
We can immediately check the following properties, hence, we will skip the proof.

Proposition 133. Let A be an abelian category with enough injectives, and let F : A !
B be a covariant left exact functor to another abelian category B. Then

(1) For each i � 0, the functor RiF is an additive functor from A to B. It is independent

of the choices of injective resolutions.

(2) There is a natural isomorphism R0F ' F .

(3) For each short exact sequence 0 ! A0 ! A ! A00 ! 0 and for each i � 0, there
is a natural morphism �i : RiF (A00) ! Ri+1F (A0), such that we have a long exact

sequence

· · · ! RiF (A0) ! RiF (A) ! RiF (A00)
�
i

! Ri+1F (A0) ! · · · .

(4) Given a morphism of the exact sequence of (c) to another 0 ! B0 ! B ! B00 ! 0,
the �’s give a commutative diagram

RiF (A00) �
i
//

✏✏

Ri+1F (A0)

✏✏

RiF (B00) �
i
// Ri+1F (B0)

(5) For each injective object I of A, we have RiF (I) = 0 for every i > 0.

Definition 134. Let F : A ! B be as above. An object J 2 A is acyclic if RiF (J) = 0
for every i > 0.

We may use an acyclic resolution instead of an injective resolution to compute the derived
functor:

Proposition 135. Let F : A ! B be as above. Let A 2 A be an object such that it

admits a resolution

0 ! A ! J0 ! J1 ! · · ·

where each J i
is acyclic for F (we say J•

is an F -acyclic resolution of A). Then for

each i � 0, there is a natural isomorphism RiF (A) ' hi(F (J•)).

We will see that this definition of derived functors is very natural, by showing a universal
property. We need to generalize our notion slightly.

Definition 136. Let A,B be abelian categories. A covariant �-functor from A to B is
a collection of functors T • = (T i)i�0, together with a morphism �i : T i(A00) ! T i+1(A0)
for each short exact sequence 0 ! A0 ! A ! A00 ! 0 and each i � 0 such that

(i) For each short exact sequence above, we have a long exact sequence

· · · ! T i(A0) ! T i(A) ! T i(A00)
�
i

! T i+1(A0) ! · · · .
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(ii) For each morphism of a short exact sequence to another short exact sequence
0 ! B0 ! B ! B00 ! 0, we have a commutative diagram

T i(A00) �
i
//

✏✏

T i+1F (A0)

✏✏

T i(B00) �
i
// T i+1F (B0)

A �-functor T = (T i) is universal if, given any other �-functor T 0, and any given mor-
phism of functors f0 : T 0 ! T 00, there is a unique sequence of morphisms f i : T i ! T 0i

for each i � 0, starting with the given f0, which commute with the �i for each short
exact sequence.

Proposition 137. Assume that A is an abelian category with enough injectives. For any

left exact functor F : A ! B, the derived functors (RiF )i�0 : A ! B form a universal

�-functor with F ' R0F . Conversely, if T = (T i) is any universal �-functor from A to

B, then T 0
is left exact, and the T i

are isomorphic to RiT 0
for every i � 0.

Hence, the right derived functor is a unique way to extend naturally a left exact functor.
To conclude the construction, it only remains to show that the category of sheaves of
abelian groups has enough injectives.

Proposition 138. Let X be any topological space. The category Ab(X) of sheaves of

abelian groups on X has enough injectives.

Proof. We will first prove that the caegoryMod(X) of OX -modules has enough injectives
when (X,OX) is a ringed space. Let F be an OX -module. For each point x 2 X, the
stalk Fx is an OX,x-module. Since every module is a submodule of an injective module,
there is an injection Fx ,! Ix where Ix is an injective OX,x-module. Let jx : {x} ,! X
be the inclusion map. The sheaf I :=

Q
x2X

(jx)⇤(Ix), considered Ix as a (constant) sheaf
on the one point set {x}, becomes injective:

Let G be any OX -module. We have Hom(G, I) =
Q

x2X
Hom(G, (jx)⇤(Ix))

since the direct product commutes with the Hom functor. Note that each
Hom(G, (jx)⇤(Ix)) is isomorphic to a module homomorphism group HomOX,x(Gx, Ix).
Since each Ix is an injective OX,x-module, the functor Hom(�, I) is a direct
product of exact functors, which is also exact.

There is a natural morphism of OX -modules F ,! I obtained from the local maps
Fx ,! Ix. It is obviously injective, hence, F is isomorphic to a subsheaf of an injective
OX -module I . We conclude that the category Mod(X) has enough injectives.
Ab(X) also has enough injectives since Ab(X) coincides with Mod(X) when we assign
a sheaf of rings OX on a topological space X as the constant sheaf Z on X.
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2 Sheaf cohomology and its properties

Now we are ready to define the sheaf cohomology as derived functors. We also define
the higher direct image functor, since it follows from the exactly same argument.

Definition 139. Let X be a topological space. We define the cohomology functors

H i(X,�) to be the right derived functor of the global section functor �(X,�). For any
sheaf F of abelian groups on X, the groups H i(X,F) are the cohomology groups of F .
If f : (X,OX) ! (Y,OY ) is a morphism of ringed spaces, we define higher direct images

Rif⇤(�) to be the right derived functor of the direct image functor f⇤.

Remark 140. The category Mod(X) of OX -modules does not have enough projectives
in general. Let X = P1

k
be the projective line with the Zariski topology, and let OX = Z

be the constant sheaf associated to Z. If Mod(X) has enough projectives, then there
would be a surjection ' : P ! OX from a projective sheaf P. In particular, the induced
map on a stalk 'x is surjective for every x 2 X.
Let OU denote the sheaf on X obtained by restricting OX onto U and then extending by
zero outside of U . Let U be an open neighborhood of x, and let V be a strictly smaller
open neighborhood. Consider the surjection OX\{x}�OV ! OX . Since P is projective,
the surjection ' lifts to P ! OX\{x} �OV . The map P(U) ! OX(U) factors through
OX\{x}(U)�OV (U) = 0, hence, any map P(U) ! OX(U) is zero for any choice of open
neighborhood U of x. We conclude that ' : P ! OX is zero since it gives a zero map
on each stalk.

Next, we see that any injective OX -module on a ringed space is acyclic. In particular, an
injective resolution is an example of an acyclic resolution for the global section functor.
We will have a small detour; passing through the notion of flasque sheaves.

Lemma 141. Let (X,OX) be any ringed space. Any injective OX-module I is flasque,

i.e., every restriction map I(U) ! I(V ) is surjective.

Proof. Let U ✓ X be an open subset. Let OU denote the sheaf j!OX |U , which is the
restriction of OX to U , extended by zero outside of U . If we have any inclusion of open
sets V ✓ U , we have an inclusion 0 ! OV ! OU . Hence, for any injective OX -module
I, we have a surjection

Hom(OU , I) ! Hom(OV , I) ! 0.

On the other hand, the functor Hom(OU ,�) is same as the global section functor �(U,�)
taking on U , in particular, the above surjection identifies with the restriction map
I(U) ! I(V ).

Then it is easy to see that any flasque sheaf is acyclic:

Proposition 142. Let F be a flasque sheaf on a topological space X. Then H i(X,F) = 0
for all i > 0.
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Proof. Let I be an injective sheaf in Ab(X) containing F , and let G be its quotient. We
have a short exact sequence

0 ! F ! I ! G ! 0.

Since F is flasque, we have a short exact sequence on sections

0 ! F(U) ! I(U) ! G(U) ! 0

for every open set U ✓ X. Now I is also flasque, one can immediately check that G is
also flasque. Since I is injective, we have H i(X, I) = 0 for all i > 0.
Therefore, from the long exact sequence of cohomology, we have H1(X,F) = 0 and
H i+1(X,F) ' H i(X,G) for every i � 1. But G is also flasque, hence, we get the desired
result by the induction on i.

In particular, we can calculate the cohomology using a flasque resolution, which does not
depend on the choice of the sheaf of rings OX . It means, there is no di↵erence between
the right derived functor of �(X,�) : Ab(X) ! Ab (= the sheaf cohomology functor
H i(X,�)) and the right derived functor of �(X,�) : Mod(X) ! Ab. It does not depend
on the choice of the ring structure on a topological space X.
On the other hand, if we have a ringed space (X,OX) with a ring A = �(X,OX),
then any sheaf of OX -modules F admits an A-module structure on �(X,F). Thus, any
cohomology group H i(X,F) also has a natural A-module structure.

The cohomology we defined has nice properties we may expect. We will introduce some
of them, without their proofs if too complicated. The following dimensional cohomology
vanishing implies that the cohomology groups are constrained by the dimension of the
underlying space X.

Theorem 143 (Grothendieck vanshing / dimensional cohomology vanishing). Let X be

a noetherian topological space of dimension n. Then for any i > n and for any sheaf of

abelian groups F on X, the cohomology group H i(X,F) = 0 vanishes.

Proposition 144. When X is a paracompact Hausdor↵ space which is locally con-

tractible (e.g. X is a manifold or a CW-complex), then the singular cohomology group

H i

sing
(X,A) of X with coe�cients in the abelian group A coincides with the sheaf coho-

mology group H i(X,A), where A is the constant sheaf on X associated to A.

Caution. Let X be an irreducible complex projective manifold, or a variety over C,
together with the constant sheaf C. If we regard X as a topological space with the
Zariski topology, then it has too few number of open subsets, so that the constant sheaf
C becomes flasque. In particular, the sheaf cohomology groups of X are

H i(X,C) =
⇢

C if i = 0,
0 if i 6= 0.

Of course, it is di↵erent from the singular cohomology with coe�cients in C in general.
To correct the di↵erence, we need to add “more open subsets” in the topology of X,
which leads to a motivation of étale cohomology.
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Remark 145. There is a notion of “cohomology with supports” for a given closed subset
Y of X. The functor �Y (X,�) which collects the sections with support in Y is a left
exact functor, hence, taking its right derived functor provides a cohomology functor H i

Y
.

Using this, one can generalize the excision and the Mayer-Vietoris sequence in singular
(co)homology; see Exercise III-2.3 and III-2.4 of Hartshorne’s book.

A�ne schemes and quasi-coherent sheaves on them play as building blocks; in particular,
they are analogous to the contractible space in cohomological point of view. This “a�ne
cohomology vanishing” can also be used to determine whether a given underlying space
is a�ne or not.

Theorem 146 (Serre). For a noetherian scheme X, the following are equivalent:

(i) X is a�ne;

(ii) H i(X,F) = 0 for all quasi-coherent sheaves F and all i > 0;

(iii) H1(X,I ) = 0 for all coherent sheaves of ideals I .

Proof. When X = SpecA is a�ne and F is quasi-coherent, then we have an A-module
M = �(X,F) such that fM ' F . We take an injective A-resolution of M as 0 ! M ! I•

in the category of A-modules. One can show that each sheaf eIi is flasque (Hartshorne’s
book, (III.3.4)), and hence we can compute the cohomology groups of F by a flasque
resolution eI• of F . Applying the functor �, we recover the original injective A-resolution
0 ! M ! I•, in particular, H i(X,F) = 0 for all i > 0.
(iii) ) (i) is a little bit tricky; we refer Hartshorne’s book (III.3.7) for the details.
We leave only a brief idea. Let A = �(X,OX). Since H1 vanishes for every ideal
sheaf, for each point P 2 X one can choose an element fP 2 A such that SpecAf

becomes an a�ne open neighborhood of P . Thanks to the quasi-compactness, we can
choose a finite a�ne open covering {SpecAf1 , · · · , SpecAfr} of X. Now the a�neness
of X is equivalent to the fact that the elements f1, · · · , fr generate the unit ideal in
A. Let ↵ : O�r

X
! OX be the map corresponding to the matrix (f1 · · · fr). Its kernel

(ker↵) admits a filtration where each quotient has a form of a sheaf of ideals in OX ,
one can check that H1(X, ker↵) = 0. In other words, H0(X,O�r

X
) ! H0(X,OX) = A

is surjective, and hence f1, · · · , fr generate the unit ideal in A.

Remark 147. This is an algebraic version of Cartan’s theorem B in complex geometry.
Cartan’s theorem A and B states that if F is an analytic coherent sheaf on a Stein
manifold X, then F is generated by its global sections and H i(X,F) = 0 for all i > 0.
By the GAGA principle, this is equivalent to say that the higher cohomology groups
vanishes for a�ne varieties over the complex numbers.

Remark 148. It is a special case of the following statement:

IfX is a variety which can be covered by n a�ne open subsets, thenH i(X,F) =
0 for every quasi-coherent sheaf F and i � n.
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For instance, when X = Pn

k
, it is covered by (n + 1) distinguished open subsets deter-

mined by the coordinates. Hence, the statement gives a special case of the dimension
cohomology vanishing. In this point of view, the cohomology also encodes the informa-
tion that how far the underlying space X is from being a�ne.
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3 Čech cohomology

Čech cohomology is a cohomology theory for a sheaf of abelian groups on a topological
space X, with respect to a given open covering of X. When X is a noetherian separated
scheme, and an open covering are su�ciently nice, then the Čech cohomology groups for
a quasi-coherent sheaf coincide with the sheaf cohomology groups. In particular, we need
not to compute the cohomology via an injective resolution, which is almost impossible
to reach in practice.
Let X be a topological space, and let U = (Ui)i2I be an open covering of X. Choose
and fix a well-ordering of the index set I. For any finite set of indices i0, · · · , ip 2 I, we
denote the intersection Ui0 \ · · · \ Uip by Ui0,··· ,ip .
Let F be a sheaf of abelian groups on X. We define a complex C•(U,F) of abelian
groups as follows. For each p � 0, let

Cp(U,F) :=
Y

i0<···<ip

F(Ui0,··· ,ip).

An element ↵ 2 Cp(U,F) is determined by giving an element ↵i0,··· ,ip 2 F(Ui0,··· ,ip)
for each (p + 1)-tuple i0 < · · · < ip of elements in I. We define the coboundary map
d : Cp ! Cp+1 by

(d↵)i0,··· ,ip,ip+1 :=
p+1X

k=0

(�1)k↵
i0,··· ,îk,··· ,ip+1

|Ui0,··· ,ip+1

where îk means we omit the index ik. Since ↵i0,··· ,îk,··· ,ip+1
is an element in F(U

i0,··· ,îk,··· ,ip+1
),

we may take its restriction onto Ui0,··· ,ip+1 . One can easily check that d2 = 0, that is, we
have a complex of abelian groups.

Definition 149. Let X be a topological space and let U be an open covering of X. For
any sheaf of abelian groups F on X, we define the p-th Čech cohomology group of F
with respect to the covering U, to be Ȟ

p
(U,F) := hp(C•(U,F)).

Caution. In general, the Čech cohomology functor Ȟ
p
(U,�) is not a �-functor; we do

not get a long exact sequence of Čech cohomology groups from a short exact sequence
0 ! F 0 ! F ! F 00 ! 0. For example, if U is consisted of the single open set X, we do

not have higher Čech cohomology groups, whereas Ȟ
0
(U,�) coincides with the global

section functor �(X,�) which is not exact in general.

Example 150. Let X = P1

k
= Proj k[X,Y ] be a projective line, and let F = ! be the

sheaf of di↵erentials. Let U be the open covering by the two a�ne open sets U = A1

with a�ne coordinate x = X/Y and V = A1 with a�ne coordinate y = Y/X = 1/x.
The Čech complex has only two terms:

C0 = �(U,!)⇥ �(V,!)
C1 = �(U \ V,!).
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Note that �(U,!) = k[x]dx, �(V,!) = k[y]dy, and �(U \ V,!) = k
⇥
x, x�1

⇤
dx. Also

note that the map d : C0 ! C1 is given by

x 7! x
y 7! 1/x

dy 7! d
�
1

x

�
= � 1

x2dx.

So Ȟ
0
(U,!) = ker d is the set of pairs (f(x)dx, g(y)dy) such that f(x) = �1/x2g(1/x).

This can happen only if f = g = 0 since the left-hand-side is a polynomial in x, and the
right-hand-side is a nonconstant polynomial in x�1 unless g = 0.

Ȟ
1
(U,!) = coker d is obtained by mod out all the expressions

✓
f(x) +

1

x2
g

✓
1

x

◆◆
dx,

where f, g are polynomials. In particular, the image of d is generated by xndx, where

n 6= 1. Therefore Ȟ
1
(U,!) ' k, generated by the image of x�1dx.

Example 151. Let S1 be the unit circle in the Euclidean plane, and let Z be the
constant sheaf. Let U be the open covering by two connected open sets U = S1 \{(0, 1)}
and V = S1 \ {(0,�1)}. In particular, U \ V can be identified with two open intervals.
We have

C0 = �(U,Z)⇥ �(V,Z) = Z⇥ Z
C1 = �(U \ V,Z) = Z⇥ Z,

together with the map d : C0 ! C1 which sends (a, b) to (b � a, b � a). In particular,

Ȟ
0
(U,Z) ' Z and Ȟ

1
(U,Z) ' Z. This coincides with the singular cohomology groups of

X with the integer coe�cients.

We will see some properties of the Čech cohomology groups.

Lemma 152. For any X,U,F , we have Ȟ
0
(U,F) ' �(X,F).

Proof. Note that Ȟ
0
(U,F) = ker

⇥
d : C0(U,F) ! C1(U,F)

⇤
. Let ↵ 2 C0 be an element

{↵i 2 F(Ui)}. For each i < j, we have (d↵)i,j = ↵j � ↵i 2 F(Ui,j). In other words,
d↵ = 0 means two sections ↵i and ↵j coincide on the intersection Ui \ Uj . Thanks to
sheaf axioms, such a collection of sections will glue together and give a unique element
in �(X,F).

When X is a (quasi-projective) variety, it is quite natural to take an open cover U
as an a�ne open cover. We will see that the Čech cohomology groups and the sheaf
cohomology groups coincide for any quasi-coherent sheaf F in this case. A standard
idea uses a spectral sequence from a double complex – which is similar as the “Hodge-de
Rham” theorem. The key facts what we need are:

(i) If I is an injective OX -module on a ringed space (X,OX), together with
a finite open covering U = {Ui} of X, then the Čech cohomology groups
Ȟ

p
(U, I) vanish for all p > 0;
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(ii) If X is an a�ne scheme, and F is any quasi-coherent sheaf on X, then
Hp(X,F) = Ri�(X,F) = 0 for all p > 0.

Let X be a (noetherian separated) scheme, F be a quasi-coherent sheaf on X, and let
U = {Ui} be a finite a�ne open cover of X. We may associate a double complex for a
given injective resolution 0 ! F ! I0 ! I1 · · · as

...
...

...

0

OO

//

Q
i
I1(Ui)

OO

//

Q
i<j

I1(Ui,j)

OO

// · · ·

0

OO

//

Q
i
I0(Ui)

OO

//

Q
i<j

I0(Ui,j)

OO

// · · ·

0

OO

// 0

OO

// 0

OO

// · · ·
If we take the rightward filtration, we obtain a “vertical strip” on the 0-th column which
converges to the sheaf cohomology. On the other hand, if we take the upward filtration,
we obtain a “horizontal strip” on the 0-th row which converges to the Čech cohomology.
However, we are not much familiar with spectral sequences, so we will follow a description
in Hartshorne’s book. To do this, we need a “sheafified” version of the Čech complex.
For any open set V ✓ X, let f : V ,! X denote the inclusion map. We define the
complex C

•(U,F) as

C
p(U,F) :=

Y

i0<···<ip

f⇤(F|Ui0,··· ,ip
)

and define d : C
p(U,F) ! C

p+1(U,F) by the same formula as the usual Čech complex.
Note that Cp(U,F) = �(X,C p(U,F)) for each p.

Lemma 153. For any sheaf of abelian groups F on X, the complex C
p(U,F) is a

resolution of F , that is, there is a natural map ✏ : F ! C
0
such that the sequence

0 ! F ✏! C
0 ! C

1 ! · · ·

is exact.

Proof. We define ✏ by taking the product of the natural maps F ! f⇤(F|Ui) for i 2 I.
The exactness at F and C

0 follows from the sheaf axioms for F . To check the exactness
of the complex on the remaining parts, we will see that the induced sequence on stalks
is exact. Let x 2 X be a point. Suppose that x 2 Uj . For each p � 1, we define a map
k : C

p(U,F)x ! C
p�1(U,F)x as follows:

Given ↵x 2 C
p(U,F)x, which is represented by a section ↵ 2 �(V,C p(U,F))

over a neighborhood V of x, which we may choose small enough so that
V ✓ Uj . Now for any p-tuple i0 < · · · < ip�1, we define (k↵)i0,··· ,ip�1 :=
↵j,i0,··· ,ip�1 . Then take the stalk of k↵ at x to get the desired map k.
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Now for any p � 1,↵ 2 C
p
x , we have

(dk + kd)(↵) = ↵.

In other words, the identity map is homotopic to the zero map. In particular, all the
cohomology groups hp(C •

x ) vanish for p � 1.
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