
6 Serre duality

Recall the famous Poincaré duality, which is a basic result on the structure of singular
homology and cohomology groups of manifolds:

Let X be an n-dimensional orientable closed manifold. Then for any integer
i, we have H i(X,R) ' Hn�i(X,R).

Thanks to the universal coe�cient theorem, the right-hand-side is isomorphic toHn�i(X,R)_,
the dual of the (n�i)-th cohomology group. Assume that X is a smooth manifold. Then
one may interpret this duality as a perfect pairing as follows. Applying de Rham’s the-
orem, one may identify H i(X,R) = H i

dR
(X,R), and hence,

the composition of the cup product map and the integration map H i(X,R)⇥
Hn�i(X,R) ! Hn(X,R) ! R defined by (⌘, ⇠) 7!

R
X
(⌘ ^ ⇠) gives a perfect

pairing.

Since the sheaf cohomology generalizes the singular cohomology, we may expect there is
an analogous “duality” theorem for varieties/schemes – at least, under mild assumptions
on the underlying space.
Serre duality is a special case of the duality called the coherent duality in a much general
setting. It is based on earlier works in several complex variables, however, we will
observe it algebraically. One di↵erence between the Poincaré duality and the Serre
duality is the role of the “dualizing sheaf”. We will see that the dualizing sheaf coincides
with the canonical sheaf when the underlying space X is a nonsingular variety over an
algebraically closed field.
First, we begin with the duality on the projective space. Let k be a field, let X = Pn

k

be the projective n-space, and let !X = ^n⌦X/k = OX(�n� 1) be the canonical sheaf.
We have the duality theorem for X as follows.

Theorem 185 (Duality for Pn

k
).

(1) Hn(X,!X) ' k.

(2) Fix an isomorphism Hn(X,!X) ' k. For any coherent sheaf F on X, the natural

pairing

Hom(F ,!X)⇥Hn(X,F) ! Hn(X,!X) ' k

is a perfect pairing of finite-dimensional vector spaces over k.

(3) For every i � 0, there is a natural functorial isomorphism

Exti(F ,!X)
⇠! Hn�i(X,F)_.

Proof. (1) is clear from the computations we already made. Note that the pairing
in (2) is natural, since any morphism F ! !X induces a natural map on cohomol-
ogy groups H i(X,F) ! H i(X,!X) for each i. If F ' O(q) for some q 2 Z, then
Hom(F ,!X) ' H0(X,!X(�q)), so this pairing comes from the product map between
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Laurent polynomials. In particular, the natural pairing is a perfect pairing if F is a finite
direct sum of sheaves of the form O(qi). Since any coherent sheaf F can be presented
as a cokernel E1 ! E0 ! F ! 0 of a map of sheaves E1 ! E0, where each Ej is a
finite direct sum of sheaves O(qi). Now both Hom(�,!X) and Hn(X,�)_ are left-exact
contravariant functors, so we have the following commutative diagram

0 // 0 // Hom(F ,!X) //

✏✏

Hom(E0,!X) //

'

✏✏

Hom(E1,!X)

'

✏✏

0 // 0 // Hn(X,F)_ // Hn(X, E0)_ // Hn(X, E1)_.

The statement just follows from the 5-lemma.
For (3), one may check that both sides are contravariant �-functors for F 2 Coh(X),
indexed by i � 0. For i = 0 we have an isomorphism. Since any quasi-coherent sheaf F
can be written as a quotient of a sheaf E =

L
O(�q) with q � 0, we have

Exti(E ,!X) =
M

H i(X,!X(q)) = 0

for i > 0 by Serre vanishing. Similarly, we have

Hn�i(X, E)_ =
M

Hn�i(X,O(�q)) = 0

for i > 0 and q > 0. Hence, both sides are coe↵acable (= any object F can be written as
a quotient of an object E so that the image of E under the given functor is 0) for i > 0.
By Grothendieck, such �-functors are universal, hence isomorphic.

In particular, when F is locally free of finite rank on a projective n-space X, we have a
natural isomorphism

Exti(F ,!X) ' H i(X,F_ ⌦ !X)
⇠! Hn�i(X,F)_.

Remark 186. If we choose the coordinates x0, · · · , xn of X = Pn

k
, we may pick up a

Čech cocycle

↵ =
xn
0

x1 · · ·xn
d

✓
x1
x0

◆
^ · · · ^ d

✓
xn
x0

◆

which lies in Cn(U,!X), where U = {D+(xi)}. One can check that ↵ gives a generator
of Hn(X,!X), and is stable under the linear change of coordinates.

To generalize this, we take (1) and (2) as our guide. The key point was indeed: to fix
an isomorphism t : Hn(X,!X)

⇠! k.

Definition 187. Let X be a projective scheme of dimension n over a field k. A
dualizing sheaf for X is a coherent sheaf !�

X
on X, together with a trace morphism

t : Hn(X,!�

X
) ! k, such that for all coherent sheaves F on X, the natural pairing

Hom(F ,!�

X)⇥Hn(X,F) ! Hn(X,!�

X)
t! k

gives an isomorphism Hom(F ,!�

X
)

⇠! Hn(X,F)_.
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Proposition 188. Let X be a projective scheme over k. Then the pair (!�

X
, t) of a

dualizing sheaf and a trace morphism, if it exists, is unique up to a unique isomor-

phism. More precisely, if we have two pairs (!�, t) and (!0, t0), then there is a unique

isomorphism ' : !� ⇠! !0
such that t = t0 �Hn(').

Proof. Since !0 is a dualizing sheaf, there is an isomorphism Hom(!�,!0) ' Hn(X,!�)_.
In particular, there is a unique morphism ' : !� ! !0 corresponding to the element
t 2 Hn(X,!�)_. Note that the correspondence is given by the natural induced map on
cohomology, that is, t0 �Hn(') = t.
Similarly, using the fact that !� is a dualizing sheaf, there is an isomorphism  : !0 ! !�

such that t �Hn( ) = t0. It follows that t �Hn( ) �Hn(') = t �Hn( � ') = t.
Since !� is a dualizing sheaf, the morphism  � ' : !� ! !� corresponds to the identity
map; since there is a unique morphism !� ! !� which preserves t. Similarly, we conclude
that ' �  is the identity map on !0.

In particular, the pair (!�, t) represents the functor F 7! Hn(X,F)_ from Coh(X) to
Mod(k).

The existence of a dualizing sheaf is much more tricky. A standard way of approaches is
passing through Grothendieck’s six operations. Suppose we have a morphism f : X ! Y
of schemes. Then we have an adjoint property

HomX(f⇤G,F) = HomY (G, f⇤F)

for any F 2 Mod(X) and G 2 Mod(Y ). In other words, the pair (f⇤, f⇤) is an adjoint
pair; the pullback f⇤ is a left adjoint of f⇤, and the pushforward f⇤ is a right adjoint of
f⇤. Similarly, we have a bijection of sets

Hom(Hom(E ,F),G) = Hom(F , E ⌦ G)

for any OX -modules F ,G and a locally free sheaf of finite rank E on X. Of course, this
is “weak”, since it makes sense only if E is too “good” (we want to extend it at least
for coherent sheaves). But anyway, the above bijection claims that the pair of functors
(Hom(E ,�), E ⌦ �) plays a role of an adjoint pair. This pair has a nicer property; we
have

Hom(E ⌦ F ,G) = Hom(F ,Hom(E ,G)),

under the same assumption. In particular, (E ⌦ �,Hom(E ,�)) is also an adjoint pair,
whereas f⇤ is NOT a left adjoint of f⇤.
Nevertheless, it is worthwhile to consider a “right adjoint” of f⇤. Let us have a look
what happens locally. Let B ! A be a ring homomorphism, M be an A-module, and
let N be a B-module. Note that the pushforward f⇤(fM) of a quasi-coherent sheaf fM is
(BM)⇠, where BM means M considered as a B-module. We have a map

HomA(M,HomB(A,N)) ! HomB(BM,N)
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defined by: given m 2 M and an element � 2 HomA(M,HomB(A,N)), we send m 7!
�(m)(1A). One can show that this is a bijection. The functor AHomB(A,�) is a “right
adjoint” of B(�), which corresponds to the pushforward functor for ring spectra. One
can also show that this bijection behaves nicely with respect to the localization at an
element in B. In particular, this correspondence can be naturally “sheafify”, at least
for a morphism which looks like a morphism of ring spectra and modules over them –
namely, an a�ne morphism and quasi-coherent sheaves.
Suppose that f : X ! Y be an a�ne morphism between two schemes. The above discus-
sion claims that the functor AHomB(A,�) globalizes to a functor G 7! f�1HomY (f⇤OX ,G),
G 2 Qco(Y ). The image of G is also quasi-coherent, this gives a functor f !

ps : Qco(Y ) !
Qco(X). Moreover, we have a local isomorphism

f⇤HomX(F , f !

psG)
⇠! HomY (f⇤F ,G)

and a global isomorphism

HomX(F , f !

psG)
⇠! HomY (f⇤F ,G)

for any quasi-coherent sheaves F 2 Qco(X) and G 2 Qco(Y ). We may regard f !
ps as a

right adjoint of f⇤ in this manner.

Caution. This is not a standard way of description; to provide a natural description
for the exceptional inverse image functor f !, we need to consider the derived categories.
However, both notions coincide when f is finite and flat.

We will briefly have a look how this construction helps us to find a dualizing sheaf.
Let X ✓ PN

k
be a locally Cohen-Macaulay (= all the local rings are Cohen-Macaulay)

equidimensional projective scheme of dimension n. By taking a linear projection at a
linear subspace ⇤ of codimension (n + 1) with X \ ⇤ = ;, we have a finite and flat
morphism ⇡ : X ! Pn. We have the duality theorem for such an X and a locally free
sheaf F on X of finite rank:

Proposition 189. There is a dualizing sheaf !X which gives an isomorphism Exti(F ,!X) '
Hn�i(X,F)_ for every i � 0, F a locally free sheaf of finite rank.

Proof. Since ⇡ is finite, it is a�ne. We take !X := ⇡!ps!Pn . We have isomorphisms

Exti
X
(F ,!X) ' H i(X,F_ ⌦ !X)

' H i(Pn,⇡⇤(F_ ⌦ !X)) (an analogue of Leray spectral sequence)
' H i(Pn,⇡⇤(HomX(F ,!X)))
' H i(Pn,HomPn(⇡⇤F ,!Pn)) (the local isomorphism above)
' H i(Pn, (⇡⇤F)_ ⌦ !Pn) ((⇡⇤F) is locally free)
' ExtiPn(⇡⇤F ,!Pn)
' Hn�i(X,F)_ (Serre duality for Pn)
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Now we go back to the arguments in Hartshorne’s book. At the moment, it is still quite
mysterious that how the dualizing sheaf on X looks like unless X is a projective space.
We begin with some preliminaries.

Lemma 190. Let X be a closed subscheme of codimension r of PN

k
. Then Ext iPN (OX ,!PN ) =

0 for all i < r.

Proof. Notice that F i := Ext iPN (OX ,!PN ) is a coherent sheaf on PN for each i. By Serre
vanishing, it will be globally generated after twisting by a su�ciently large number q.
Hence, to conclude that F i = 0, it is su�cient to show that F i(q) does not have a
nonzero global section for all q � 0. Since

H0(X,F i(q)) = ExtiPN (OX ,!PN (q)) = ExtiPN (OX(�q),!PN )

for q � 0, it is isomorphic to HN�i(PN ,OX(�q))_ by Serre duality for PN . For i < r, we
have N� i > dimX, so it vanishes thanks to the dimensional cohomology vanishing.

Lemma 191. Let X be a closed subscheme of PN

k
of codimension r, and let !�

X
:=

ExtrPN (OX ,!PN ). Then for any OX-module F , there is a functorial isomorphism

HomX(F ,!�

X) ' ExtrPN (F ,!PN ).

Proof. Let 0 ! !PN ! I• be an injective resolution of !PN . Note that the group
ExtiPN (F ,!PN ) is the i-th cohomology group hi(HomPN (F , I•)). Since F is an OX -
module, any morphism F ! Ii factors through J i := HomPN (OX , Ii). For any F 2
Mod(X), we have HomX(F ,J i) = HomPN (F , Ii). We have

ExtiPN (F ,!PN ) = hi(HomX(F ,J •)).

Also note that HomX(�,J i) is exact, and hence, J i is an injectiveOX -module. Consider
the complex 0 ! J 0 ! J 1 ! · · · (this is not an injective resolution of an OX -module).
Thanks to the above lemma, we have hi(J •) = Ext iPN (OX ,!PN ) = 0 for i < r, so
the complex J • is exact up to r-th step. In fact, this is split exact since each J i is
injective. Hence, we may write the complex as a direct sum of two injective complexes
J • = J •

1
� J •

2
, where J •

1
is in degrees 0  i  r and exact, and J •

2
is in degrees i � r,

in particular, J r = J r

1
� J r

2
. It follows that !�

X
= ker[dr : J r

2
! J r+1

2
= J r+1], and

that for any OX -module F , we have

HomX(F ,!�

X) ' HomX(F , ExtrPN (OX ,!PN ))

' HomX(F , ker[dr : J r

2 ! J r+1

2
])

' hr(HomX(F ,J •))

' hr(HomPN (F , I•))

' ExtrPN (F ,!PN )

as desired.
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Proposition 192. Let X be a projective scheme over a field k. Then X has a dualizing

sheaf !�

X
.

Proof. Embed X as a closed subscheme of PN

k
for some N , let r be its codimension, and

let !�

X
:= ExtrPN (OX ,!PN ) as above. For any OX -module F , we have an isomorphism

HomX(F ,!�

X) ' ExtrPN (F ,!PN ).

When F is coherent, the duality theorem for PN gives an isomorphism

ExtrPN (F ,!PN ) ' HN�r(PN ,F)_.

Since N � r = n = dimX, and F is a sheaf on X, we have a functorial isomorphism

HomX(F ,!�

X) ' Hn(X,F)_

for any coherent sheaf F 2 Coh(X). In particular, if we take F = !�

X
, the identity

element id 2 HomX(!�

X
,!�

X
) gives a trace homomorphism t : Hn(X,!�

X
) ! k. By its

functoriality, the pair (!�

X
, t) is a dualizing sheaf for X.

This leads to the following duality theorem for a projective scheme.

Theorem 193 (Duality for a projective scheme). Let X be a projective scheme of di-

mension n over an algebraically closed field k, let !�

X
be a dualizing sheaf on X, and let

OX(1) be a very ample invertible sheaf on X. Then:

(1) for each i � 0 and coherent sheaf F on X, there is a natural functorial map

✓i : ExtiX(F ,!�

X) ! Hn�i(X,F)_

such that ✓0 is the map given in the definition of the dualizing sheaf above;

(2) the following are equivalent:

(i) X is locally Cohen-Macaulay and equidimensional;

(ii) for any locally free sheaf F on X, we have H i(X,F(�q)) = 0 for i < n and

q � 0;

(iii) the map ✓i above is an isomorphism for every i � 0 and for every coherent

sheaf F on X.

Proof. First of all, we write a given coherent sheaf F as a quotient of a locally free
sheaf E =

L
OX(�q) of finite rank with q � 0. Then Exti(E ,!�

X
) '

L
H i(X,!�

X
(q)),

which is 0 for i > 0 by Serre vanishing. Thus, the functor Exti(�,!�

X
) is coe↵aceable for

i > 0, in particular, they form a universal contravariant �-functor. On the right hand
side, we have a contravariant �-functor, also indexed by i � 0 – which we do not know
it is universal at the moment. Anyway, there is a unique morphism of �-functors (✓i)
reducing to the given ✓0 for i = 0.
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(i) ) (ii) Embed X as a closed subscheme of PN

k
. For any locally free sheaf F on X,

and any closed point x 2 X, we have depthFx = dimOX,x = n, since X is locally
Cohen-Macaulay and equidimensional of dimension n. Let A = OPN ,x be the local

ring of PN at x. Since k is an algebraically closed field, it is a regular local ring of
dimension N . The depth of Fx computed over OX,x is same as the one over A. Thanks
to Auslander-Buchsbaum formula

pdA(Fx) + depthFx = depthA = N,

the projective dimension of Fx (= the least length of a projective A-resolution of the mod-
ule Fx) is N � n. Since the stalk Ext iPN (F ,G)x coincides with the module Exti

A
(Fx,Gx)

for any coherent sheaf F , the stalk becomes zero for i > N � n and for any closed point
x 2 X. We conclude that

Ext iPN (F ,�) = 0

for i > N � n. On the other hand, by Serre duality for PN , the cohomology group
H i(X,F(�q)) is isomorphic to ExtN�i

PN (F ,!PN (q))_. For a su�ciently large q � 0, this

Ext is isomorphic to �(PN , ExtN�i

PN (F ,!PN (q))), which is 0 when N� i > N�n. In other

words, H i(X,F(�q)) = 0 for i < n and q � 0.
(ii) ) (i) Let F = OX . We take a running the argument backwards. We find that

Ext i(OX ,!PN ) = Ext i(OX ,!PN (q))⌦OPN (�q) = 0 for i > N �n. In particular, over the
local ring A = OPN ,x, the module

ExtiA(OX,x, A) = 0

vanishes for every i > N � n. Hence, the projective dimension of an A-module OX,x

is at most N � n (for instance, one can understand this by using Yoneda extensions).
Again by Auslander-Buchsbaum formula, we have depthOX,x � n. Since dimX = n
and the depth cannot exceed the dimension (of a local ring), we must have an equality
for every closed point x of X. This implies that X is locally Cohen-Macaulay and of
pure dimension n.
(ii) ) (iii) To show that ✓i is an isomorphism, it is su�cient to check that the con-

travariant �-functor (Hn�i(X,F)_) is universal. Given a coherent sheaf F , write F
as a quotient of a locally free sheaf E =

L
OX(�q) of finite rank with q � 0. Since

Hn�i(X, E)_ = 0 for i > 0, the functor is coe↵aceable for each i > 0, and hence universal.
(iii) ) (ii) If ✓i is an isomorphism, then for any locally free E , we have

H i(X, E(�q)) ' Extn�i

X
(E(�q),!�

X)_ ' Extn�i

X
(OX , E_⌦!�

X(q))_ = Hn�i(X, E_⌦!�

X(q))_.

Hence, it is 0 for every n� i > 0 and q � 0 by Serre vanishing.

Remark 194. When X is nonsingular over k, or a local complete intersection, then X
is locally Cohen-Macaulay.

Corollary 195. Let X be a projective Cohen-Macaulay scheme of pure dimension n
over k. Then for any locally free sheaf E, we have natural isomorphisms

H i(X, E) ' Hn�i(X, E_ ⌦ !�

X)_.
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