
Fakultät MI, Fachrichtung Mathematik
Prof. Dr. Frank-Olaf Schreyer
Dr. Michael Hoff

Mathematics for computer science 1

Winterterm 2019/20

Hand in your solution sheet in the mailboxes (next to Zeichensaal U.39, building E2 5) by
Nov. 06 before the lecture.

All exercise sheets and course information can be found at: www.math.uni-sb.de/ag/schreyer/

Sheet 2 30. October 2019

Exercise 1 (Pigeonhole principle and cartesian product). Let a1, . . . , a101 ∈ Z be 101
pairwise distinct numbers. Show that there exists a subsequence ai1 , ai2 , . . . , ai11 for i1 <
· · · < i11 of 11 numbers such that the subsequence is either monotonically decreasing (ai1 >
ai2 > · · · > ai11) or monotonically increasing (ai1 < ai2 < · · · < ai11).

Exercise 2 (Injectivity and surjectivity). Let M and N be finite sets. How many injective
maps from M to N exist? How many surjective maps from M to N exist, if N contains two,
three or four elements? Do you have an idea for the general case |N | = n ∈ N.

Exercise 3 (Equivalence relations). We define on M = N× N a relation ∼ by

(a, b) ∼ (c, d)⇐⇒ a + d = b + c

(a) Show that ∼ is an equivalence relation on M .
(b) Describe the equivalence classes [(1,1)] and [(3,1)].
(c) We define an addition on equivalence classes in M/∼ by

[(a, b)] + [(c, d)] = [(a + c, b + d)].

Show the welldefinedness, that is, show that for (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′)
also (a + c, b + d) ∼ (a′ + c′, b′ + d′) holds.

(d) The set M/∼ together with the above defined addition is a well-known set. What is
the name of this set? How can you define a multiplication on M/∼?

Exercise 4 (Binomial coefficients). Show that for all n, k, s, t ∈ N the following two equa-
tions are satisfied.
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Provide an interpretation of the equations (1) and (2) in terms of the definition of the
binomial coefficient.


