Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

Introduction

One of the basic tasks in mathematics is to solve algebraic systems of equations.
Example The equations

$$
\frac{x^{2}}{2}+y^{2}=1, \quad x^{2}+4 y^{2}=1
$$

define two ellipses which intersect in four points.

The general set up

Let K be a field, for example \mathbb{Q}, \mathbb{R} or \mathbb{C}. The vanishing loci of a polynomial

$$
f=f\left(x_{1}, \ldots, x_{n}\right) \in K\left[x_{1}, \ldots, x_{n}\right]
$$

in n variables $x_{1}, \ldots x_{n}$ with coefficients in K is the set

$$
V(f)=\left\{a=\left(a_{1}, \ldots, a_{n}\right) \in K^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0\right\} \subset K^{n}=: \mathbb{A}^{n}(K)
$$

Given finitely many polynomials

$$
f_{1}, \ldots, f_{r} \in K\left[x_{1}, \ldots, x_{n}\right]
$$

we denote by

$$
V\left(f_{1}, \ldots, f_{r}\right)=\bigcap_{j=1}^{r} V\left(f_{j}\right)
$$

the common solution space of the system of equations

$$
f_{1}=0, \ldots, f_{r}=0
$$

Most basic questions

Given $f_{1}, \ldots, f_{r} \in K\left[x_{1}, \ldots, x_{n}\right]$ we may ask:

1. Has the corresponding system of equations a solution?

$$
\text { Is } V\left(f_{1}, \ldots, f_{r}\right) \neq \emptyset \quad ?
$$

2. If $V\left(f_{1}, \ldots, f_{r}\right) \neq \emptyset$, how many solutions are there?
3. If there are infinitely many solutions, what is the dimension of the solution space?
4. If there are infinitely many solutions, can we parametrize the solution space?

Examples of parametrizations

Example. $x^{2}+y^{2}=1$

Example. $y^{2}=x^{3}+x^{2}$

$$
\Rightarrow x=\frac{2 t}{1+t^{2}}, y=\frac{1-t^{2}}{1+t^{2}}
$$

$$
\Rightarrow x=t^{2}-1, y=t\left(t^{2}-1\right)
$$

Basic answer to question 1

The answer to the first question depends very much on the nature of the field.
a) In case of \mathbb{C}, solvability can be decided with Hilbert's Nullstellensatz (1899)
b) In case of \mathbb{R}, quantifier elimination (Tarski 1948) leads to an answer.
Example. $\exists x \in \mathbb{R}: x^{2}+p x+q=0 \Longleftrightarrow p^{2}-4 q \geq 0$
c) In case of \mathbb{Q}, there exists no general algorithm which decides whether a system of algebraic equations has a rational solution. (Matiyasevich's solution (1970) of Hilbert's 10-th problem)

Hilbert's Nullstellensatz uses the concept of ideals which we discuss next.

Ideals

Definition. Let R be a (commutative) ring (with 1). A non-empty subset $I \subset R$ is an ideal if

1) $a, b \in I \Rightarrow a+b \in I$, and
2) $r \in R, a \in I \Rightarrow r a \in I$
holds.
Example. Let

$$
\varphi: R \rightarrow S
$$

be a ring homomorphism. Then

$$
\operatorname{ker} \varphi=\{a \in R \mid \varphi(a)=0\}
$$

is an ideal.
Example. $f_{1}, \ldots, f_{r} \in R$ elements of a ring. Then

$$
\left(f_{1}, \ldots, f_{r}\right)=\left\{f \mid \exists g_{1}, \ldots, g_{r} \in R: f=g_{1} f_{1}+\ldots+g_{r} f_{r}\right\}
$$

is an ideal, the ideal generated by f_{1}, \ldots, f_{r}.

Residue rings

Let R be a ring, $I \subset R$ an ideal. Then

$$
a \equiv b \quad \bmod I \Longleftrightarrow a-b \in I
$$

is an equivalence relation on R. We denote with

$$
\bar{a}=\{b \in R \mid b \equiv a\}=a+I \subset R
$$

the residue class of a. The set of residue classes

$$
R / I=\{\bar{a} \mid a \in R\} \subset 2^{R}
$$

carries the structure of a ring defined by

$$
\bar{a}+\bar{b}:=\overline{a+b}, \bar{a} \cdot \bar{b}:=\overline{a b}
$$

This is the unique ring structure on R / I which makes

$$
\pi: R \rightarrow R / I, a \mapsto \bar{a}
$$

into a ring homomorphism. $\operatorname{ker} \pi=I$.

Examples of residue rings

1) For $n \in \mathbb{Z}$ an integer, the residue ring $\mathbb{Z} /(n)$ has n elements

$$
\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\} .
$$

$\mathbb{Z} /(p)$ is a field iff p is a prime number. We denote by

$$
\mathbb{F}_{p}:=\mathbb{Z} /(p)
$$

the field with p elements.
2) The polynomial $f=x^{2}+x+1 \in \mathbb{F}_{2}[x]$ has no zero in \mathbb{F}_{2}. The ring

$$
\mathbb{F}_{4}=\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right)
$$

is a field with 4 elements.
3) All finite fields \mathbb{F}_{q} can be constructed similarly. The number of elements $q=p^{r}$ is necessarily a prime power, and

$$
\mathbb{F}_{q} \cong \mathbb{F}_{p}[x] /(f)
$$

for f a monic irreducible polynomial of degree r in $\mathbb{F}_{p}[x]$.

Division with remainder

Theorem. Let K be a field, $f \in K[x] \backslash\{0\}$ a univariate polynomial which is is not the zero polynomial. For all $g \in K[x]$ there exist unique polynomials $q, r \in K[x]$ such that

$$
g=q f+r \text { and } \operatorname{deg} r<\operatorname{deg} f .
$$

r is called the remainder of g divided by f.

How to compute in $K[x] /(f)$?

Let K be a field, $f \in K[x] \backslash\{0\}$ a univariate polynomial. Suppose f is monic of degree $d=\operatorname{deg} f>0$, i.e.

$$
f=x^{d}+a_{d-1} x^{d-1}+\ldots+a_{1} x^{1}+a_{0}
$$

Then every element $\bar{g} \in K[X] /(f)$ has a unique representative $r \in K[x]$ by a polynomial of degree $\leq d-1$. As a K-vector space the elements $1, x, \ldots, x^{d-1}$ represent a K-vector space basis of $K[x] /(f)$.
Given two elements $\bar{g}, \bar{h} \in K[x] /(f)$, we compute their product by taking representatives g, h and the remainder r of $g h$ divided by f.
Example. $\bar{x} \in \mathbb{F}_{4}=\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right)$. Then

$$
\bar{x}^{2}=-\bar{x}-1=\bar{x}+1
$$

and

$$
\bar{x}^{3}=\bar{x}^{2} \bar{x}=(\bar{x}+1) \bar{x}=\bar{x}^{2}+\bar{x}=1 .
$$

Hence the multiplicative group $\left(\mathbb{F}_{4}^{*}, \cdot\right)$ is cyclic of order 3 .

Affine K-algebras

Definition. Let K be a field. An affine K-algebra is a ring of the form

$$
R=K\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{r}\right)
$$

One of the goals of the course is to learn how to compute in such rings. In particular we want to decide whether an element \bar{f} is zero in this ring.

Ideal member ship problem. Given a field K, an ideal $\left(f_{1}, \ldots, f_{r}\right) \subset K\left[x_{1}, \ldots, x_{n}\right]$ and an element $f \in K\left[x_{1}, \ldots, x_{n}\right]$ decide

$$
f \in\left(f_{1}, \ldots, f_{r}\right) \quad ?
$$

Hilbert's Nullstellensatz

Theorem. Let K be an algebraically closed field. Let $f_{1}, \ldots, f_{r} \in K\left[x_{1}, \ldots, x_{n}\right]$ be polynomials. Then

$$
V\left(f_{1}, \ldots, f_{r}\right)=\emptyset \Longleftrightarrow 1 \in\left(f_{1}, \ldots, f_{r}\right) .
$$

Thus combined with an algorithm for the member ship problem, we can decide whether an algebraic system of equations has a solution. One direction in Hilbert's Nullstellensatz is easy. Suppose $1 \in\left(f_{1}, \ldots, f_{r}\right)$, say $1=g_{1} f_{1}+g_{r} f_{r}$. If $a \in V\left(f_{1}, \ldots, f_{r}\right)$, then

$$
1=g_{1}(a) f_{1}(a)+g_{r}(a) f_{r}(a)=0
$$

a contradiction. Thus $V\left(f_{1}, \ldots, f_{r}\right)=\emptyset$.
part 3

Algebraically closed fields

Definition. A field K is algebraically closed if every non-constant univariate polynomial $f \in K[X]$ has a root in K.

The assumption K algebraically closed is clearly a necessary assumption in Hilbert's Nullstellensatz:
If $f \in K[x]$ is univariate polynomial of positive degree which has no root in K, then $V(f)=\emptyset \subset \mathbb{A}^{1}(K)$. But $1 \notin(f)$, since non-zero elements of (f) have degree $\geq \operatorname{deg} f$.

Fundamental theorem of algebra. The field of complex numbers
\mathbb{C} is algebraically closed.

Solvability with Computer Algebra

For $f_{1}, \ldots, f_{r} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ we consider the vanishing loci

$$
V\left(f_{1}, \ldots, f_{r}\right):=\left\{a \in \mathbb{C}^{n} \mid f_{1}(a)=0, \ldots, f_{r}(a)=0\right\} \subset \mathbb{A}^{n}(\mathbb{C})
$$

over \mathbb{C}. Due to the Nullstellensatz we can decide $V\left(f_{1}, \ldots, f_{r}\right)=\emptyset$ with a computation over \mathbb{Q} :

The condition $1=g_{1} f_{1}+\ldots+g_{r} f_{r}$ can be viewed as a linear system of equations for unknown coefficients of g_{1}, \ldots, g_{r}. If this system has a solution over \mathbb{C} it also has a solution over \mathbb{Q}. Thus

$$
V\left(f_{1}, \ldots, f_{r}\right)=\emptyset \subset \mathbb{A}^{n}(\mathbb{C}) \Longleftrightarrow 1 \in\left(f_{1}, \ldots, f_{r}\right) \subset \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] .
$$

Implementing \mathbb{C} into a computer requires numerical methods. But \mathbb{Q} is accessible to exact computer algebra methods.

Algebraic sets

Let \bar{K} be an algebraically closed field.
Definition. We denote by $\mathbb{A}^{n}=\bar{K}^{n}$ the affine n-space over \bar{K}. An algebraic set $X \subset \mathbb{A}^{n}$ is a set of the form

$$
X=V\left(f_{1}, \ldots, f_{r}\right) \subset \mathbb{A}^{n}
$$

for polynomials $f_{1}, \ldots, f_{r} \in \bar{K}\left[x_{1}, \ldots, x_{n}\right]$.
If $f_{1}, \ldots, f_{r} \in K\left[x_{1}, \ldots, x_{n}\right]$ for a subfield $K \subset \bar{K}$, then we call K a field of definition of X. In this case

$$
X(K)=X \cap \mathbb{A}^{n}(K) \subset \mathbb{A}^{n}=\mathbb{A}^{n}(\bar{K})
$$

denotes the set of K-rational points of X.

Diophantine equations

Let $f_{1}, \ldots, f_{r} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be polynomials with integral coefficients, and

$$
X=V\left(f_{1}, \ldots, f_{r}\right) .
$$

Then for any number p we can reduce the coefficients $\bmod p$ to obtain equations in $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$.
Thus $X\left(\mathbb{F}_{p}\right)$ makes sense, and the numbers

$$
N_{r}=\left|X\left(\mathbb{F}_{p^{r}}\right)\right|
$$

of $\mathbb{F}_{p^{r} \text {-rational points are defined. }}$
We will see that for almost all prime numbers p, the growth of N_{r} determines the dimension of X over \mathbb{C} :

$$
N_{r}=O\left(p^{r k}\right) \Longleftrightarrow \operatorname{dim}_{\mathbb{C}} X=k .
$$

If we want to study $X(\mathbb{Q})$, then the study of $X\left(\mathbb{F}_{p^{r}}\right)$ and $X(\mathbb{R})$ gives some partial information. There is a huge branch of mathematics devoted to this approach to diophantine equations.

