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Overview

Today’s topics are rational functions.

1. Rational function field

2. Local ring of a variety at a point

3. Dominant rational maps and birational maps

4. Transcendence degree



Zariski topology on an algebraic set
Let A ⊂ An be an algebraic set and let K [A] = K [x1, . . . , xn]/ I(A)
be its coordinate ring.
Definition. The Zariski topology on A is the topology induced
an A from the Zariski topology of An.

Thus the closed subsets of A are the algebraic subsets B ⊂ A.
These are in 1− 1 correspondence with radical ideals J ⊃ I(A)
respectively with radical ideals J = J/ I(A) ⊂ K [A]:

{algebraic subsets of A} 1−1 // {radical ideals of K [A]}oo

with
B 7→ IA(B) = {f ∈ K [A] | f (p) = 0 ∀p ∈ B}

and
VA(J) = {p ∈ A | f (p) = 0 ∀f ∈ J} 7→J.

In particular we have

VA(J) = ∅ ⇐⇒ J = (1).



The rational function field
From now on in today’s lecture A denotes an irreducible algebraic
set. Thus K [A] is an integral domain. We will also drop the
overline from f in the notation of elements and ideals of K [A].

Definition. The field of rational functions on A is the quotient
field

K (A) = Q(K [A]) = {f =
g

h
| g , h ∈ K [A], h 6= 0 ∈ K [A]}.

We want to interpret f ∈ K (A) as a partially defined function

f : A 99K K .

Clearly, if f = g/h and p ∈ A is a point with h(p) 6= 0, then
f (p) = g(p)/h(p) makes sense. However f has many
representatives as fraction. Thus from h(p) = 0 we cannot
conclude that f is not defined in p.



A non-factorial coordinate ring
Example. Consider A = V (wx − yz). The coordinate ring
K [A] = K [w , x , y , z ]/(wx − yz) is not factorial. The rational
function

f =
w

z
=

y

x
∈ K (A)

is defined for all points p /∈ VA(x , z).

However localization of K [A] for A an irreducible algebraic set is
simpler than in general.
Proposition. Let U ⊂ K [A] be a multiplicative set with 0 /∈ U.
Then two fractions

g1
h1
,
g2
h2
∈ K [A][U−1]

are equal iff g1
h1

= g2
h2
∈ K (A).

Proof. u(h2g1 − h1g2) = 0 ∈ K [A] ⇐⇒ h2g1 − h1g2 = 0 ∈ K [A]
because K [A] is an integral domain.



The local ring of a point

Corollary. Let p be a prime ideal in K [A]. Then

K [A]p ⊂ K (A).

Definition. Let p ∈ A be a point and mp ⊂ K [A] be the
corresponding maximal ideal. Then

OA,p = K [A]mp

denotes the local ring of A in p. A rational function f ∈ K (A) is
defined in p iff f ∈ OA,p.



Everywhere defined rational functions
Theorem. Let A be an irreducible algebraic set. Then

K [A] =
⋂
p∈A
OA,p ⊂ K (A).

Proof. Let f ∈ K (A). Consider the ideal of denominators of f :

If = {h ∈ K [A] | hf ∈ K [A]}

= {h ∈ K [A] | f =
g

h
} ∪ {0}.

Remark. That the set in the second line is an ideal might be a
little bit surprising. It says: if h1 and h2 are denominators of f and
h1 + h2 6= 0, then h1 + h2 is also a denominator of f . Indeed

f =
g1
h1

=
g2
h2
⇒ f =

g1 + g2
h1 + h2

.



Everywhere defined rational functions, continued
Now, f is defined at p iff f ∈ OA,p iff p ∈ A \ V (If ), since the
elements of OA,p = K [A]mp are fractions with denominator
h /∈ mp ⇔ h(p) 6= 0.
If f is everywhere defined then VA(If ) = ∅ and the Nullstellensatz
implies 1 ∈ If . Hence f ∈ K [A].

Definition. Let f ∈ K (A) be a rational function. Then its domain
of definition of f is the Zariski open set

dom(f ) = A \ VA(If ) where If = {h ∈ K [A] | hf ∈ K [A]}.

This is a Zariski dense open subset of A on which f defines a
K -valued function

A ⊃ dom(f )
f // K , a 7→ f (a).



Non-empty Zariski open sets are dense
Remark. The fact that dom(f ) is Zariski dense is less spectacular
than it might seem on first glance. Actually every non-empty
Zariki open subset of A is Zariski-dense:

Proposition. Let D1,D2 be Zariski open subsets of an irreducible
algebraic set A. Then

D1 ∩ D2 = ∅ ⇐⇒ D1 = ∅ or D2 = ∅.

Proof. Let Aj = A \ Dj for j = 1, 2 be the corresponding closed
sets. Then

D1 ∩ D2 = ∅ ⇐⇒ A1 ∪ A2 = A =⇒ A = A1 or A = A2

because A is irreducible. Thus D1 = ∅ or D2 = ∅.



Rational map
Definition. Let A ⊂ An and B ⊂ Am be irreducible algebraic sets.
A rational map ϕ : A 99K B is given by an m-tuple of rational
functions f1, . . . , fm ∈ K (A) such that

ϕ(p) = (f1(p), . . . , fm(p)) ∈ B for all p ∈
m⋂
j=1

dom(fj).

Note that the domain of definition of ϕ defined by
dom(ϕ) =

⋂m
j=1 dom(fj) is not empty by the previous proposition.

Example.

A1 99K V (x2 + y2 − 1), t 7→ (
2t

t2 + 1
,
t2 − 1

t2 + 1
)

is a rational map. Indeed

(
2t

t2 + 1
)2 + (

t2 − 1

t2 + 1
)2 − 1 =

(2t)2 + (t2 − 1)2 − (t2 + 1)2

(t2 + 1)2
= 0.



Dominant rational map

Two rational maps ϕ : A 99K B and ψ : B 99K C might be not
composable because it is possible that the image of ϕ, i.e.,
ϕ(dom(ϕ)) lies entirely in the complement of dom(ψ). This does
not happen if ϕ(dom(ϕ)) is dense in B.

Definition. A dominant rational map is a rational map
ϕ : A 99K B, such that ϕ(dom(ϕ)) is dense in B.

Thus two dominant rational maps ϕ : A 99K B and ψ : B 99K C
can be composed, and the composition ψ ◦ ϕ : A 99K C is
dominant as well.
The category of affine varieties over an algebraically closed field
with dominant rational maps as morphisms has the following field
theoretic description.



Dominant rational map and field extension

Let
ϕ : A 99K B ⊂ Am, p 7→ (f1(p), . . . , fm(p))

be a dominant rational map. Then

ϕ∗ : K (B)→ K (A),F =
G

H
7→ F (f1, . . . , fm) =

G (f1, . . . , fm)

H(f1, . . . , fm)

is an injective K -algebra map between fields. Note that
H(f1, . . . , fm) ∈ K (A) is not the zero element of K (A) because
otherwise ϕ(dom(ϕ)) would be contained in VB(H) contradicting
the assumption that the map is dominant. By the same argument
ϕ∗ is injective.



Dominant rational map and field extension
Conversely, if φ : K (B)→ K (A) is a K -algebra homomorphism
between fields and if y1, . . . , ym denote the coordinate functions
on B, then f1 = φ(y1), . . . , fm = φ(ym) is a tuple of rational
functions which defines a rational map ϕ : A 99K B. It is dominant
because φ : K (B)→ K (A) is injective, and the composition
K [B] ↪→ K (B)→ K (A) is injective as well. Since
φ(F ) = F (f1, . . . , fm) we have ϕ∗ = φ.

Theorem. The category of affine varieties over K with dominant
rational maps as morphisms and the category of finitely generated
field extensions of K with K-algebra injection as morphisms are
equivalent via

A 7→ K (A)

and
ϕ : A 99K B 7→ ϕ∗ : K (B) ↪→ K (A).



Proof
Most of the theorem has already been established. It remains to
prove that every finitely generated extension field

K ⊂ L

arises as L = K (A) for some variety A. Indeed, if

L = K (g1, . . . , gn)

is generated by elements g1, . . . , gn, then the substitution
homomorphism

K [x1, . . . xn]→ L, xi 7→ gi

has a prime ideal J as a kernel because the image as a subring of a
field is an integral domain. Then

A = V (J) ⊂ An

is an affine variety with K (A) ∼= L.



Birational varieties
Remark. The variety A with L ∼= K (A) is not uniquely
determined. Choosing different generators gives different varieties.
Example. For A = V (xy − 1) ⊂ A2 we have L = K (A) = K (x , y)
and these generators give A back again. Since y = 1/x we have
K (x , y) = K (x) and the second choice leads to B = A1.

Definition. A dominant rational map ϕ : A 99K B is called
birational if there exists a dominat rational map ψ : B 99K A such
that ψ ◦ ϕ = idA holds, by which we mean that ψ ◦ (ϕ|D) = idD
holds on the (non-empty) open subset D ⊂ A on which ψ ◦ ϕ is
defined as a honest map.
By the theorem ϕ is birational iff ϕ∗ : K (B)→ K (A) is an
isomorphism. The rational map ψ : B 99K A induces the inverse
isomorphism ψ∗ = (ϕ∗)−1, and ϕ ◦ ψ = idB holds automatically as
well.

In the example above ϕ : V (xy − 1)→ A1 is the projection onto
the y -axes, while ψ : A1 99K V (xy − 1), x 7→ (x , 1/x).



Algebraic and transcendental elements in field extensions
Let k ⊂ L be a field extension. For g1, . . . , gn ∈ L we denote by
k(g1, . . . , gn) ⊂ L the smallest subfield of L containing
k ∪ {g1, . . . , gn}. In contrast

k[g1, . . . , gn] ⊂ L

denotes the smallest subring of L containing k ∪ {g1, . . . , gn}. This
is the image under the substitution homomorphism

k[x1, . . . , xn]→ L, xi 7→ gi .

An element g ∈ L is called algebraic over k , if k[x ]→ L, x 7→ g
has a nontrivial kernel. In this case the normed generator f of the
kernel is called the minimal polynomial of g over k and

k[g ] ∼= k[x ]/(f )

is a finite-dimensional k-vector space and a field, i.e., k(g) = k[g ].
If g is not algebraic over k , then g is called transcendental over
k . In this case k[g ] ∼= k[x ] is an infinite-dimensional k-vector space
and not a field: k[g ] ( k(g).



Algebraic independent elements
Elements g1, . . . , gn ∈ L are called algebraically independent
over k if

k[x1, . . . , xn]→ L, xi 7→ gi

has trivial kernel.
To decide whether elements are transcendental or algebraically
independent can be very difficult. For example, in case of the
extension Q ⊂ C it is known that the mathematical constants e
and π are transcendental over Q by work of Hermite and
Lindemann, but it is not known whether e and π are algebraically
independent.
A maximal set of algebraic independent elements of L is called a
transcendence basis for L over k . If k ⊂ L is finitely generated,
then by dropping elements from a generating set one can arrive at
a transcendence basis:



Transcendence degree

Suppose L = k(g1, . . . , gn) and g1, . . . , gd is a maximal subset of
algebraic independent elements. Then L = k(g1, . . . , gn) is an
finite dimensional k(g1, . . . , gd)-vector space. In particular every
element g ∈ L is algebraic over k(g1, . . . , gd), i.e., {g1, . . . , gd , g}
are algebraically dependent.

Theorem. Let k ⊂ L be a field extension. Any two transcendence
basis of L over k have the same cardinality.

Definition. The common cardinality of all transcendence bases

trdegk(L)

is called the transcendence degree of L over k .



The exchange lemma
We will prove this only in case that L ⊃ k is finitely generated over
k . The proof is similar to the proof that the dimension of a vector
space is well-defined.
Lemma. Let {g1, . . . , gd} be a transcendence basis of L over k
and let h ∈ L transcendental over k. Then there exists an index i
such that {g1, . . . , gi−1, h, gi+1, . . . , gd} is a transcendence basis as
well.
Proof. Consider an irreducible polynomial F ∈ k[x1, . . . , xd , y ] in
the kernel of the map

k[x1, . . . , xd , y ]→ L, xj 7→ gj , y 7→ h.

Such an F exists because the kernel is a prime ideal. F involves y
because g1, . . . , gd are algebraically independent and it involves
some variable yi because h is not algebraic over k .



Proof of the exchange Lemma continued
Thus gi is algebraic over k(g1, . . . , gi−1, h, gi+1, . . . , gd). Every
element of L is algebraic over k(g1, . . . , gi−1, h, gi+1, . . . , gd)
because

k(g1, . . . , gi−1, h, gi+1, . . . , gd) ⊂ k(g1, . . . , gd , h) ⊂ L

is a tower of algebraic field extensions. Finally
g1, . . . , gi−1, h, gi+1, . . . , gd are algebraic independent because
otherwise h would be algebraic over k(g1, . . . , gi−1, gi+1, . . . , gd).
This would imply that also

k(g1, . . . , gi−1, gi+1, . . . , gd) ⊂ k(g1, . . . , gi−1, h, gi+1, . . . , gd)

is an algebraic field extension and gi would be algebraic over
k(g1, . . . , gi−1, gi+1, . . . , gd), contradicting our assumption.



Proof of the theorem
We prove by induction on c the following proposition which implies
the theorem immediately.

Proposition. Let {g1, . . . , gd} be a transcendence basis of L over
k, and let h1, . . . , hc ∈ L be elements which are algebraically
independent over k. Then after a suitable reordering of g1, . . . , gd
the set {h1, . . . , hc , gc+1, . . . , gd} is a transcendence basis as well.
In particular c ≤ d.

Proof. The case c = 1 is the exchange lemma above after
renumbering. By the induction hypothesis we may assume that
{h1, . . . , hc−1, gc , . . . , gd} is a transcendence basis. By the
exchange Lemma we can replace one of these elements by hc and
from the proof we see that this element can be chosen to be
different from h1, . . . , hc−1 because h1, . . . , hc are algebraically
independent. After reordering we may assume that this element is
gc .


