Fakultät MI, Fachrichtung Mathematik Prof. Dr. Frank-Olaf Schreyer Dr. Michael Hoff

Mathematics for computer science 1

Winterterm 2019/20

Hand in your solution sheet in the mailboxes (next to Zeichensaal U.39, building E2 5) by Nov. 06 **before the lecture**.

All exercise sheets and course information can be found at: www.math.uni-sb.de/ag/schreyer/

Sheet 2

<u>30. October 2019</u>

Exercise 1 (Pigeonhole principle and cartesian product). Let $a_1, \ldots, a_{101} \in \mathbb{Z}$ be 101 pairwise distinct numbers. Show that there exists a subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_{11}}$ for $i_1 < \cdots < i_{11}$ of 11 numbers such that the subsequence is either monotonically decreasing $(a_{i_1} > a_{i_2} > \cdots > a_{i_{11}})$ or monotonically increasing $(a_{i_1} < a_{i_2} < \cdots < a_{i_{11}})$.

Exercise 2 (Injectivity and surjectivity). Let M and N be finite sets. How many injective maps from M to N exist? How many surjective maps from M to N exist, if N contains two, three or four elements? Do you have an idea for the general case $|N| = n \in \mathbb{N}$.

Exercise 3 (Equivalence relations). We define on $M = \mathbb{N} \times \mathbb{N}$ a relation \sim by

$$(a,b) \sim (c,d) \iff a+d=b+c$$

- (a) Show that \sim is an equivalence relation on M.
- (b) Describe the equivalence classes [(1,1)] and [(3,1)].
- (c) We define an addition on equivalence classes in M/\sim by

$$[(a,b)] + [(c,d)] = [(a+c,b+d)].$$

Show the welldefinedness, that is, show that for $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$ also $(a+c,b+d) \sim (a'+c',b'+d')$ holds.

(d) The set M/\sim together with the above defined addition is a well-known set. What is the name of this set? How can you define a multiplication on M/\sim ?

Exercise 4 (Binomial coefficients). Show that for all $n, k, s, t \in \mathbb{N}$ the following two equations are satisfied.

(1)
$$(k+1)\binom{n}{k+1} = (n-k)\binom{n}{k},$$

(2)
$$\binom{s+t}{n} = \sum_{i=0}^{n} \binom{s}{i} \binom{t}{n-i}.$$

Provide an interpretation of the equations (1) and (2) in terms of the definition of the binomial coefficient.