Mathematics for computer science 1

Winterterm 2019/20
Hand in your solution sheet in the mailboxes (next to Zeichensaal U.39, building E2 5) by Dec. 18 before the lecture.
All exercise sheets and course information can be found at: www.math.uni-sb.de/ag/schreyer/
Sheet 8
11. December 2019

Exercise 1 (Continuity). Determine all points in \mathbb{R} where the following function is continuous:

$$
f(x)= \begin{cases}-x+1, & x \leq-1 \\ x^{2}+5 x+7, & -1<x \leq 0 \\ x+7, & x>0\end{cases}
$$

Exercise 2. Let $x_{0} \in \mathbb{R}$ and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function.
(i) $\exists \delta>0 \forall \varepsilon: ~ \forall x$ with $\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$,
(ii) $\forall \varepsilon>0 \exists \delta: \forall x$ with $\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$,
(iii) $\exists \varepsilon \forall \delta>0$: $\forall x$ with $\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$,
(iv) $\forall \varepsilon>0 \forall \delta: \forall x$ with $\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$,
(iv) $\forall \varepsilon>0 \forall x \exists \delta:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon \Rightarrow\left|x-x_{0}\right|<\delta$.
(a) Reformulate the five statements colloquially.
(b) Provide all implications between the following five statements. Give examples of functions which show that there are no further implications.

Exercise 3 (Addition theorem for sin and cos).
(a) Show that for all $n \in \mathbb{N}$ there exist polynomials $p_{n}(x, y)$ and $q_{n}(x, y)$ in two variables x, y with real coefficients such that

$$
\sin (n t)=p_{n}(\sin (t), \cos (t)) \quad \text { and } \quad \cos (n t)=q_{n}(\sin (t), \cos (t))
$$

for all $t \in \mathbb{R}$.
(b) Compute $p_{n}(x, y)$ and $q_{n}(x, y)$ for $n=2,3,4$.

Exercise 4. A cord is stretched between two walls in a room. Now the cord is released on both sides and somehow thrown into the middle of the room. Show that there is a point on the cord with the same distance to the walls as before.

