
4 Sheaf of di↵erentials and canonical line bundle

The goal of this section is to define the sheaf of (relative) di↵erentials and the canonical
line bundle. Di↵erentials, measuring the infinitesimal nature of functions, are intuitive
geometric notion which provide a lot of topological/geometric information. We will see
how it is described algebraically in terms of Kähler di↵erentials and sheaves. In the case
of a nonsingular variety over C, the sheaf of di↵erentials is almost same as the cotangent
bundle defined in complex di↵erential geometry, which is the dual of the tangent bundle.
In other words, it corresponds to the vector bundle composed of holomorphic 1-forms.
In contrast to di↵erential/complex geometry, the notion of cotangent sheaf is much more
“natural” in algebraic geometry. When A is a local k-algebra, and if we have a maximal
ideal m of A, the Zariski cotangent space at m is defined to be the k-vector space m/m2.
It looks natural than the Zariski tangent space (m/m2)_, the dual vector space of the
Zariski cotangent space. Hence, this will be a dual picture to the geometric pictures what
we learned from di↵erential geometry and complex geometry. There are technical merits
of the algebraic construction. First, we are able to construct the sheaf even if X is not
“smooth”. The cotangent sheaf may not be locally free in this case, but it will be quasi-
coherent. Second, the construction naturally works in a relative case; we may define a
sheaf of di↵erentials ⌦f = ⌦X/Y on X for a morphism f : X ! Y . Roughly speaking,
this will measure the cotangent vectors of the fiber of the map so that the cotangent
vectors of X are a combination of the cotangent vectors of Y and the cotangent vectors
of fibers.

Example 111. Let A = C[z1, · · · , zn] be a polynomial ring over the complex numbers.
Let m = (z1, · · · , zn) be the maximal ideal corresponding to the origin. Let f be a
regular function on Cn, then it admits a power series representation

f = f(0) +

 
nX

i=1

aizi

!
+ (terms of order at least 2) .

where ai =
@f

@zi
(0). Hence, its image in m/m2 is a1z1 + · · · + anzn; the linearization of

f at the origin. If we denote @

@zi
be the dual basis of (m/m2)_, then we may regard @

@zi

as a linear functional; it reads o↵ the i-th coe�cient of the linearization by @

@zi
(f) =

@f

@zi
(0) = ai.

We first begin with the a�ne case: we will see the algebraic theory of Kähler di↵eren-
tials. Suppose A is a B-algebra, so we have a morphism of rings � : B ! A and the
corresponding morphism of spectra SpecA ! SpecB. For any A-module M , we may
define a B-derivation as follows.

Definition 112. A B-derivation of A into M is a B-linear map d : A ! M such that

(i) (additivity) d(a+ a0) = da+ da0.

(ii) (Leibniz rule) d(aa0) = ada0 + a0da.
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(iii) (triviality) db = 0 for every b 2 �(B) ✓ A.

The notion of B-derivations leads to the module of Kähler di↵erentials (or, the module
of relative di↵erentials) as follows.

Definition 113. The module of Kähler di↵erentials of A over B is an A-module ⌦A/B,
together with a B-derivation d : A ! ⌦A/B which satisfies the following universal
property: for any A-module M and a B-derivation d0 : A ! M , there is a unique
A-module homomorphism f : ⌦A/B ! M such that d0 = f � d.

In particular, ⌦A/B is the “representing object” of the functor of B-derivations M 7!
DerB(A,M). One can construct such a module ⌦A/B as the free module generated by
the symbols {da | a 2 A}, and take the quotient by the submodule generated by all the
expressions of the form

(i) d(a+ a0)� da� da0;

(ii) d(aa0)� ada0 � a0da;

(iii) db

so that d : A ! ⌦A/B which sends a to da should be a B-derivation. The pair (⌦A/B, d)
is unique up to a unique isomorphism.

Caution. Both A and ⌦A/B are A-modules, but the map d : A ! ⌦A/B is not A-linear.

Proposition 114. If A is a finitely generated B-algebra, then ⌦A/B is a finitely gener-

ated A-module. If A is a finitely presented B-algebra, then ⌦A/B is a finitely presented

A-module.

Proof. Let {x1, · · · , xn} be a set of generators of A as a B-algebra, and let {rj} be a
set of relations among xi, that is, rj is a polynomial such that rj(x1, · · · , xn) = 0. Then
⌦A/B is generated by dx1, · · · , dxn, subject to the relations drj = 0. In particular, we
do not need to take every single element or every single relation, but can take generators
and generators of the relations.

Example 115. Here we give a few baby examples.

(1) Let A = B/I. Then the module ⌦A/B = 0.

(2) Let A = B[x1, · · · , xn]. The module ⌦A/B = Adx1 � Adx2 � · · · � Adxn, a free
module of rank n.

(3) Let B = k is a field of characteristic 6= 2, and let A = k[x, y]/(y2 � x3 + x). The
module ⌦A/B is generated by dx and dy, subject to the relation 2ydy = (3x2�1)dx.
In the locus (y 6= 0), the generator dy can be expressed in terms of dx, hence, the

sheaf ⌦̂A/B is generated by dx, and is isomorphic to the structure sheaf. Similarly,

in the locus ((3x2 � 1) 6= 0), the sheaf ⌦̂A/B is generated by dy, and is isomorphic
to the structure sheaf. Since the curve defined by the equation y2 � x3 + x = 0 is

covered by those two loci, we conclude that ⌦̂A/B is an invertible sheaf.
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(4) Let A = k[x, y]/(y2 � x3). We have ⌦A/B ' (Adx�Ady)/(2ydy� 3x2dx), hence, at
the origin (x = y = 0), it is of rank 2. Outside of the origin, it is of rank 1. Hence,

the sheaf ⌦̂A/B is not a locally free sheaf.

There are two geometrically motivated exact sequences.

Proposition 116 (Relative cotangent sequence). Let C ! B ! A be ring homomor-

phisms. There is a natural right exact sequence of A-modules

A⌦B ⌦B/C

a⌦db 7!adb // ⌦A/C

da 7!da // ⌦A/B
// 0.

Proposition 117 (Conormal sequence). Let B is a C-algebra, I an ideal of B, and

A = B/I. Then there is a natural right exact sequence of A-modules

I/I2 = A⌦B I
�=1⌦d // A⌦B ⌦B/C

a⌦db 7!adb // ⌦A/C ! 0.

Remark 118. The above statements generalize basic constructions in geometry. Sup-
pose we have a nice “fibration” ⇡ : X ! Y so that all the fibers of ⇡ are smooth. Let
Z be a single point. Then we have a short exact sequence of relative tangent bundles
(sheaves), which can be checked on the stalks (= tangent spaces)

0 ! TX/Y ! TX/Z ! ⇡⇤TY/Z ! 0.

Taking the dual, we have

0 ! ⇡⇤⌦Y/Z ! ⌦X/Z ! ⌦X/Y ! 0

which has the same form of the relative cotangent sequence we stated. When we do not
assume “smoothness”, we may lose the left exactness in general.
Similarly, when j : Y ⇢ X is an embedding of smooth manifolds, then the inclusion of
tangent spaces induces a short exact sequence, called the normal bundle sequence,

0 ! TY ! j⇤TX ! NY/X ! 0.

Its dual has the form of the conormal sequence.

The sheaf of Kähler di↵erentials coincides with the (Zariski) cotangent space in many
cases, in particular, it measures whether a given variety is nonsingular or not at a point:

Theorem 119. Let (B,m) be a local ring which contains its residue field k = B/m. The

map � : m/m2 ! k ⌦B ⌦B/k is an isomorphism.

Assume furthermore that k is perfect, and B is a localization of a finitely generated k-
algebra. Then ⌦B/k is a free B-module of rank equal to the Krull dimension dimB if

and only if B is a regular local ring.
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Exercise 120. Let � : B ! A be a ring homomorphism, S ✓ A be a multiplicative
subset of A, and let T ✓ B be a multiplicative subset of B such that �(T ) ✓ S. Along
the commutative diagram

B

�

✏✏

// T�1B

✏✏

A // S�1A

we have a natural base change map S�1⌦A/B ! ⌦S�1A/T�1B. Show that this map is an
isomorphism.

Now we give a definition of the sheaf of Kähler di↵erentials for a general setting. Let
⇡ : X ! Y be a morphism of schemes. It can be covered by open a�ne subsets of
the form U = SpecA of X and V = SpecB of Y such that ⇡(U) ✓ V . We will define
⌦U/V as the sheaf associated to the module ⌦A/B. Note that the module of Kähler
di↵erentials are compatible with the localizations, and hence they glue together and
form a sheaf ⌦X/Y . Also note that the derivations d : A ! ⌦A/B glue together to give a
map d : OX ! ⌦X/Y of sheaves of abelian groups on X. Also the sequences we discussed
above generalize as follows.

Proposition 121.

(a) (Relative cotangent sequence) Let f : X ! Y and g : Y ! Z be morphisms of

schemes. Then there is a right exact sequence of sheaves on X

f⇤⌦Y/Z ! ⌦X/Z ! ⌦X/Y ! 0.

(b) (Conormal sequence) Let f : X ! Y be a morphism, and let Z be a closed subscheme

of X, with the ideal sheaf I . Then there is a right exact sequence of sheaves on Z

I /I 2 ! ⌦X/Y ⌦OZ ! ⌦Z/Y ! 0.

We will give an example of exact sequences which will be very useful in future.

Theorem 122 (Euler sequence). Let A be a ring, Y = SpecA, and let X = Pn

A
. There

is a short exact sequence of sheaves on X

0 ! ⌦X/Y ! OX(�1)(n+1) ! OX ! 0.

Proof. Let S = A[x0, · · · , xn] be the homogeneous coordinate ring of X. Let E be the
graded S-module S(�1)(n+1), with basis e0, · · · , en in degree 1. Sending ei to xi gives a
degree 0 homomorphism of graded S-modules E ! S. We denote its kernel by M , so
we have a left exact sequence

0 ! M ! E ! S

of graded S-modules. Taking the ⇠ functor, we have a short exact sequence

0 ! fM ! OX(�1)(n+1) ! OX ! 0,
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where the last map becomes surjective since the corresponding map E ! S is surjective
for every positive degree.
It remains to show that fM ' ⌦X/Y . On the distinguished open subset Ui = D+(xi), fM
comes from a free module Mxi which is generated by {ej/xi � (xj/x2i )ei | j 6= i}.
Since Ui ' SpecA[x0/xi, · · · , xn/xi], the sheaf ⌦X/Y |Ui is a free OUi-module generated
by d(x0/xi), · · · , d(xn/xi). Via the identification 'i defined by

d(xj/xi) 7! (1/x2i )(xiej � xjei),

we see that ⌦X/Y |Ui ' fM |Ui . On the intersection Ui \ Uj , we have (xk/xi) = (xk/xj) ·
(xj/xi) for any k. Hence, in ⌦X/Y |Ui\Uj , we have

d(xk/xi)� xk/xjd(xj/xi) = xj/xid(xk/xj).

Applying 'i on the left hand side, and 'j on the right hand side, we immediately check
that both are identified with a single element (1/xixj)(xjek � xkej). Hence 'i’s glue

together and give an isomorphism ⌦X/Y ' fM .

The conormal sequence measures the “smoothness” of a subvariety in some sense:

Theorem 123. Let X be a nonsingular variety over an algebraically closed field k. Let

Y ✓ X be a closed subvariety defined by a sheaf of ideals I . Then Y is nonsingular if

and only if

(1) ⌦Y/k is locally free, and

(2) the conormal sequence 0 ! I /I 2 ! ⌦X/k ⌦OY ! ⌦Y/k ! 0 is exact on the left.

Furthermore, in this case, I is locally generated by r = codim(Y,X) elements, and the

sheaf I /I 2
is a locally free sheaf of rank r on Y ; called the conormal bundle of Y in

X.

Proof. See Hartshorne’s book (II.8.17).

Definition 124. Let X be a nonsingular variety over an algebraically closed field k of
dimension n, and let Y be a subvariety of X defined by a sheaf of ideals I . The tangent
sheaf of X is defined to be TX := HomOX (⌦X/k,OX). The canonical sheaf of X is
defined to be the invertible sheaf !X := det(⌦X/k) = ^n⌦X/k. When X is projective,
the nonnegative integer pg := �(X,!X) is called the geometric genus of X, which is a
very important birational invariant of X.
The sheaf I /I 2 is called the conormal sheaf of Y inX. Its dual NY/X = HomOY (I /I 2,OY )
is called the normal sheaf of Y in X. When Y is nonsingular, then they are locally free
of rank r = codim(Y,X).

Note that the dual of conormal sequence 0 ! TY ! TX |Y ! NY/X ! 0 generalizes the
comparison of tangent spaces of Y inside of the one of X.
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Proposition 125 (Adjunction formula). Let Y be a nonsingular subvariety of codimen-

sion r in a nonsingular variety X over k. Then !Y ' !X ⌦ ^rNY/X .

Proof. Take the highest exterior powers in the exact sequence of locally free sheaves

0 ! I /I 2 ! ⌦X ⌦OY ! ⌦Y ! 0

where I is the ideal sheaf of Y in X. We find that !X ⌦OY ' !Y ⌦ ^r(I /I 2).

Example 126. From the Euler sequence 0 ! ⌦Pn ! OPn(�1)(n+1) ! OPn ! 0, one
immediately checks that !Pn = O(�n � 1). If we have a smooth hypersurface Y of
degree d, then the ideal sheaf I = O(�Y ) = O(�d) becomes locally free. In particular,
I /I 2 = I ⌦OPn/I = OY (�d), and hence !Y = !X ⌦ (I /I 2)_ = OY (d� n� 1).

Remark 127. Let Y be a closed subscheme of a nonsingular variety X over k. Y is
called a local complete intersection if the ideal sheaf I of Y can be locally generated by
r = codim(Y,X) elements at every point. When Y itself is nonsingular, then it must be
a local complete intersection. Being a local complete intersection is an intrinsic property;
it does not depend on the choice of a nonsingular variety X containing Y .

Exercise 128. Let Y ✓ Pn

k
be a complete intersection, that is, the homogeneous ideal

I of Y in S = k[x0, · · · , xn] can be generated by r = codim(Y,Pn

k
) elements.

(a) Let Y be a closed subscheme of codimension r in Pn. Show that Y is a complete
intersection if and only if there are hypersurfaces H1, · · · , Hr such that Y = H1 \
H2 \ · · · \Hr as schemes, that is, IY = IH1 + · · ·+ IHr .

(b) If Y is a complete intersection of dimension � 1, and if Y is normal, then Y is
projectively normal.

(c) If Y is a nonsingular complete intersection Y = H1\ · · ·\Hr, and di = degHi, then
!Y ' OY (

P
di � n� 1).

(d) If Y is a nonsingular plane curve of degree d, then pg(Y ) = (d� 1)(d� 2)/2.

Exercise 129. Let X be a nonsingular projective variety over k. For any n > 0, we
define the n-th plurigenus of X to be Pn := dimk �(X,!⌦n

X
). For any 0  q  dimX,

we define the Hodge number at (q, 0) to be the integer hq,0 := dimk �(X,^q⌦X/k) where
^q⌦X/k is a sheaf of regular q-forms on X. They are generalizations of the geometric

genus since P1 = hdimX,0 = pg. Show that they are birational invariants of X, that is, if
X 0 is birational to X, then Pn(X 0) = Pn(X) and hq,0(X 0) = hq,0(X).
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In this section we define the cohomology of a sheaf of abelian groups on a topological
space. Of course, the most important objects are the cohomology groups of quasi-
coherent and coherent sheaves on a variety. It is well known that J. Leray had invented
the notion of sheaves, sheaf cohomology, and spectral sequences at the prisoner camp.
His definitions were simplified and clarified in 1950s. The first person who brought this
notion to algebraic geometry is J.-P. Serre. In his celebrating paper “Faisceaux Alge-
briques Coherents”, one could easily find the notion of coherent sheaves on algebraic
varieties which is almost same as the one in present. In this paper, he used Čech co-
homology instead of the sheaf cohomology we use in present. The central figure of the
study follows a general idea of A. Grothendieck, in particular, is well-described in his
1957 Tohoku paper “Sur quelques points d’algèbre homologique”. Naively speaking,
sheaf cohomology describes an obstruction to solving a global geometric problem which
can be solved locally. Unfortunately, computing the sheaf cohomology as the derived
functor is almost impossible in practice, we should go back to the Čech cohomology. For-
tunately, two cohomologies agree in many cases, for instance, for quasi-coherent sheaves
on a�ne/projective varieties.

1 Derived Functors

Ça me semble extrêmement plaisant de ficher comme ça beaucoup de choses,

pas drôles quand on les prend séparément, sous le grand chapeau des fonc-

teurs dérivés.

I find it very agreeable to stick all sorts of things, which are not much fun

when taken individually, together under the heading of derived functors.

– A. Grothendieck, a letter to J.-P. Serre, Feb. 18th, 1955. Excerpted from:
Grothendieck-Serre correspondence

In modern algebraic geometry, several cohomology theories are defined as the derived
functors of some functors which appears naturally. A good motivation is that a short
exact sequence often gives rise to a long exact sequence. For instance, if we have a short
exact sequence of abelian groups (= Z-modules)

0 ! A ! B ! C ! 0,

then taking a tensor product with another Z-module M gives us a right exact sequence

A⌦M ! B ⌦M ! C ⌦M ! 0.
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Taking projective resolutions of A,B,C, then tensoring by M also a↵ects on the projec-
tive resolution, and the “changes” are measured by Tor groups. In particular, we have
a long exact sequence

· · · ! Tor2(C,M) ! Tor1(A,M) ! Tor1(B,M) ! Tor1(C,M) ! A⌦M ! B⌦M ! C⌦M ! 0.

Here, one also should notice that if the functor (�) ⌦M is good enough (for instance,
the case when M is flat), then the functor becomes exact; hence the Tor groups will
vanish since they measure how the functor (�)⌦M is far from being “exact”.
The sheaf cohomology is quite similar in this manner; if we have a short exact sequence
of sheaves of abelian groups 0 ! F 0 ! F ! F 00 ! 0 on a topological space X, then the
global section functor gives a left exact sequence

0 ! �(X,F 0) ! �(X,F) ! �(X,F 00).

We may ask how to continue this sequence to the right. We first meet two di↵erences
between the Tor functor: the global section functor �(X,�) is not right exact, but left
exact; and a sheaf of abelian groups on X may not have a projective resolution.
Almost every category we discussed carefully is indeed abelian; so that the objects
and morphisms can be added and “subtracted”, that is, kernels and cokernels always
exist. For instance, Ab(X) the category of sheaves of abelian groups on a topological
space X, Mod(X) the category of OX -modules on a ringed space (X,OX), Qco the
category of quasi-coherent OX -modules on a scheme (X,OX), or Coh(X) the category
of coherent OX -modules on a noetherian scheme (X,OX) are important examples of
abelian categories.
Let us recall some basic notions in homological algebra very briefly.

Definition 130. Let A is an abelian category. A complex A• in A is a collection of
objects Ai, i 2 Z and morphisms di : Ai ! Ai+1 such that di+1 � di = 0 for every i. If
the objects Ai are specified only in a certain range, then we regard Ai = 0 for all other
i’s. A morphism of complexes f : A• ! B• is a set of morphisms f i : Ai ! Bi which
makes the following diagram commutes:

· · · // Ai�1
d
i�1
A //

f
i�1

✏✏

Ai
d
i
A //

f
i

✏✏

Ai+1

f
i+1

✏✏

// · · ·

· · · // Bi�1

d
i�1
B

// Bi

d
i
B

// Bi+1 // · · ·

The i-th cohomology hi(A•) of the complex A• is defined to be ker di/ im di�1. If f : A• !
B• is a morphism of complexes, then f induces a natural map hi(f) : hi(A•) ! hi(B•)
for each i.
If 0 ! A• ! B• ! C• ! 0 is a short exact sequence of complexes (note that the
category of complexes in A is again abelian, so we are able to say the exactness), then
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there are natural maps �i : hi(C•) ! hi+1(A•), called connecting morphisms, which give
rise to a cohomology long exact sequence

· · · ! hi(A•) ! hi(B•) ! hi(C•)
�
i

! hi+1(A•) ! · · · .

Two morphisms f, g : A• ! B• are homotopic if there is a collection of morphisms
ki : Ai ! Bi�1 such that f � g = dBk + kdA. If f and g are homotopic, then they will
induce the same morphism hi(A•) ! hi(B•) on the cohomology. A quasi-isomorphism

is a morphism f : A• ! B• of complexes whose induced maps hi(f) : hi(A•) ! hi(B•)
are isomorphisms for all i.
A covariant(resp., contravariant) functor F : A ! B is additive if for any two ob-
jects A,A0 2 A, the induced map Hom(A,A0) ! Hom(FA,FA0) (resp., Hom(A,A0) !
Hom(FA0, FA)) is a homomorphism of abelian groups. F is left exact if it is addi-
tive and for every short exact sequence 0 ! A0 ! A ! A00 ! 0 in A, the sequence
0 ! FA0 ! FA ! FA00 (resp., 0 ! FA00 ! FA ! FA0) is exact in B. If we can write
0 on the right instead of the left, we say F is right exact. If F is both left and right
exact, then we say it is exact. If only the middle part is exact, we say F is exact in the

middle.

Example 131. (1) The global section functor �(X,�) : Ab(X) ! Ab is a covariant
left exact functor.

(2) Let f : X ! Y be a continuous map between two topological spaces. The direct
image functor f⇤ : Ab(X) ! Ab(Y ) is a covariant left exact functor.

(3) Let A be an abelian category, and let A be an object. The functor Hom(A,�) :
A ! Ab which is defined by B 7! Hom(A,B) is a covariant left exact functor. The
functor Hom(�, A) is a contravariant left exact functor.

Definition 132. Let A be an abelian category. An object I 2 A is injective if the
functor Hom(�, I) is exact. An object P 2 A is projective if the functor Hom(P,�) is
exact.
An injective resolution of an object A 2 A is a complex I•, defined in degrees i � 0,
together with a morphism A ! I0 such that each Ii is injective and the sequence

0 ! A ! I0 ! I1 ! · · ·

is exact. A projective resolution of an object A 2 A is a complex P •, defined in degrees
i  0, together with a morphism P 0 ! A such that each P i is projective and the
sequence

· · · ! P�1 ! P 0 ! A ! 0

is exact.
If every object A 2 A is isomorphic to a subobject of an injective object, then we say
A has enough injectives. If A has enough injectives, then every object has an injective
resolution. When we have a morphism f : A ! B, I•

A
an injective resolution of A, and
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I•
B

an injective resolution of B, then f can be “extended” to a map f : I•
A

! I•
B

of
complexes. In particular, any two injective resolutions are homotopy equivalent.
Let A be an abelian category with enough injectives, and let F : A ! B be a covariant
left exact functor. We define the right derived functors RiF , i � 0 of F by RiF (A) :=
hi(F (I•)) where I• is an injective resolution of A.
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