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Introduction
One of the basic tasks in mathematics is to solve algebraic systems
of equations.

Example The equations

x2

2
+ y2 = 1, x2 + 4y2 = 1

define two ellipses which intersect in four points.



The general set up
Let K be a field, for example Q,R or C. The vanishing loci of a
polynomial

f = f (x1, . . . , xn) ∈ K [x1, . . . , xn]

in n variables x1, . . . xn with coefficients in K is the set

V (f ) = {a = (a1, . . . , an) ∈ Kn | f (a1, . . . , an) = 0} ⊂ Kn =: An(K )

Given finitely many polynomials

f1, . . . , fr ∈ K [x1, . . . , xn]

we denote by

V (f1, . . . , fr ) =
r⋂

j=1

V (fj)

the common solution space of the system of equations

f1 = 0, . . . , fr = 0.



Most basic questions

Given f1, . . . , fr ∈ K [x1, . . . , xn] we may ask:

1. Has the corresponding system of equations a solution?

Is V (f1, . . . , fr ) 6= ∅ ?

2. If V (f1, . . . , fr ) 6= ∅, how many solutions are there?

3. If there are infinitely many solutions, what is the dimension of
the solution space?

4. If there are infinitely many solutions, can we parametrize the
solution space?



Examples of parametrizations

Example. x2 + y2 = 1

⇒ x = 2t
1+t2

, y = 1−t2

1+t2
.

Example. y2 = x3 + x2

⇒ x = t2−1, y = t(t2−1).
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Basic answer to question 1

The answer to the first question depends very much on the nature
of the field.

a) In case of C, solvability can be decided with Hilbert’s
Nullstellensatz (1899)

b) In case of R, quantifier elimination (Tarski 1948) leads to an
answer.
Example. ∃x ∈ R : x2 + px + q = 0 ⇐⇒ p2 − 4q ≥ 0

c) In case of Q, there exists no general algorithm which decides
whether a system of algebraic equations has a rational
solution. (Matiyasevich’s solution (1970) of Hilbert’s 10-th
problem)

Hilbert’s Nullstellensatz uses the concept of ideals which we
discuss next.



Ideals
Definition. Let R be a (commutative) ring (with 1). A non-empty
subset I ⊂ R is an ideal if

1) a, b ∈ I ⇒ a + b ∈ I , and
2) r ∈ R, a ∈ I ⇒ ra ∈ I

holds.

Example. Let
ϕ : R → S

be a ring homomorphism. Then

kerϕ = {a ∈ R | ϕ(a) = 0}
is an ideal.
Example. f1, . . . , fr ∈ R elements of a ring. Then

(f1, . . . , fr ) = {f | ∃g1, . . . , gr ∈ R : f = g1f1 + . . .+ gr fr}
is an ideal, the ideal generated by f1, . . . , fr .



Residue rings
Let R be a ring, I ⊂ R an ideal. Then

a ≡ b mod I ⇐⇒ a− b ∈ I

is an equivalence relation on R. We denote with

a = {b ∈ R | b ≡ a} = a + I ⊂ R

the residue class of a. The set of residue classes

R/I = {a | a ∈ R} ⊂ 2R

carries the structure of a ring defined by

a + b := a + b, a · b := ab.

This is the unique ring structure on R/I which makes

π : R → R/I , a 7→ a

into a ring homomorphism. ker π = I .



Examples of residue rings
1) For n ∈ Z an integer, the residue ring Z/(n) has n elements

{0, 1, . . . , n − 1}.

Z/(p) is a field iff p is a prime number. We denote by

Fp := Z/(p)

the field with p elements.

2) The polynomial f = x2 + x + 1 ∈ F2[x ] has no zero in F2.
The ring

F4 = F2[x ]/(x2 + x + 1)

is a field with 4 elements.

3) All finite fields Fq can be constructed similarly. The number
of elements q = pr is necessarily a prime power, and

Fq
∼= Fp[x ]/(f )

for f a monic irreducible polynomial of degree r in Fp[x ].
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Division with remainder
Theorem. Let K be a field, f ∈ K [x ] \ {0} a univariate
polynomial which is is not the zero polynomial. For all g ∈ K [x ]
there exist unique polynomials q, r ∈ K [x ] such that

g = qf + r and deg r < deg f .

r is called the remainder of g divided by f .



How to compute in K [x ]/(f )?
Let K be a field, f ∈ K [x ] \ {0} a univariate polynomial. Suppose
f is monic of degree d = deg f > 0, i.e.

f = xd + ad−1x
d−1 + . . .+ a1x

1 + a0

Then every element g ∈ K [X ]/(f ) has a unique representative
r ∈ K [x ] by a polynomial of degree ≤ d − 1. As a K -vector space
the elements 1, x , . . . , xd−1 represent a K -vector space basis of
K [x ]/(f ).

Given two elements g , h ∈ K [x ]/(f ), we compute their product by
taking representatives g , h and the remainder r of gh divided by f .
Example. x ∈ F4 = F2[x ]/(x2 + x + 1). Then

x2 = −x − 1 = x + 1

and
x3 = x2x = (x + 1)x = x2 + x = 1.

Hence the multiplicative group (F∗
4, ·) is cyclic of order 3.



Affine K -algebras

Definition. Let K be a field. An affine K -algebra is a ring of the
form

R = K [x1, . . . , xn]/(f1, . . . , fr ).

One of the goals of the course is to learn how to compute in such
rings. In particular we want to decide whether an element f is zero
in this ring.

Ideal member ship problem. Given a field K , an ideal
(f1, . . . , fr ) ⊂ K [x1, . . . , xn] and an element f ∈ K [x1, . . . , xn]
decide

f ∈ (f1, . . . , fr ) ?



Hilbert’s Nullstellensatz

Theorem. Let K be an algebraically closed field. Let
f1, . . . , fr ∈ K [x1, . . . , xn] be polynomials. Then

V (f1, . . . , fr ) = ∅ ⇐⇒ 1 ∈ (f1, . . . , fr ).

Thus combined with an algorithm for the member ship problem, we
can decide whether an algebraic system of equations has a solution.
One direction in Hilbert’s Nullstellensatz is easy. Suppose
1 ∈ (f1, . . . , fr ), say 1 = g1f1 + gr fr . If a ∈ V (f1, . . . , fr ), then

1 = g1(a)f1(a) + gr (a)fr (a) = 0,

a contradiction. Thus V (f1, . . . , fr ) = ∅.
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Algebraically closed fields

Definition. A field K is algebraically closed if every non-constant
univariate polynomial f ∈ K [X ] has a root in K .

The assumption K algebraically closed is clearly a necessary
assumption in Hilbert’s Nullstellensatz:
If f ∈ K [x ] is univariate polynomial of positive degree which has
no root in K , then V (f ) = ∅ ⊂ A1(K ). But 1 /∈ (f ), since
non-zero elements of (f ) have degree ≥ deg f .

Fundamental theorem of algebra. The field of complex numbers
C is algebraically closed.



Solvability with Computer Algebra
For f1, . . . , fr ∈ Q[x1, . . . , xn] we consider the vanishing loci

V (f1, . . . , fr ) := {a ∈ Cn | f1(a) = 0, . . . , fr (a) = 0} ⊂ An(C)

over C. Due to the Nullstellensatz we can decide V (f1, . . . , fr ) = ∅
with a computation over Q:

The condition 1 = g1f1 + . . .+ gr fr can be viewed as a linear
system of equations for unknown coefficients of g1, . . . , gr . If this
system has a solution over C it also has a solution over Q. Thus

V (f1, . . . , fr ) = ∅ ⊂ An(C) ⇐⇒ 1 ∈ (f1, . . . , fr ) ⊂ Q[x1, . . . , xn].

Implementing C into a computer requires numerical methods. But
Q is accessible to exact computer algebra methods.



Algebraic sets

Let K be an algebraically closed field.
Definition. We denote by An = K

n
the affine n-space over K . An

algebraic set X ⊂ An is a set of the form

X = V (f1, . . . , fr ) ⊂ An

for polynomials f1, . . . , fr ∈ K [x1, . . . , xn].
If f1, . . . , fr ∈ K [x1, . . . , xn] for a subfield K ⊂ K , then we call K a
field of definition of X . In this case

X (K ) = X ∩ An(K ) ⊂ An = An(K )

denotes the set of K -rational points of X .



Diophantine equations
Let f1, . . . , fr ∈ Z[x1, . . . , xn] be polynomials with integral
coefficients, and

X = V (f1, . . . , fr ).

Then for any number p we can reduce the coefficients mod p to
obtain equations in Fp[x1, . . . , xn].
Thus X (Fp) makes sense, and the numbers

Nr = |X (Fpr )|

of Fpr -rational points are defined.
We will see that for almost all prime numbers p, the growth of Nr

determines the dimension of X over C:

Nr = O(prk) ⇐⇒ dimC X = k .

If we want to study X (Q), then the study of X (Fpr ) and X (R)
gives some partial information. There is a huge branch of
mathematics devoted to this approach to diophantine equations.

part 4


