Proposition 154. Let X be a topological space, \mathfrak{U} an open covering, and let \mathcal{F} be a flasque sheaf of abelian groups on X. Then $\check{H}^{p}(\mathfrak{U}, \mathcal{F}) = 0$ vanishes for every p > 0. In particular, an injective sheaf of abelian groups on X has no nonvanishing higher Čech cohomology groups.

Proof. Consider the Čech resolution $0 \to \mathcal{F} \to \mathscr{C}^{\bullet}(\mathfrak{U}, \mathcal{F})$ as above. Since \mathcal{F} is flasque, and a product of flasque sheaves are flasque, all the sheaves $\mathscr{C}^p(\mathfrak{U}, \mathcal{F})$ are flasque for all p. In particular, this gives a flasque resolution of \mathcal{F} , hence, we may use it to compute the sheaf cohomology instead of an injective resolution of \mathcal{F} . But a flasque sheaf \mathcal{F} has no higher cohomology: $H^p(X, \mathcal{F}) = 0$ for each p > 0.

On the other hand, we may recover the Čech complex $C^{\bullet}(\mathfrak{U}, \mathcal{F})$ by taking the global section functor $\Gamma(X, -)$. In particular, $\check{\mathrm{H}}^{p}(\mathfrak{U}, \mathcal{F}) = h^{p}(\Gamma(X, \mathscr{C}^{\bullet})) = H^{p}(X, \mathcal{F}) = 0.$

Lemma 155. Let X be a topological space, and let \mathfrak{U} be an open covering of X. For each $p \geq 0$, there is a natural map, functorial in \mathcal{F} ,

$$\check{H}^{p}(\mathfrak{U},\mathcal{F}) \to H^{p}(X,\mathcal{F}).$$

Proof. Let $0 \to \mathcal{F} \to \mathcal{I}^{\bullet}$ be an injective resolution of \mathcal{F} . Being injective, we may find a morphism of complexes from $0 \to \mathcal{F} \to \mathscr{C}^{\bullet}(\mathfrak{U}, \mathcal{F})$ to $0 \to \mathcal{F} \to \mathcal{I}^{\bullet}$, which extends the identity map on \mathcal{F} . Applying the functors $\Gamma(X, -)$ and taking the cohomology, we have a natural induced map which is the desired map. \Box

Theorem 156. Let X be a noetherian variety over a field k, \mathfrak{U} be an affine open cover of X, and let \mathcal{F} be a quasi-coherent sheaf on X. Then the above natural map is an isomorphism for every $p \geq 0$.

Proof. For p = 0, both groups coincide with the group of global sections $\Gamma(X, \mathcal{F})$. We first embed \mathcal{F} into a quasi-coherent flasque sheaf \mathcal{G} . Let \mathcal{R} be the quotient: $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{R} \to 0$.

For each $i_0 < \cdots < i_p$, the intersection of affine open subsets U_{i_0, \cdots, i_p} becomes affine.

Let U, V be two affine open subsets. Their intersection $U \cap V$ coincide with the diagonal in $U \times V$, passing by a map $U \cap V \to U \times V$ sending $x \mapsto (x, x)$. Here, $U \times V$ is an affine scheme and the diagonal is a closed subscheme, hence, $U \cap V$ is also affine. Inside a general scheme, the diagonal needs not to be closed; we need the separatedness assumption.

Since \mathcal{F} is quasi-coherent, there is no H^1 on an affine open set, that is, we have a short exact sequence of abelian groups

$$0 \to \mathcal{F}(U_{i_0, \cdots, i_p}) \to \mathcal{G}(U_{i_0, \cdots, i_p}) \to \mathcal{R}(U_{i_0, \cdots, i_p}) \to 0.$$

Taking their products, we have a short exact sequence of Cech complexes

 $0 \to C^{\bullet}(\mathfrak{U}, \mathcal{F}) \to C^{\bullet}(\mathfrak{U}, \mathcal{G}) \to C^{\bullet}(\mathfrak{U}, \mathcal{R}) \to 0.$

61

Taking the cohomology, we have a long exact sequence of Čech cohomology groups. We have $\check{\mathrm{H}}^{p}(\mathfrak{U},\mathcal{G}) = 0$ for every p > 0 since \mathcal{G} is flasque. In particular, $\check{\mathrm{H}}^{1}(\mathfrak{U},\mathcal{F}) \simeq H^{1}(X,\mathcal{F})$ since both are the cokernel of $\Gamma(X,\mathcal{G}) \to \Gamma(X,\mathcal{R})$.

Note also that we have an isomorphism $\check{\mathrm{H}}^{p}(\mathfrak{U},\mathcal{F}) \simeq \check{\mathrm{H}}^{p-1}(\mathfrak{U},\mathcal{R})$ for every $p \geq 2$. Since \mathcal{R} is also quasi-coherent, we may apply the induction on p.

Remark 157. On an arbitrary topological space X with an arbitrary sheaf of abelian groups \mathcal{F} on X, Čech cohomology may differ from the sheaf cohomology. In general, we have a natural map

$$\check{\mathrm{H}}^{p}(\mathfrak{U},\mathcal{F}) \to H^{p}(X,\mathcal{F})$$

for an arbitrary open cover X, which is an isomorphism when p = 0. If we consider finer open covers (refinements) of \mathfrak{U} , they form a direct system. In particular, we have a direct limit $\varinjlim \operatorname{H}^{p}(\mathfrak{U}, \mathcal{F})$, together with a natural map $\varinjlim \operatorname{H}^{p}(\mathfrak{U}, \mathcal{F}) \to H^{p}(X, \mathcal{F})$ for each p. This is an isomorphism when p = 0 or p = 1.

Exercise 158. Let (X, \mathcal{O}_X) be a ringed space. We denote Pic X by the group of isomorphism classes of invertible sheaves. Show that Pic $X \simeq H^1(X, \mathcal{O}_X^{\times})$, where \mathcal{O}_X^{\times} denotes the sheaf whose sections over an open set U are the units in the ring $\Gamma(U, \mathcal{O}_X)$, with the multiplication as the group operation.

[Hint : Let \mathcal{L} be an invertible sheaf. Cover X by open subsets U_i on which \mathcal{L} is free. Fix local isomorphisms $\varphi_i : \mathcal{O}_{U_i} \xrightarrow{\sim} \mathcal{L}|_{U_i}$. On $U_i \cap U_j$, we have an automorphism $\varphi_i^{-1} \circ \varphi_j$ of $\mathcal{O}_{U_{i,j}}$. These automorphisms give an element of $\check{\mathrm{H}}^1(\mathfrak{U}, \mathcal{O}_X^{\times})$. Now use the fact that $\lim \check{\mathrm{H}}^1(\mathfrak{U}, \mathcal{F}) = H^1(X, \mathcal{F})$.]

Remark 159. When X is a (compact) complex manifold, we have an exponential sequence

$$0 \to \underline{\mathbb{Z}} \to \mathcal{O}_X \to \mathcal{O}_X^{\times} \to 0.$$

From the cohomology long exact sequence, we have an exact sequence

$$H^1(X,\underline{\mathbb{Z}}) = H^1(X,\mathbb{Z}) \to H^1(X,\mathcal{O}_X) \to H^1(X,\mathcal{O}_X^{\times}) = \operatorname{Pic} X \xrightarrow{c_1} H^2(X,\mathbb{Z}).$$

The last map c_1 is called the *first Chern class map*, and the first Chern class of a line bundle L is defined by the image $c_1(L)$ in $H^2(X,\mathbb{Z})$. In particular, the Picard group of X is composed of two parts: first, a discrete part, measured by the first Chern class; and a continuous part, coming from the complex vector space $H^1(X, \mathcal{O}_X)$ quotient by the images of $H^1(X,\mathbb{Z})$. The vector space $H^1(X,\mathcal{O}_X)$ identifies with the first order deformation space of a line bundle \mathcal{O}_X . When X is sufficiently good, the continuous part ker $c_1 \subseteq \text{Pic } X$ coincides with the quotient space $H^1(X, \mathcal{O}_X)$ mod out by \mathbb{Z} -lattices of full rank, in other words, a complex torus.

Exercise 160. Let C be a projective plane curve, defined by a single homogeneous equation f(x, y, z) = 0 of degree d. Assume that $(1:0:0) \notin C$, equivalently, f does not contains a x^d term.

- (1) Show that C is covered by two affine open subsets $U = C \cap U_y = \{y \neq 0\}$ and $V = C \cap U_z = \{z \neq 0\}.$
- (2) Compute the Čech complex explicitly.
- (3) Verify that $h^0(C, \mathcal{O}_C) = 1$ and $h^1(C, \mathcal{O}_C) = {\binom{d-1}{2}}$.

Remark 161. The coincidence of Čech cohomology and the sheaf cohomology implies a special case of the dimensional cohomology vanishing. Let $X = \mathbb{P}^n = \operatorname{Proj} k[x_0, \dots, x_n]$ be the projective *n*-space, and let \mathcal{F} be any quasi-coherent sheaf on X. The sheaf cohomology groups can be computed via an affine open covering; we may take $\mathfrak{U} = \{U_i\}$, where $U_i = D_+(x_i) = \{x_i \neq 0\}$ as a collection of (n + 1) affine open subsets. Since the Čech complex $C^{\bullet}(\mathfrak{U}, \mathcal{F})$ becomes 0 after (n + 1)-steps, all the cohomology groups $H^p(X, \mathcal{F})$ vanish when $p \geq n + 1$.

More generally, let $X \subset \mathbb{P}^N$ be a projective variety of dimension n. Let c = N - n be the codimension. Since X does not intersect with a general linear subspace of dimension c-1, hence, we may assume that X does not intersect with the linear subspace $\{[0: \cdots: 0: x_{n+1}: x_{n+2}: \cdots: x_{(n+1)+(c-1)=n+c=N}]\} \subseteq \mathbb{P}^N$, after a certain linear change of coordinates if necessary. In particular, X can be covered by (n+1) affine open subsets $X \cap U_i = \{x_i \neq 0\}, 0 \leq i \leq n$. The same argument shows that $H^p(X, \mathcal{F}) = 0$ for every $p \geq n+1$ and for every quasi-coherent sheaf \mathcal{F} on X.

Exercise 162. Compute the cohomology groups $H^i(X, \mathcal{O}_X)$ where $X = \mathbb{A}_k^2 \setminus \{(0,0)\}$ is a punctured affine plane. [Hint : compute Čech cohomology groups with respect to an affine open cover $\{U_x, U_y\}$, where $U_x \subseteq \{(x, y) \mid x \neq 0\} \subseteq \mathbb{A}_k^2$ and $U_y \subseteq \{(x, y) \mid y \neq 0\} \subseteq \mathbb{A}_k^2$.] Conclude that $\mathbb{A}_k^2 \setminus \{(0,0)\}$ is not affine.

4 Cohomology on projective spaces

We will make explicit computations of the cohomology of sheaves $\mathcal{O}(n)$ on a projective space, and observe some basic properties of cohomology groups of coherent sheaves on a projective space.

Let A be a noetherian ring, $S = A[x_0, \dots, x_r]$ $(r \ge 1)$, and let $X = \operatorname{Proj} S$ be the projective r-space \mathbb{P}^r_A over A. Let $\mathcal{O}_X(1)$ be the twisting sheaf of Serre. We denote by $\Gamma_*(\mathcal{F})$ the graded S-module $\bigoplus_{n \in \mathbb{Z}} \Gamma(X, \mathcal{F})$ for any \mathcal{O}_X -module \mathcal{F} .

Theorem 163. Let $A, S, X, \mathcal{O}_X(1), \mathcal{F}$ be as above.

- (1) The natural map $S \to \Gamma_*(\mathcal{O}_X) = \bigoplus_{n \in \mathbb{Z}} H^0(X, \mathcal{O}_X(n))$ is an isomorphism of graded S-modules.
- (2) (no intermediate cohomology) $H^i(X, \mathcal{O}_X(n)) = 0$ for 0 < i < r and all $n \in \mathbb{Z}$.
- (3) $H^r(X, \mathcal{O}_X(-r-1)) \simeq A.$
- (4) The natural map $H^0(X, \mathcal{O}_X(n)) \times H^r(X, \mathcal{O}_X(-n-r-1)) \to H^r(X, \mathcal{O}_X(-r-1)) \simeq A$ is a perfect pairing of finitely generated free A-modules, for each $n \in \mathbb{Z}$.

In particular, $H^0(X, \mathcal{O}_X(n))$ can be interpreted as the set of homogeneous polynomials of degree n in x_0, \dots, x_r , and $H^r(X, \mathcal{O}_X(n))$ can be interpreted as the set of homogeneous Laurent polynomials of degree n in x_0, \dots, x_n , where in each monomial, each x_i appears with degree at most -1.

Proof. Let $\mathcal{F} = \bigoplus_{n \in \mathbb{Z}} \mathcal{O}_X(n)$ be a quasi-coherent sheaf on X. Since the cohomology functor commutes with direct sums, the cohomology of \mathcal{F} will decompose into a direct sum of the cohomology of $\mathcal{O}_X(n)$'s.

For each $0 \leq i \leq r$, let U_i be the distinguished affine open set $D_+(x_i)$. We can compute the cohomology of \mathcal{F} by using Čech cohomology with respect to the covering $\mathfrak{U} = \{U_i\}$. For any set of indices $i_0 < \cdots < i_p$, the open set $U_{i_0,\cdots,i_p} = D_+(x_{i_0}\cdots x_{i_p})$, we have $\mathcal{F}(U_{i_0,\cdots,i_p}) = S_{x_{i_0}\cdots x_{i_p}}$. Also note that the grading on \mathcal{F} corresponds to the natural grading of $S_{x_{i_0}\cdots x_{i_p}}$. Thus, the Čech complex of \mathcal{F} is given by

$$C^{\bullet}(\mathfrak{U},\mathcal{F}):\prod S_{x_{i_0}}\to\prod S_{x_{i_0}x_{i_1}}\to\cdots\to S_{x_0\cdots x_r}.$$

Note that $H^0(X, \mathcal{F}) = \check{H}^0(\mathfrak{U}, \mathcal{F})$ is the kernel of the first map, which is just S.

Next, we consider $H^r(X, \mathcal{F})$, which is the cokernel of the last map $d^{r-1} : \prod_k S_{x_0 \cdots \hat{x_k} \cdots x_r} \to S_{x_0 \cdots x_r}$. We regard $S_{x_0 \cdots x_r}$ as a free A-module of Laurent polynomials, with basis $x_0^{\ell_0} \cdots x_r^{\ell_r}$, $l_i \in \mathbb{Z}$. The image of d^{r-1} is the free submodule generated by those basis elements for which at least one $l_i \geq 0$ is nonnegative. Thus, $H^r(X, \mathcal{F})$ is a free A-module with basis consisting of the negative monomials

$$\{x_0^{\ell_0}\cdots x_r^{\ell_r} \mid \ell_i < 0 \text{ for every } r\},\$$

equipped with the natural grading $\sum \ell_i$. There is only one such monomial of degree -r-1, namely $x_0^{-1}\cdots x_r^{-1}$.

To check the last statement, first note that both $H^0(X, \mathcal{O}_X(n))$ and $H^r(X, \mathcal{O}_X(-n - r - 1))$ vanish when n < 0. For $n \ge 0$, $H^0(X, \mathcal{O}_X(n))$ identifies with the free A-module with basis

$$\{x_0^{m_0}\cdots x_r^{m_r} \mid m_i \ge 0, \sum m_i = n\}.$$

The natural pairing with $H^r(X, \mathcal{O}_X(-n-r-1))$ into $H^r(X, \mathcal{O}_X(-r-1))$ is determined by

$$(x_0^{m_0}\cdots x_r^{m_r})\cdot (x_0^{\ell_0}\cdots x_r^{\ell_r}) = x_0^{m_0+\ell_0}\cdots x_r^{m_r+\ell_r}$$

where the object on the right becomes 0 if there is an *i* such that $m_i + \ell_i \geq 0$. It is clear that this gives a perfect pairing; $H^r(X, \mathcal{O}_X(-n-r-1)) \simeq H^0(X, \mathcal{O}_X(n))^{\vee}$ with the dual basis consisting of elements of the form

$$x_0^{-m_0-1}\cdots x_r^{-m_r-1}$$

corresponding to $x_0^{m_0} \cdots x_r^{m_r}$.

It remains to show that there is no intermediate cohomology. We will use the induction on r. When r = 1, there is nothing to prove, so let r > 1. Consider the exact sequence of graded S-modules

$$0 \to S(-1) \xrightarrow{\cdot x_r} S \to S/(x_r) \to 0.$$

This gives the exact sequence of sheaves

$$0 \to \mathcal{O}_X(-1) \xrightarrow{\cdot x_r} \mathcal{O}_X \to \mathcal{O}_H \to 0$$

where $H = (x_r = 0) = \mathbb{P}_A^{r-1}$ is the hyperplane defined by x_r . Twisting by all $n \in \mathbb{Z}$ and taking the direct sum, we have

$$0 \to \mathcal{F}(-1) \xrightarrow{\cdot x_{\Gamma}} \mathcal{F} \to \mathcal{F}_{H} \to 0$$

where $\mathcal{F}_H = \bigoplus_{n \in \mathbb{Z}} \mathcal{O}_H(n)$. Taking the cohomology long exact sequence, we have

$$\cdots \to H^i(X, \mathcal{F}(-1)) \xrightarrow{\cdot x_F} H^i(X, \mathcal{F}) \to H^i(X, \mathcal{F}_H) = H^i(H, \mathcal{F}_H) \to H^{i+1}(X, \mathcal{F}(-1)) \to \cdots$$

Since $(H, \mathcal{O}_H(1)) = (\mathbb{P}_A^{r-1}, \mathcal{O}_{\mathbb{P}_A^{r-1}}(1))$, we may apply the induction hypothesis so that $H^i(X, \mathcal{F}_H) = 0$ for 0 < i < r - 1.

At the beginning of the long exact sequence, we have

$$0 \to H^0(X, \mathcal{F}(-1)) \xrightarrow{\cdot x_{\mathcal{F}}} H^0(X, \mathcal{F}) \to H^0(X, \mathcal{F}_H) \to 0,$$

since $H^0(X, \mathcal{F}_H) = S/(x_r)$. In particular, we have a bijection

$$0 \to H^1(X, \mathcal{F}(-1)) \stackrel{\cdot x_r}{\to} H^1(X, \mathcal{F}) \to 0.$$

At the end of the long exact sequence, we have

$$H^{r-1}(X, \mathcal{F}_H) \xrightarrow{\delta} H^r(X, \mathcal{F}(-1)) \xrightarrow{\cdot x_r} H^r(X, \mathcal{F}) \to 0.$$

(The surjectivity of the map $(\cdot x_r)$ is clear; we may regard both spaces as the space of negative Laurent polynomials, or we may apply the dimensional cohomology vanishing.) The kernel of the map $(\cdot x_r)$ is the free A-module generated by negative Laurent monomials $x_0^{\ell_0} \cdots x_r^{\ell_r}$ with $l_r = -1$. Since $H^{r-1}(X, \mathcal{F}_H)$ is the free A-module generated by negative Laurent monomials $x_0^{\ell_0} \cdots x_{r-1}^{\ell_{r-1}}$, the map δ identifies with the division by x_r , we observe that δ is injective. In particular, $H^{r-1}(X, \mathcal{F}(-1)) \xrightarrow{\cdot x_r} H^{r-1}(X, \mathcal{F})$ is bijective. We conclude that $(\cdot x_r) : H^i(X, \mathcal{F}(-1)) \to H^i(X, \mathcal{F})$ is bijective for each 0 < i < r.

If we localize the Čech complex $C^{\bullet}(\mathfrak{U}, \mathcal{F})$ by x_r , we get the Čech complex for the sheaf $\mathcal{F}|_{U_r}$ on the affine open space U_r , with respect to the affine open covering $\{U_i \cap U_r\}_{0 \leq i \leq r-1}$. Since a quasi-coherent sheaf on an affine scheme does not have any nonvanishing higher cohomology group, we conclude that

$$H^i(X,\mathcal{F}|_{U_r}) = H^i(X,\mathcal{F})_{x_r} = 0$$

for each i > 0. In other words, every element of $H^i(X, \mathcal{F})$, for i > 0, is annihilated by some powers of x_r . Now the bijectivity of the map $(\cdot x_r) : H^i(X, \mathcal{F}(-1)) \to H^i(X, \mathcal{F})$ implies that $H^i(X, \mathcal{F}) = 0$ for 0 < i < r.

Theorem 164 (Serre vanishing). Let X be a closed subscheme of a projective space \mathbb{P}_A^r over a noetherian ring A, and let $\mathcal{O}_X(1)$ be the very ample invertible sheaf on X corresponding to the given embedding. Let \mathcal{F} be a coherent sheaf on X. Then:

- (1) for each $i \ge 0$, $H^i(X, \mathcal{F})$ is a finitely generated A-module;
- (2) there is an integer n_0 (depending on \mathcal{F}) such that for each i > 0 and $n \ge n_0$, $H^i(X, \mathcal{F}(n)) = 0.$

Proof. Let $i: X \hookrightarrow \mathbb{P}_A^r$ be the given embedding, so that $\mathcal{O}_X(1) = i^* \mathcal{O}_{\mathbb{P}_A^r}(1)$. Since $i_* \mathcal{F}$ is coherent and the cohomology is the same, thus, we may reduce to the case $X = \mathbb{P}_A^r$. Note that the statements we want to show are obvious when $\mathcal{F} = \mathcal{O}_X(q)$ for some $q \in \mathbb{Z}$. For i > r, we have $H^i(X, \mathcal{F}) = 0$ and hence there is nothing to prove. Given a coherent sheaf \mathcal{F} on X, there is a surjection $\mathcal{E} = \bigoplus \mathcal{O}_X(q_i) \to \mathcal{F} \to 0$ where \mathcal{E} is a finite direct sum of line bundles. Let \mathcal{R} be the kernel, which is also coherent. Using the descending induction hypothesis on i, we have the finite generatedness of $H^i(X, \mathcal{F})$ since there is an exact sequence of A-modules

$$\cdots \to H^i(X, \mathcal{E}) \to H^i(X, \mathcal{F}) \to H^{i+1}(X, \mathcal{R}) \to \cdots$$

with both terms on the left and on the right are finitely generated.

To show the second statement, we just twist the above sequence by a sufficiently large number $n \gg 0$; the module on the left vanishes unless i = 0 because \mathcal{E} is a direct sum of $\mathcal{O}_X(q_i)$, and the module on the right vanishes thanks to the induction hypothesis. Hence $H^i(X, \mathcal{F}(n)) = 0$ for $n \gg 0$. Since there are only finitely many *i*'s involved in the sequence, namely $0 < i \leq r$, we may take n_0 as the maximum of integers what we obtained separately for each *i*.

As an application, we give a cohomological criterion of the ampleness of an invertible sheaf:

Proposition 165. Let X be a closed subscheme of a projective space \mathbb{P}_A^r over a noetherian ring A. Let \mathcal{L} be an invertible sheaf on X. Then the following are equivalent:

- (i) \mathcal{L} is ample;
- (ii) For each coherent sheaf \mathcal{F} on X, there is an integer n_0 (depending on \mathcal{F}) such that for each i > 0 and $n \ge n_0$, we have the vanishing cohomology group $H^i(X, \mathcal{F} \otimes \mathcal{L}^n) = 0$.

Proof. (\Rightarrow) Note that \mathcal{L}^m is very ample for some m > 0. We take the corresponding projective morphism, so that we have another embedding $i: X \hookrightarrow \mathbb{P}^N_A$ into a projective space such that $i^*\mathcal{O}_{\mathbb{P}^N_A}(1) = \mathcal{L}^m$. Now apply the Serre vanishing for $\mathcal{F}, \mathcal{F} \otimes \mathcal{L}, \cdots, \mathcal{F} \otimes \mathcal{L}^{m-1}$.

(\Leftarrow) We need to show that for any coherent sheaf \mathcal{F} on X, there is an integer m_0 such that $\mathcal{F} \otimes \mathcal{L}^m$ is globally generated for each $m \geq m_0$.

Let P be a closed point of X, and let \mathscr{I}_P be the ideal sheaf of the closed subset $\{P\}$. We have a short exact sequence

$$0 \to \mathscr{I}_P \mathcal{F} \to \mathcal{F} \to \mathcal{F} \otimes k(P) \to 0$$

where k(P) is the skyscraper sheaf $\mathcal{O}_X/\mathscr{I}_P$. Tensoring with \mathcal{L}^m , we have

$$0 \to \mathscr{I}_P \mathcal{F} \otimes \mathcal{L}^m \to \mathcal{F} \otimes \mathcal{L}^m \to \mathcal{F} \otimes \mathcal{L}^m \otimes k(P) \to 0.$$

Since $\mathscr{I}_P \mathcal{F} \otimes \mathcal{L}^m$ is also coherent, there is an integer m_0 such that $H^1(X, \mathscr{I}_P \mathcal{F} \otimes \mathcal{L}^m) = 0$ for each $m \geq m_0$. In particular,

$$\Gamma(X, \mathcal{F} \otimes \mathcal{L}^m) \to \Gamma(X, \mathcal{F} \otimes \mathcal{L}^m \otimes k(P))$$

is surjective for each $m \geq m_0$. Thanks to Nakayama's lemma, this implies that the stalk of $\mathcal{F} \otimes \mathcal{L}^m$ at P is generated by global sections. Since it is coherent, there is an open neighborhood U of P (it may depend on m) such that the global sections of $\mathcal{F} \otimes \mathcal{L}^m$ generate the sheaf at every point in U.

In particular, taking $\mathcal{F} = \mathcal{O}_X$, we find that there is an integer $m_1 > 0$ and an open neighborhood V of P such that \mathcal{L}^{m_1} is globally generated by global sections over V. On the other hand, the above argument gives a neighborhood U_j of P such that $\mathcal{F} \otimes \mathcal{L}^{m_0+j}$ is generated by global sections over U_j for each $0 \leq j \leq m_1 - 1$. Now let $U_P :=$ $V \cap U_0 \cap \cdots \cap U_{m_1-1}$. Then over U_P , all of the sheaves $\mathcal{F} \otimes \mathcal{L}^m$, $m \geq m_0$ are generated by global sections since it can be expressed as a product of globally generated invertible sheaves

$$(\mathcal{F}\otimes\mathcal{L}^{m_0+j})\otimes(\mathcal{L}^{m_1})^k$$

for some $0 \le j \le m_1 - 1$ and $k \ge 0$.

Now cover X by a finitely number of the open sets U_P , for various closed points P (since X is quasi-compact). Let n_0 be the maximum of the m_0 's corresponding to those points P. Then $\mathcal{F} \otimes \mathcal{L}^n$ is generated by global sections over all of X, for all $n \ge n_0$.

Exercise 166. Let X be a projective scheme over a field k, $\mathcal{O}_X(1)$ a very ample invertible sheaf, and let \mathcal{F} be a coherent sheaf on X. We define the *Euler characteristic* of \mathcal{F} by

$$\chi(\mathcal{F}) := \sum (-1)^i \dim_k H^i(X, \mathcal{F}).$$

- (1) If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ is a short exact sequence of coherent sheaves on X, show that $\chi(\mathcal{F}) = \chi(\mathcal{F}') + \chi(\mathcal{F}'')$.
- (2) Show that there is a polynomial $P(z) \in \mathbb{Q}[z]$ such that $\chi(\mathcal{F}(n)) = P(n)$ for all $n \in \mathbb{Z}$. This is called the *Hilbert polynomial* of \mathcal{F} with respect to $\mathcal{O}_X(1)$.
- (3) Show that there is an integer n_0 such that $h^0(X, \mathcal{F}(n)) = P(n)$ for all $n \ge n_0$.

Exercise 167. Let X be a projective scheme over a noetherian ring A, and let $\mathcal{F}^1 \to \mathcal{F}^2 \to \cdots \mathcal{F}^r$ be an exact sequence of coherent sheaves on X. Show that there is an integer n_0 such that for all $n \geq n_0$, the sequence of global sections

$$\Gamma(X, \mathcal{F}^1) \to \Gamma(X, \mathcal{F}^2) \to \dots \to \Gamma(X, \mathcal{F}^r)$$

is exact.

5 Ext groups, sheaves, and higher direct images

Let (X, \mathcal{O}_X) be a ringed space. If \mathcal{F} and \mathcal{G} are \mathcal{O}_X -modules, there are two objects: Hom_X(\mathcal{F}, \mathcal{G}) the group of \mathcal{O}_X -module homomorphisms, and $\mathcal{H}om_X(\mathcal{F}, \mathcal{G})$ the sheaf Hom. For a fixed \mathcal{F} , they give left exact covariant functors: Hom_X($\mathcal{F}, -$) : $\mathfrak{Mod}(X) \to \mathfrak{Ab}$, $\mathcal{H}om_X(\mathcal{F}, -)$: $\mathfrak{Mod}(X) \to \mathfrak{Mod}(X)$. Since $\mathfrak{Mod}(X)$ has enough injectives, we may consider their right derived functors as follows.

Definition 168. Let (X, \mathcal{O}_X) be a ringed space, and let \mathcal{F} be an \mathcal{O}_X -module. We define the functors $\operatorname{Ext}^i_X(\mathcal{F}, -)$ as the right derived functors of $\operatorname{Hom}_X(\mathcal{F}, -)$, and $\operatorname{Ext}^i_X(\mathcal{F}, -)$ as the right derived functors of $\operatorname{Hom}_X(\mathcal{F}, -)$.

An additive functor $F : \mathfrak{A} \to \mathfrak{B}$ is called *effaceable* if for each object A in \mathfrak{A} , there is a monomorphism $u : A \to M$ for some M such that F(u) = 0. The following lemma is useful during this and the next sections.

Lemma 169. Let $T = (T^i)_{i \ge 0}$ be a covariant δ -functor from $\mathfrak{A} \to \mathfrak{B}$. If T^i is effaceable for every i > 0, then T is universal.

Lemma 170. Let \mathcal{I} be an injective object in $\mathfrak{Mod}(X)$. Then for any open subset $U \subseteq X$, $\mathcal{I}|_U$ is an injective object in $\mathfrak{Mod}(U)$.

Proof. Let $j : U \hookrightarrow X$ be the inclusion. Given any inclusion of \mathcal{O}_U -modules $\mathcal{F} \hookrightarrow \mathcal{G}$, and a given morphism $\mathcal{F} \to \mathcal{I}|_U$, we have an inclusion $j_!(\mathcal{F}) \hookrightarrow j_!(\mathcal{G})$ and a morphism $j_!(\mathcal{F}) \to j_!\mathcal{I}|_U$, where $j_!$ denotes the extension by zero outside of U. Since $j_!\mathcal{I}|_U$ is a subsheaf of \mathcal{I} , we have a morphism $j_!\mathcal{F} \to \mathcal{I}$ to an injective object. This extends to a map $j_!\mathcal{G} \to \mathcal{I}$. Taking the restriction onto U gives the required map $\mathcal{G} \to \mathcal{I}|_U$. \Box

In particular, when \mathcal{G} is an injective object in $\mathfrak{Mod}(X)$, we have $\operatorname{Ext}_X^i(\mathcal{F}, \mathcal{G}) = 0$ and $\mathcal{Ext}_X^i(\mathcal{F}, \mathcal{G}) = 0$ for any \mathcal{O}_X -module \mathcal{F} and i > 0.

Proposition 171. For any open subset $U \subseteq X$, we have $\mathcal{E}xt^i_X(\mathcal{F},\mathcal{G})|_U \simeq \mathcal{E}xt^i_X(\mathcal{F}|_U,\mathcal{G}|_U)$.

Proof. Fix \mathcal{F} . Both sides are universal δ -functors in \mathcal{G} from $\mathfrak{Mod}(X)$ to $\mathfrak{Mod}(U)$. Since they agree on i = 0, they must coincide. (To be precise, one has to show that the functor from the left-hand-side is "universal", which can be checked by showing that the functor is effaceable.)

When we take $\mathcal{F} = \mathcal{O}_X$, both the functors Ext and $\mathcal{E}xt$ become very simple as follows.

Proposition 172. For any $\mathcal{G} \in \mathfrak{Mod}(X)$, we have:

- (1) $\mathcal{E}xt^0(\mathcal{O}_X,\mathcal{G}) = \mathcal{G};$
- (2) $\mathcal{E}xt^i(\mathcal{O}_X,\mathcal{G}) = 0$ for i > 0;
- (3) $\operatorname{Ext}^{i}(\mathcal{O}_{X},\mathcal{G}) \simeq H^{i}(X,\mathcal{G})$ for all $i \geq 0$;

Proof. Note that the functor $\mathcal{H}om(\mathcal{O}_X, -)$ is the identity functor, and hence, it does not have nontrivial derived functors for i > 0. The functor $\hom(\mathcal{O}_X, -) = \Gamma(X, -)$ is the global section functor, and its derived functors are the sheaf cohomology functors. \Box

If there is a short exact sequence $0 \to \mathcal{G}' \to \mathcal{G} \to \mathcal{G}'' \to 0$ of \mathcal{O}_X -modules, then we immediately have a cohomology long exact sequence from the construction. The following proposition corresponds to a converse direction;

Proposition 173. If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ is a short exact sequence of \mathcal{O}_X -modules, then for any \mathcal{O}_X -module \mathcal{G} , we have a long exact sequence

$$\begin{array}{rcl} 0 & \to & \operatorname{Hom}(\mathcal{F}'',\mathcal{G}) \to \operatorname{Hom}(\mathcal{F},\mathcal{G}) \to \operatorname{Hom}(\mathcal{F}',\mathcal{G}) \\ & \to & \operatorname{Ext}^1(\mathcal{F}'',\mathcal{G}) \to \operatorname{Ext}^1(\mathcal{F},\mathcal{G}) \to \operatorname{Ext}^1(\mathcal{F}',\mathcal{G}) \\ & \to & \operatorname{Ext}^2(\mathcal{F}'',\mathcal{G}) \to \cdots, \end{array}$$

and similarly for $\mathcal{E}xt$ sheaves.

Proof. Let $0 \to \mathcal{G} \to \mathcal{I}^{\bullet}$ be an injective resolution of \mathcal{G} . Since the functor $\operatorname{Hom}(-,\mathcal{I})$ is exact, we have a short exact sequence of complexes

$$0 \to \operatorname{Hom}(\mathcal{F}'', \mathcal{I}^{\bullet}) \to \operatorname{Hom}(\mathcal{F}, \mathcal{I}^{\bullet}) \to \operatorname{Hom}(\mathcal{F}', \mathcal{I}^{\bullet}) \to 0.$$

Now take the associated long exact sequence of cohomology groups h^i . Using the $\mathcal{H}om(-,\mathcal{I})$ which is an exact functor from $\mathfrak{Mod}(X)$ to $\mathfrak{Mod}(X)$, we get the analogous statement for $\mathcal{E}xt$'s.

In particular, $\mathcal{E}xt$ sheaves can be computed from a locally free resolution of \mathcal{F} ; we do not need to take an injective resolution. Since any coherent sheaf on a noetherian scheme is finitely generated and finitely presented; thus any coherent sheaf on X has a locally free resolution $\mathcal{L}^{\bullet} \to \mathcal{F} \to 0$ (may have infinite length).

Proposition 174. Suppose that there is an exact sequence

$$\cdots \to \mathcal{L}^{-2} \to \mathcal{L}^{-1} \to \mathcal{L}^0 \to \mathcal{F} \to 0$$

in $\mathfrak{Mod}(X)$, where \mathcal{L}^i are locally free sheaves of finite rank. Then for any $\mathcal{G} \in \mathfrak{Mod}(X)$, we have

$$\mathcal{E}xt^{i}(\mathcal{F},\mathcal{G}) \simeq h^{-i}(\mathcal{H}om(\mathcal{L}^{\bullet},\mathcal{G})).$$

Proof. Note that both sides vanish for i > 0 and \mathcal{G} injective; since the functor $\mathcal{H}om(-,\mathcal{G})$ is exact. This implies that they are effaceable δ -functors, hence universal. They are equal for i = 0, we have the natural isomorphism.

Caution. It does not mean that Ext or $\mathcal{E}xt$ can be constructed as a derived functor in its first variable, since the category $\mathfrak{Mod}(X)$ does not have enough projectives in general.

Recall that we have a natural isomorphism $\operatorname{Hom}(\mathcal{F}, \mathcal{G} \otimes \mathcal{L}^{\vee}) \simeq \operatorname{Hom}(\mathcal{F} \otimes \mathcal{L}, \mathcal{G})$ where \mathcal{L} is a locally free sheaf of finite rank. We will show the analogous isomorphism for Ext groups and $\mathcal{E}xt$ sheaves.

Lemma 175. Let \mathcal{L} be a locally free sheaf on X of finite rank, and let \mathcal{I} be an injective \mathcal{O}_X -module. Then $\mathcal{L} \otimes \mathcal{I}$ is injective.

Proof. It is enough to show that the functor $\operatorname{Hom}(-, \mathcal{L} \otimes \mathcal{I})$ is exact, which is the same as the functor $\operatorname{Hom}(- \otimes \mathcal{L}^{\vee}, \mathcal{I})$. Since it is a composition of two exact functors $(- \otimes \mathcal{L}^{\vee})$ and $\operatorname{Hom}(-, \mathcal{I})$, we are done.

Proposition 176. Let \mathcal{L} be a locally free sheaf of finite rank, and let \mathcal{L}^{\vee} be its dual. For any $\mathcal{F}, \mathcal{G} \in \mathfrak{Mod}(X)$, we have

$$\operatorname{Ext}^{i}(\mathcal{F}\otimes\mathcal{L},\mathcal{G})\simeq\operatorname{Ext}^{i}(\mathcal{F},\mathcal{G}\otimes\mathcal{L}^{\vee})$$

for each *i*, and similarly

$$\mathcal{E}xt^i(\mathcal{F}\otimes\mathcal{L},\mathcal{G})\simeq\mathcal{E}xt^i(\mathcal{F},\mathcal{G}\otimes\mathcal{L}^{\vee})\simeq\mathcal{E}xt^i(\mathcal{F},\mathcal{G})\otimes\mathcal{L}^{\vee}.$$

Proof. We already know the case i = 0. For the general case, one can show that all of them are effaceable δ -functors, hence, universal.

Proposition 177. Let X be a variety, \mathcal{F} be a coherent sheaf on X, and let \mathcal{G} be any \mathcal{O}_X -module. For any point $x \in X$, we have

$$\mathcal{E}xt^i_X(\mathcal{F},\mathcal{G})_x \simeq \operatorname{Ext}^i_{\mathcal{O}_{X,x}}(\mathcal{F}_x,\mathcal{G}_x)$$

for any i, where the right-hand-side is the Ext group over the (local) ring $\mathcal{O}_{X,x}$.

Proof. Since the question is local, we may assume that X is affine. Then \mathcal{F} has a (locally) free resolution $\mathcal{L}^{\bullet} \to \mathcal{F} \to 0$ (from a finitely generated $A = \Gamma(X, \mathcal{O}_X)$ -module $\Gamma(X, \mathcal{F})$). On the stalks at x, it gives a free resolution of modules over the local ring $\mathcal{O}_{X,x}$. We may compute the both sides by using these locally free resolutions, which coincide when i = 0. Note that without the assumption \mathcal{F} being coherent, even the case i = 0 is not true in general.

Proposition 178. Let X be a projective variety over a field k, and let $\mathcal{O}_X(1)$ be a very ample invertible sheaf on X, and let \mathcal{F}, \mathcal{G} be coherent sheaves on X. There is an integer $n_0 > 0$ (depending on $\mathcal{F}, \mathcal{G}, i$) such that for every $n \ge n_0$ we have

$$\operatorname{Ext}^{i}(\mathcal{F},\mathcal{G}(n)) \simeq \Gamma(X, \mathcal{E}xt^{i}(\mathcal{F},\mathcal{G}(n))).$$

Proof. Fix \mathcal{F} . Note that the functor $\operatorname{Ext}^{i}(\mathcal{F}, -)$ is the composition of two left exact functors $\Gamma(X, -)$ and $\operatorname{Ext}^{i}(\mathcal{F}, -)$. As a special case of the Grothendieck spectral sequence, there is a convergent spectral sequence

$$E_2^{p,q} = H^p(X, \mathcal{E}xt^i(\mathcal{F}, \mathcal{G})) \Longrightarrow \operatorname{Ext}^{p+q}(\mathcal{F}, \mathcal{G})$$

for any coherent sheaf \mathcal{G} on X. Since $\mathcal{O}_X(1)$ is ample and $\mathcal{E}xt^i(\mathcal{F}, \mathcal{G}(n)) \simeq \mathcal{E}xt^i(\mathcal{F}, \mathcal{G}) \otimes \mathcal{O}_X(n)$, it does not have nonvanishing higher cohomology groups $H^p(X, \mathcal{E}xt^i(\mathcal{F}, \mathcal{G}(n))) = 0$ for all p > 0 and sufficiently large $n \gg 0$ by Serre vanishing. When it happens, $H^0(X, \mathcal{E}xt^i(\mathcal{F}, \mathcal{G}(n))) = E_2^{0,q} \simeq E_\infty^{0,q} = \operatorname{Ext}^q(\mathcal{F}, \mathcal{G}(n))$ as desired. \Box

Exercise 179 (Yoneda extension). Let (X, \mathcal{O}_X) be a ringed space, and let $\mathcal{F}', \mathcal{F}'' \in \mathfrak{Mod}(X)$. An *extension* of \mathcal{F}'' by \mathcal{F}' is a short exact sequence

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0.$$

Two extensions are isomorphic if there is an isomorphism of short exact sequences, inducing the identity maps on \mathcal{F}' and \mathcal{F}'' . Given an extension as above, consider the long exact sequence arising from $\operatorname{Hom}(\mathcal{F}'', -)$. In particular, we have a connecting morphism

$$\delta : \operatorname{Hom}(\mathcal{F}'', \mathcal{F}'') \to \operatorname{Ext}^1(\mathcal{F}'', \mathcal{F}').$$

Let $\xi \in \text{Ext}^1(\mathcal{F}'', \mathcal{F}')$ be the image of the identity morphism $\delta(id_{\mathcal{F}''})$. Show that this process gives a 1-1 correspondence between the isomorphism classes of extensions of \mathcal{F}'' by \mathcal{F}' , and elements of the group $\text{Ext}^1(\mathcal{F}'', \mathcal{F}')$.

Higher direct images are useful when we deal with a relative case, that is, studying a morphism $f: X \to Y$ of varieties, or schemes. One may think this is a family of schemes over Y, where the members of the family are the fibers $X_y := X \times_Y \operatorname{Spec} k(y)$ for various points $y \in Y$. We need some form of "relative cohomology theory of X over Y", or equivalently, "cohomology theory along fibers of X over Y". This allows us to fulfill a philosophy: "geometry of X" is determined by the geometry of Y and the geometry of fibers.

Definition 180. Let $f: X \to Y$ be a continuous map of topological spaces. We define the *higher direct image* functors $R^i f_* : \mathfrak{Ab}(X) \to \mathfrak{Ab}(Y)$ to be the right derived functors of the direct image functor f_* .

The first and the most important property is that they give cohomology on fibers:

Proposition 181. For each $i \ge 0$ and each $\mathcal{F} \in \mathfrak{Ab}(X)$, $R^i f_*(\mathcal{F})$ is a sheaf associated to the presheaf

$$V \mapsto H^i(f^{-1}(V), \mathcal{F}|_{f^{-1}(V)}).$$

on Y.

In the case of noetherian schemes and quasi-coherent sheaves, we have a better situation: affine open subschemes of Y are good enough.

Proposition 182. Let X, Y be noetherian schemes, and let $f : X \to Y$ be a morphism. For any quasi-coherent sheaf \mathcal{F} on X, the sheaves $R^i f_*(\mathcal{F})$ are quasi-coherent on Y. When $Y = \operatorname{Spec} A$ is affine, we have

$$R^i f_* \mathcal{F} \simeq H^i (X, \mathcal{F})^{\sim}$$

for any quasi-coherent sheaf \mathcal{F} on X.

Proof. We address an idea only, and skip the details. Both functors are universal δ -functors which coincide when i = 0.

In general, the cohomology of \mathcal{F} on X is determined by the cohomology of all the higher direct images $R^i f_* \mathcal{F}$ on Y.

Theorem 183 (Leray spectral sequence). Let X, Y be topological spaces, $f : X \to Y$ be a continuous map, and let \mathcal{F} be a sheaf of abelian groups on X. Then there is a spectral sequence $E_2^{p,q} = H^p(Y, R^q f_*(\mathcal{F}))$ which converges to $E_{\infty}^{p,q} = H^{p+q}(X, \mathcal{F})$.

Corollary 184. Let X, Y be noetherian scheme, and let $f : X \to Y$ be a morphism. Assume that f is finite, or f is affine, that is, $X \simeq \operatorname{Spec} \mathscr{A}$ for some quasi-coherent \mathcal{O}_Y -algebra \mathscr{A} . Then $H^i(X, \mathcal{F}) \simeq H^i(Y, f_*\mathcal{F})$.

Proof. We have $R^i f_*(\mathcal{F}) = 0$ for all i > 0 in such cases. Let $0 \to \mathcal{F} \to \mathcal{I}^{\bullet}$ be an injective resolution of \mathcal{F} . Note that $H^i(X, \mathcal{F}) = h^i(\Gamma(X, \mathcal{I}^{\bullet})) = h^i(\Gamma(Y, f_*\mathcal{I}^{\bullet}))$. Note that $f_*\mathcal{I}^{\bullet}$ is a resolution of $f_*\mathcal{F}$ since it does not have nonzero cohomology $R^i f_*$ for i > 0. Since \mathcal{I}^i is injective for each i, we observe that both \mathcal{I} and $f_*\mathcal{I}^i$ are flasque. Therefore, $f_*\mathcal{I}^{\bullet}$ is indeed a flasque resolution of $f_*\mathcal{F}$. Taking the global section functor $\Gamma(Y, -)$ and then the cohomology, we have $H^i(Y, f_*\mathcal{F})$ as results. \Box