 �(X,F) such that the images of si generate the stalk FP as an OX,P -
module for every point P 2 X. Note that F is globally generated if and only if F can
be written as a quotient of a free sheaf, that is, there is a surjection

M
OX ! F ! 0.

Hence, an A-scheme X is projective if and only if it is “proper” (universally closed), and
there is a very ample invertible sheaf L on X.

Example 78. (1) Let A be a ring, S = A[x0, x1, · · · , xn], and let X = ProjS be the
projective n-space over A. The twisting sheaf of Serre OX(1) is very ample since the
identity map id : X ! Pn

A is an immersion such that id⇤OPn
A
(1) = OPn

A
(1) = OX(1).

(2) Let X be as above. The invertible sheaf OX(d), d > 0 is very ample. Here we
give a naive explanation. We first take the d-uple embedding vd : X ,! Pr

A, where
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r =
�n+d

d

�
� 1. Note that X is isomorphic to a closed subset of Pr

A, it only su�ces
to show that v

⇤

dOPr
A
(1) ' OX(d). Since the sections of OPr

A
(1) are spanned by

coordinate functions of the projective r-space, whose pullbacks on X are monomials
of degree d in x0, x1, · · · , xn. In particular, they generate �(X,OX(d)).

Precisely, one can show that X ' ProjS(d) where S
(d)
n := Snd. Clearly, S

(d) is
isomorphic to a quotient of a polynomial ring A[Yi0,i1,··· ,in ], (i0 + i1 + · · · + in) = d

by an ideal I generated by the elements of the form

Yi0,i1,··· ,inYj0,j1,··· ,jn � Yk0,k1,··· ,knYl0,l1,··· ,ln ,

where (i0, · · · , in)+(j0, · · · , jn) = (k0, · · · , kn)+(l0, · · · , ln). In particular, the sheaf
O(1) on ProjS(d) equals to OX(d).

(3) A very ample invertible sheaf is globally generated. Indeed, by the definition, we
may regard X as an open subscheme of a closed subscheme Z of Pr

A via an immersion
i. Let S = A[x0, · · · , xr], and let Z = ProjS/I for some homogeneous ideal I ✓ S.
Since OZ(1) is generated by the images of x0, · · · , xr 2 S1 in S1/I1, their restrictions
onX also generate the sheaf i⇤OProjS . Hence, by definition, the restrictions of images
of the coordinate functions will generate a very ample invertible sheaf L.

(4) Any quasi-coherent sheaf on an a�ne scheme is globally generated. If F = fM for
an A-module M , then any set of generators of M as an A-module will generate F .

Exercise 79. Let F ,G be coherent sheaves on X. Suppose that F is globally generated,
and there is a surjection F ! G ! 0. Show that G is also globally generated.
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