Mathematics for computer science 1

Winterterm 2019/20
Hand in your solution sheet in the mailboxes (next to Zeichensaal U.39, building E2 5) by Nov. 06 before the lecture.

All exercise sheets and course information can be found at: www.math.uni-sb.de/ag/schreyer/
Sheet 2
30. October 2019

Exercise 1 (Pigeonhole principle and cartesian product). Let $a_{1}, \ldots, a_{101} \in \mathbb{Z}$ be 101 pairwise distinct numbers. Show that there exists a subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{11}}$ for $i_{1}<$ $\cdots<i_{11}$ of 11 numbers such that the subsequence is either monotonically decreasing ($a_{i_{1}}>$ $a_{i_{2}}>\cdots>a_{i_{11}}$) or monotonically increasing ($a_{i_{1}}<a_{i_{2}}<\cdots<a_{i_{11}}$).
Exercise 2 (Injectivity and surjectivity). Let M and N be finite sets. How many injective maps from M to N exist? How many surjective maps from M to N exist, if N contains two, three or four elements? Do you have an idea for the general case $|N|=n \in \mathbb{N}$.
Exercise 3 (Equivalence relations). We define on $M=\mathbb{N} \times \mathbb{N}$ a relation \sim by

$$
(a, b) \sim(c, d) \Longleftrightarrow a+d=b+c
$$

(a) Show that \sim is an equivalence relation on M.
(b) Describe the equivalence classes $[(1,1)]$ and $[(3,1)]$.
(c) We define an addition on equivalence classes in M / \sim by

$$
[(a, b)]+[(c, d)]=[(a+c, b+d)] .
$$

Show the welldefinedness, that is, show that for $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$ also $(a+c, b+d) \sim\left(a^{\prime}+c^{\prime}, b^{\prime}+d^{\prime}\right)$ holds.
(d) The set M / \sim together with the above defined addition is a well-known set. What is the name of this set? How can you define a multiplication on M / \sim ?

Exercise 4 (Binomial coefficients). Show that for all $n, k, s, t \in \mathbb{N}$ the following two equations are satisfied.

$$
\begin{align*}
(k+1)\binom{n}{k+1} & =(n-k)\binom{n}{k}, \tag{1}\\
\binom{s+t}{n} & =\sum_{i=0}^{n}\binom{s}{i}\binom{t}{n-i} . \tag{2}
\end{align*}
$$

Provide an interpretation of the equations (1) and (2) in terms of the definition of the binomial coefficient.

