Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction

One of the basic tasks in mathematics is to solve algebraic systems of equations.

Example The equations

$$\frac{x^2}{2} + y^2 = 1, \quad x^2 + 4y^2 = 1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

define two ellipses which intersect in four points.

The general set up

Let K be a field, for example \mathbb{Q}, \mathbb{R} or \mathbb{C} . The vanishing loci of a polynomial

$$f = f(x_1,\ldots,x_n) \in K[x_1,\ldots,x_n]$$

in *n* variables $x_1, \ldots x_n$ with coefficients in *K* is the set

$$V(f) = \{a = (a_1, \dots, a_n) \in K^n \mid f(a_1, \dots, a_n) = 0\} \subset K^n =: \mathbb{A}^n(K)$$

Civen finitely many polynomials

Given finitely many polynomials

$$f_1,\ldots,f_r\in K[x_1,\ldots,x_n]$$

we denote by

$$V(f_1,\ldots,f_r)=\bigcap_{j=1}^r V(f_j)$$

the common solution space of the system of equations

$$f_1=0,\ldots,f_r=0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Most basic questions

Given $f_1, \ldots, f_r \in K[x_1, \ldots, x_n]$ we may ask:

1. Has the corresponding system of equations a solution?

Is
$$V(f_1,\ldots,f_r) \neq \emptyset$$
 ?

- 2. If $V(f_1, \ldots, f_r) \neq \emptyset$, how many solutions are there?
- 3. If there are infinitely many solutions, what is the dimension of the solution space?
- 4. If there are infinitely many solutions, can we parametrize the solution space?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Examples of parametrizations

Example. $x^2 + y^2 = 1$

$$\Rightarrow x = \frac{2t}{1+t^2}, y = \frac{1-t^2}{1+t^2}.$$

Example. $y^2 = x^3 + x^2$

$$\Rightarrow x = t^2 - 1, y = t(t^2 - 1).$$

part 1

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Basic answer to question 1

The answer to the first question depends very much on the nature of the field.

- a) In case of $\mathbb{C},$ solvability can be decided with Hilbert's Nullstellensatz (1899)
- b) In case of \mathbb{R} , quantifier elimination (Tarski 1948) leads to an answer.

Example. $\exists x \in \mathbb{R} : x^2 + px + q = 0 \iff p^2 - 4q \ge 0$

 c) In case of Q, there exists no general algorithm which decides whether a system of algebraic equations has a rational solution. (Matiyasevich's solution (1970) of Hilbert's 10-th problem)

Hilbert's Nullstellensatz uses the concept of ideals which we discuss next.

Ideals

Definition. Let *R* be a (commutative) ring (with 1). A non-empty subset $I \subset R$ is an **ideal** if

1) $a, b \in I \Rightarrow a + b \in I$, and 2) $r \in R, a \in I \Rightarrow ra \in I$ holds.

Example. Let

$$\varphi \colon R \to S$$

be a ring homomorphism. Then

$$\ker \varphi = \{ a \in R \mid \varphi(a) = 0 \}$$

is an ideal.

Example. $f_1, \ldots, f_r \in R$ elements of a ring. Then

 $(f_1, \ldots, f_r) = \{f \mid \exists g_1, \ldots, g_r \in R : f = g_1 f_1 + \ldots + g_r f_r\}$ is an ideal, **the ideal generated by** f_1, \ldots, f_r .

Residue rings

Let R be a ring, $I \subset R$ an ideal. Then

 $a \equiv b \mod I \iff a - b \in I$

is an equivalence relation on R. We denote with

 $\overline{a} = \{b \in R \mid b \equiv a\} = a + I \subset R$

the residue class of a. The set of residue classes

 $R/I = \{\overline{a} \mid a \in R\} \subset 2^R$

carries the structure of a ring defined by

$$\overline{a} + \overline{b} := \overline{a+b}, \overline{a} \cdot \overline{b} := \overline{ab}$$

This is the unique ring structure on R/I which makes

$$\pi \colon R \to R/I, a \mapsto \overline{a}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

into a ring homomorphism. ker $\pi = I$.

Examples of residue rings

1) For $n \in \mathbb{Z}$ an integer, the residue ring $\mathbb{Z}/(n)$ has *n* elements

$$\{\overline{0},\overline{1},\ldots,\overline{n-1}\}.$$

 $\mathbb{Z}/(p)$ is a field iff p is a prime number. We denote by

$$\mathbb{F}_p := \mathbb{Z}/(p)$$

the field with p elements.

2) The polynomial $f = x^2 + x + 1 \in \mathbb{F}_2[x]$ has no zero in \mathbb{F}_2 . The ring

$$\mathbb{F}_4 = \mathbb{F}_2[x]/(x^2 + x + 1)$$

is a field with 4 elements.

3) All finite fields \mathbb{F}_q can be constructed similarly. The number of elements $q = p^r$ is necessarily a prime power, and

$$\mathbb{F}_q \cong \mathbb{F}_p[x]/(f)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

for f a monic irreducible polynomial of degree r in $\mathbb{F}_p[x]$.

Division with remainder

Theorem. Let K be a field, $f \in K[x] \setminus \{0\}$ a univariate polynomial which is is not the zero polynomial. For all $g \in K[x]$ there exist unique polynomials $q, r \in K[x]$ such that

g = qf + r and $\deg r < \deg f$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

r is called the **remainder** of g divided by f.

How to compute in K[x]/(f)?

Let K be a field, $f \in K[x] \setminus \{0\}$ a univariate polynomial. Suppose f is monic of degree $d = \deg f > 0$, i.e.

$$f = x^d + a_{d-1}x^{d-1} + \ldots + a_1x^1 + a_0$$

Then every element $\overline{g} \in K[X]/(f)$ has a unique representative $r \in K[x]$ by a polynomial of degree $\leq d - 1$. As a *K*-vector space the elements $1, x, \ldots, x^{d-1}$ represent a *K*-vector space basis of K[x]/(f).

Given two elements $\overline{g}, \overline{h} \in K[x]/(f)$, we compute their product by taking representatives g, h and the remainder r of gh divided by f. **Example.** $\overline{x} \in \mathbb{F}_4 = \mathbb{F}_2[x]/(x^2 + x + 1)$. Then

$$\overline{x}^2 = -\overline{x} - 1 = \overline{x} + 1$$

and

$$\overline{x}^3 = \overline{x}^2 \overline{x} = (\overline{x} + 1)\overline{x} = \overline{x}^2 + \overline{x} = 1.$$

Hence the multiplicative group (\mathbb{F}_4^*, \cdot) is cyclic of order 3.

Affine K-algebras

Definition. Let K be a field. An **affine** K-**algebra** is a ring of the form

$$R = K[x_1,\ldots,x_n]/(f_1,\ldots,f_r).$$

One of the goals of the course is to learn how to compute in such rings. In particular we want to decide whether an element \overline{f} is zero in this ring.

Ideal member ship problem. Given a field K, an ideal $(f_1, \ldots, f_r) \subset K[x_1, \ldots, x_n]$ and an element $f \in K[x_1, \ldots, x_n]$ decide

 $f \in (f_1, \ldots, f_r)$?

Hilbert's Nullstellensatz

Theorem. Let K be an algebraically closed field. Let $f_1, \ldots, f_r \in K[x_1, \ldots, x_n]$ be polynomials. Then

$$V(f_1,\ldots,f_r)=\emptyset \iff 1\in (f_1,\ldots,f_r).$$

Thus combined with an algorithm for the member ship problem, we can decide whether an algebraic system of equations has a solution. One direction in Hilbert's Nullstellensatz is easy. Suppose $1 \in (f_1, \ldots, f_r)$, say $1 = g_1 f_1 + g_r f_r$. If $a \in V(f_1, \ldots, f_r)$, then

$$1 = g_1(a)f_1(a) + g_r(a)f_r(a) = 0,$$

a contradiction. Thus $V(f_1, \ldots, f_r) = \emptyset$.

part 3

Algebraically closed fields

Definition. A field K is algebraically closed if every non-constant univariate polynomial $f \in K[X]$ has a root in K.

The assumption K algebraically closed is clearly a necessary assumption in Hilbert's Nullstellensatz:

If $f \in K[x]$ is univariate polynomial of positive degree which has no root in K, then $V(f) = \emptyset \subset \mathbb{A}^1(K)$. But $1 \notin (f)$, since non-zero elements of (f) have degree $\geq \deg f$.

Fundamental theorem of algebra. The field of complex numbers \mathbb{C} is algebraically closed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Solvability with Computer Algebra

For $f_1, \ldots, f_r \in \mathbb{Q}[x_1, \ldots, x_n]$ we consider the vanishing loci

$$V(f_1,\ldots,f_r):=\{a\in\mathbb{C}^n\mid f_1(a)=0,\ldots,f_r(a)=0\}\subset\mathbb{A}^n(\mathbb{C})$$

over \mathbb{C} . Due to the Nullstellensatz we can decide $V(f_1, \ldots, f_r) = \emptyset$ with a computation over \mathbb{Q} :

The condition $1 = g_1 f_1 + \ldots + g_r f_r$ can be viewed as a linear system of equations for unknown coefficients of g_1, \ldots, g_r . If this system has a solution over \mathbb{C} it also has a solution over \mathbb{Q} . Thus

$$V(f_1,\ldots,f_r) = \emptyset \subset \mathbb{A}^n(\mathbb{C}) \iff 1 \in (f_1,\ldots,f_r) \subset \mathbb{Q}[x_1,\ldots,x_n].$$

Implementing \mathbb{C} into a computer requires numerical methods. But \mathbb{Q} is accessible to exact computer algebra methods.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Algebraic sets

Let \overline{K} be an algebraically closed field. **Definition.** We denote by $\mathbb{A}^n = \overline{K}^n$ the affine *n*-space over \overline{K} . An algebraic set $X \subset \mathbb{A}^n$ is a set of the form

$$X = V(f_1, \ldots, f_r) \subset \mathbb{A}^n$$

for polynomials $f_1, \ldots, f_r \in \overline{K}[x_1, \ldots, x_n]$. If $f_1, \ldots, f_r \in K[x_1, \ldots, x_n]$ for a subfield $K \subset \overline{K}$, then we call K a field of definition of X. In this case

$$X(K) = X \cap \mathbb{A}^n(K) \subset \mathbb{A}^n = \mathbb{A}^n(\overline{K})$$

denotes the set of K-rational points of X.

Diophantine equations

Let $f_1, \ldots, f_r \in \mathbb{Z}[x_1, \ldots, x_n]$ be polynomials with integral coefficients, and

$$X = V(f_1,\ldots,f_r).$$

Then for any number p we can reduce the coefficients mod p to obtain equations in $\mathbb{F}_p[x_1, \ldots, x_n]$.

Thus $X(\mathbb{F}_p)$ makes sense, and the numbers

$$N_r = |X(\mathbb{F}_{p^r})|$$

of \mathbb{F}_{p^r} -rational points are defined.

We will see that for almost all prime numbers p, the growth of N_r determines the dimension of X over \mathbb{C} :

$$N_r = O(p^{rk}) \iff \dim_{\mathbb{C}} X = k.$$

If we want to study $X(\mathbb{Q})$, then the study of $X(\mathbb{F}_{p'})$ and $X(\mathbb{R})$ gives some partial information. There is a huge branch of mathematics devoted to this approach to diophantine equations.

part 4