Fakultät MI, Fachrichtung Mathematik

Mathematics for computer science 1

Winterterm 2019/20
Hand in your solution sheet in the mailboxes (next to Zeichensaal U.39, building E2 5) by Jan. 8 before the lecture.

All exercise sheets and course information can be found at: www.math.uni-sb.de/ag/schreyer/
Sheet 9
18. December 2019

Exercise 1 (Continuity). The three functions $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ are defined as follows:

$$
\begin{aligned}
& f(x)= \begin{cases}x, & x \in \mathbb{Q}, \\
1-x, & x \notin \mathbb{Q},\end{cases} \\
& g(x)= \begin{cases}1, & x \in \mathbb{Q}, \\
0, & x \notin \mathbb{Q},\end{cases} \\
& h(x)= \begin{cases}\frac{1}{q}, & x=\frac{p}{q} \in \mathbb{Q} \backslash\{0\} \text { with } p, q \in \mathbb{Z} \text { coprime, } q>0, \\
0, & x \in \mathbb{R} \backslash \mathbb{Q} \cup\{0\} .\end{cases}
\end{aligned}
$$

Show that f is only continuous in $\frac{1}{2}, g$ is nowhere continuous and h is exactly continuous in all irrational x and in zero.

Exercise 2 (Continuous functions).
(a) Does there exist a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ that takes each of its values exactly twice?
(b) Does there exist a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ that takes each of its values exactly three times?

Exercise 3 (Product rule). Let $D \subset \mathbb{R}$ and let $f, g: D \rightarrow \mathbb{R}$ be two n-times differentiable functions. Show that

$$
(f \cdot g)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)} \cdot g^{(k)} .
$$

Exercise 4 (Multiple zeros). For which values $a, b \in \mathbb{R}$ exists a double zero of $f(x)=$ $x^{3}-a x+b$ (i.e., an x_{0} with $f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=0$)? For which values a, b exist exactly one, two or three real zeros of f, respectively?

We wish you a Merry Christmas and a Happy New Year!!!

