Fakultät MI, Fachrichtung Mathematik
OO UNIVERSITÄT
404
Prof. Dr. Frank-Olaf Schreyer
Dr. Michael Hoff

Mathematics for computer science 1

Winterterm 2019/20
Hand in your solution sheet in the mailboxes (next to Zeichensaal U.39, building E2 5) by Dec. 04 before the lecture.
All exercise sheets and course information can be found at: www.math.uni-sb.de/ag/schreyer/
Sheet 6
27. November 2019

Exercise 1. Show that $\mathbb{Q}[\sqrt{2}]:=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\} \subset \mathbb{R}$ together with the two operations

$$
\begin{aligned}
+ & : \mathbb{Q}[\sqrt{2}] \times \mathbb{Q}[\sqrt{2}] \longrightarrow \mathbb{Q}[\sqrt{2}],(a+b \sqrt{2}, c+d \sqrt{2}) \mapsto(a+c)+(b+d) \sqrt{2}, \\
\cdot & : \mathbb{Q}[\sqrt{2}] \times \mathbb{Q}[\sqrt{2}] \longrightarrow \mathbb{Q}[\sqrt{2}],(a+b \sqrt{2}, c+d \sqrt{2}) \mapsto(a c+2 b d)+(a d+b c) \sqrt{2},
\end{aligned}
$$

is a field. (Hint: in order to compute the inverse, use the third binomial formula and expansion of fractions.)

Exercise 2 (Infimum und supremum). Let

$$
M_{1}=\left\{x \in \mathbb{Q} \mid x^{2}<2\right\} \subset \mathbb{R} \text { and let } M_{2}=\left\{x \in \mathbb{Q} \mid x^{2}>2\right\} \subset \mathbb{R} .
$$

Which of these sets has a supremum, which an infimum? What is the supremum/infimum if existent?

Exercise 3 (Countability). Show that
(a) the set of all finite subsets of \mathbb{N} is countable.
(b) the set of all subsets of \mathbb{N} is uncountable.

Exercise 4 (Limits of series). Determine which of the following series are convergent and compute their limits, if existent.
(a) $\sum_{n=0}^{\infty} \frac{3^{n}}{4^{n+1}}$
(b) $\sum_{n=2}^{\infty} \frac{2}{n^{2}-1}$
(c) $\sum_{n=1}^{\infty} \frac{n+4}{n^{2}-3 n+1}$

