Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

Overview

Today's topic is Hilbert's syzygy theorem and the Hilbert polynomial

1. The syzygy theorem
2. Maps between graded modules
3. The Hilbert polynomial

Hilbert's syzygy theorem

Theorem. Let M be a finitely generated $S=k\left[x_{1}, \ldots, x_{n}\right]$ module. Then M has a finite free resolution

$$
0 \longleftarrow M \longleftarrow F_{0} \stackrel{\varphi_{1}}{\longleftarrow} F_{1} \stackrel{\varphi_{2}}{\leftarrow} \ldots \stackrel{\varphi_{c-1}}{\leftarrow} F_{c-1} \stackrel{\varphi_{c}}{\longleftarrow} F_{c} \longleftarrow 0
$$

of length $c \leq n$.
Here the $F_{i}=S^{b_{i}}$ are free S-modules and the maps $\varphi_{i}: F_{i} \rightarrow F_{i-1}$ satisfy

$$
\operatorname{ker}\left(\varphi_{i}\right)=\operatorname{im}\left(\varphi_{i+1}\right)
$$

and the map φ_{1} gives a free presentation of $M \cong \operatorname{coker}\left(\varphi_{1}\right)$:

$$
0 \longleftarrow M \longleftarrow F_{0} \stackrel{\varphi_{1}}{\longleftarrow} F_{1} .
$$

Proof of the syzygy theorem

We give an algorithm which computes from a presentation

$$
0 \longleftarrow M \longleftarrow F_{0} \stackrel{\varphi}{1}_{\longleftarrow}^{\varphi_{1}^{\prime}} F_{1}
$$

of M a finite free resolution. Choose a global monomial order on F_{0} and compute a Gröbner basis $f_{1}, \ldots, f_{b_{1}}$ of $\operatorname{im}\left(\varphi_{1}^{\prime}\right)$. In first step we replace φ_{1}^{\prime} by $\varphi_{1}=\left(f_{1}\left|f_{2}\right| \ldots \mid f_{b_{1}}\right)$. The Buchberger test syzygies $G^{(i, \alpha)}$ form a Gröbner basis of $\operatorname{ker}\left(\varphi_{1}\right)$ with respect to the induced order and we take φ_{2} as the matrix which has these test syzygies as columns. Computing the Buchberger test syzygies of the $G^{(i, \alpha)}$ yields the φ_{3} and continuing in this way produces a free resolution. We still have a lot of choice in this process. We will show that under a suitable ordering of the Gröbner basis elements the process will stop after $c \leq n$ steps with a matrix φ_{c} which has a trivial kernel.

Proof of the syzygy theorem continued

Choose ℓ minimal such that

$$
\operatorname{Lt}\left(f_{1}\right), \ldots, \operatorname{Lt}\left(f_{b_{1}}\right) \in k\left[x_{1}, \ldots, x_{\ell}\right]^{b_{0}} \subset k\left[x_{1}, \ldots, x_{n}\right]^{b_{0}} .
$$

In the worst case $\ell=n$. Now sort $f_{1}, \ldots, f_{b_{1}}$ such that for every p

$$
x_{\ell}^{p}\left|\operatorname{Lt}\left(f_{j}\right) \Longrightarrow x_{\ell}^{p}\right| \operatorname{Lt}\left(f_{i}\right) \text { for } j<i
$$

holds. Then

$$
\operatorname{Lt}\left(G^{(i, \alpha)}\right) \in k\left[x_{1}, \ldots, x_{\ell-1}\right]^{b_{1}} \subset k\left[x_{1}, \ldots, x_{n}\right]^{b_{1}}
$$

because the power of x_{ℓ} in $\operatorname{Lt}\left(f_{i}\right)$ is at least as large as the power of x_{ℓ} in any $\operatorname{Lt}\left(f_{j}\right)$ with $j<i$. Sorting the $G^{(i, \alpha)}$ and the higher test syzygies similarly we obtain for the columns $H_{j}=H^{(i, \alpha)}$ of φ_{c}

$$
\operatorname{Lt}\left(H^{(i, \alpha)}\right) \subset k\left[x_{1}\right]^{b_{c-1}} \subset k\left[x_{1}, \ldots, x_{n}\right]^{b_{c-1}}
$$

after $c \leq \ell \leq n$ steps and there are no more tests to do: Each lead term has a different component part since the column ideal $M_{i}=\left(x_{1}^{\alpha_{1}}\right) \subset k\left[x_{1}\right]$ is a principal ideal.

Example

We consider the ideal $J \subset S=k[w, x, y, z]$ generated by the entries of the first column in the following table

$w^{2}-x z$	$-x$	y	0	$-z$	0	$-y^{2}+w z$
$w x-y z$	w	$-x$	$-y$	0	z	z^{2}
$x^{2}-w y$	$-z$	w	0	$-y$	0	0
$x y-z^{2}$	0	0	w	x	$-y$	$-y z$
$y^{2}-w z$	0	0	$-z$	$-w$	x	w^{2}
	0	y	$-x$	w	$-z$	1
	$-y^{2}+w z$	z^{2}	$-w y$	$y z$	$-w^{2}$	x

The original generators turn out to be a Gröbner basis and the algorithm produces a free resolution of shape

$$
0 \longleftarrow S / J \longleftarrow S<\leftarrow_{\leftarrow}^{\varphi_{1}} S^{5} \leftarrow{ }^{\varphi_{2}} S^{6} \leftarrow_{\leftarrow}^{\varphi_{3}} S^{2} \longleftarrow 0
$$

with matrices | φ_{1}^{t} | φ_{2} |
| :---: | :---: |
| | φ_{3}^{t} | as above.

Free resolution over noetherian rings

Let R be a noetherian ring and M a finitely generated R-module. Then M has a free resolution

$$
0 \leftarrow M \leftarrow R^{b_{0}} \leftarrow R^{b_{1}} \leftarrow \ldots \leftarrow R^{b_{j}} \leftarrow \ldots
$$

where b_{0} is the number of generators and b_{1} the number of generators of the kernel of $R^{b_{0}} \rightarrow M$ and so on. What is so remarkable about $k\left[x_{1}, \ldots, x_{n}\right]$ is that the free resolution ends after finitely many steps. In general this is not true.
Example. Consider $R=k[x, y] /(x y)$ and the R-module $M=R /(\bar{x})$. The kernel of the presentation matrix

$$
0 \lessdot M \leftarrow R \ll \kappa^{\bar{x}} R
$$

is generated by \bar{y}. The kernel of the matrix (\bar{y}) is generated by \bar{x} and the free resolution becomes periodic

Graded modules

Definition. Let $R=\bigoplus_{d} R_{d}$ be a graded ring. A graded R-module is an R-module with a decomposition

$$
M=\bigoplus_{d \in \mathbb{Z}} M_{d}
$$

as abelian group satisfying

$$
R_{e} \cdot M_{d} \subset M_{e+d}
$$

for the multiplication. A homomorphism $\varphi: M \rightarrow N$ of graded R-modules is an R-module homomorphism which respects the degree:

$$
\varphi\left(M_{d}\right) \subset N_{d}
$$

Degree shift

With this notation, the R-module homomorphism

$$
R \xrightarrow{f} R
$$

given by multiplication with a homogeneous element $f \in R_{d}$ of degree $d \neq 0$ is not an homomorphism of graded R-modules. To remedy this situation we define $M(d)$ as the graded R-module with $M(d)_{e}=M_{d+e}$. The multiplication with an homogeneous element $f \in R_{d}$ induces graded R-module homomorphisms

$$
M \xrightarrow{f} M(d) \text { and } M(-d) \xrightarrow{f} M
$$

Example. Let $S=k\left[x_{0}, \ldots, x_{n}\right]$ be the standard graded polynomial ring in $n+1$ variables. Then $S(-j)$ is the free graded S-module with generator in degree j :

$$
1 \in S(-j)_{j}=S_{-j+j}=S_{0}
$$

Hilbert's syzygy theorem in the graded case

Theorem. Let $S=k\left[x_{0}, \ldots, x_{n}\right]$ be the standard graded polynomial ring in $n+1$ variables and let M be a finitely generated graded S-module. The M has a finite free resolution

$$
0 \longleftarrow M \longleftarrow F_{0} \leftarrow \leftarrow_{1}^{\varphi_{1}} F_{1} \stackrel{\varphi_{2}}{\leftarrow} \ldots \stackrel{\varphi_{c-1}}{\leftarrow} F_{c-1} \stackrel{\varphi_{c}}{\leftarrow} F_{c} \longleftarrow 0
$$

of length $c \leq n+1$ where

$$
F_{i}=\bigoplus_{j} S(-j)^{\beta_{i j}}
$$

is a free graded S-module with $\beta_{i j}$ generators in degree j.
Proof. The same procedure as before, we just keep track of the degrees in addition.
The $\beta_{i j}$ are called graded Betti numbers of the the resolution F_{\bullet}

Example

The ideal $J \subset S=k[w, x, y, z]$ from above is generated by homogeneous forms of degree 2

$w^{2}-x z$	$-x$	y	0	$-z$	0	$-y^{2}+w z$
$w x-y z$	w	$-x$	$-y$	0	z	z^{2}
$x^{2}-w y$	$-z$	w	0	$-y$	0	0
$x y-z^{2}$	0	0	w	x	$-y$	$-y z$
$y^{2}-w z$	0	0	$-z$	$-w$	x	w^{2}
	0	y	$-x$	w	$-z$	1
	$-y^{2}+w z$	z^{2}	$-w y$	$y z$	$-w^{2}$	x

and the resolution is graded:
$0 \leftarrow S / J \leftarrow S \leftarrow S(-2)^{5} \leftarrow S(-3)^{5} \oplus S(-4) \leftarrow S(-4) \oplus S(-5) \leftarrow 0$.

The Hilbert function

Let $S=k\left[x_{0}, \ldots, x_{n}\right]$ be the standard graded polynomial ring in $n+1$ variables and let M be a finitely generated graded S-module. Then each M_{d} is a finite-dimensional k-vector space.
Definition. The function

$$
h_{M}: \mathbb{Z} \rightarrow \mathbb{Z}, d \mapsto h_{M}(d)=\operatorname{dim}_{k} M_{d}
$$

is called the Hilbert function of M.
Example.

$$
h_{S}(d)=\binom{d+n}{n}
$$

Proof.

$$
\longleftrightarrow x^{\alpha}=x_{0}^{\alpha_{0}} \cdot \ldots \cdot x_{n}^{\alpha_{n}}
$$

Polynomial nature of the Hilbert function

Theorem. Let $S=k\left[x_{0}, \ldots, x_{n}\right]$ be the standard graded polynomial ring in $n+1$ variables and let M be a finitely generated graded S-module. Then there exists a polynomial $p_{M}(t) \in \mathbb{Q}[t]$ and an $d_{0} \in \mathbb{Z}$ such that

$$
h_{M}(d)=p_{M}(d) \text { for all } d \geq d_{0}
$$

$p_{M}(t)$ is called the Hilbert polynomial of M.

Example.

$$
p_{S}(t)=\frac{(t+n)(t+n-1) \cdot \ldots \cdot(t+1)}{n!}=\binom{t+n}{n}
$$

for $t \geq-n$.

Proof

Let

$$
0 \longleftarrow M \leftarrow-F_{0} \leftarrow_{\leftarrow}^{\varphi_{1}} F_{1} \leftarrow_{\leftarrow}^{\varphi_{2}} \ldots{\stackrel{\varphi}{\varphi_{c-1}}}_{\sigma_{c-1}}^{\varphi_{c}} F_{c} \longleftarrow 0
$$

be a finite free resolution of M with $F_{i}=\oplus_{j} S(-j)^{\beta_{i j}}$. Then for each $d \in \mathbb{Z}$ the sequence

$$
0 \leftarrow M_{d} \leftarrow\left(F_{0}\right)_{d} \leftarrow\left(F_{1}\right)_{d} \leftarrow \ldots \leftarrow\left(F_{c}\right)_{d} \leftarrow 0
$$

is an exact complex of finite-dimensional k-vectorspaces. Thus

$$
\begin{aligned}
\operatorname{dim} M_{d} & =\sum_{i=0}^{c}(-1)^{i} \operatorname{dim}\left(F_{i}\right)_{d} \\
& =\sum_{i=0}^{c}(-1)^{i} \sum_{j} \beta_{i j}\binom{d-j+n}{n}
\end{aligned}
$$

Proof continued

Interpreting the binomial coefficients as polynomials

$$
\binom{t-j+n}{n}=\frac{(t-j+n) \cdot \ldots \cdot(t-j+1)}{n!} \in \mathbb{Q}[t]
$$

the formula

$$
p_{M}(t)=\sum_{i=0}^{c}(-1)^{i} \sum_{j} \beta_{i j}\binom{t-j+n}{n} \in \mathbb{Q}[t]
$$

defines the Hilbert polynomial, and $h_{M}(d)=p_{M}(d)$ holds for all $d \geq d_{0}$ with

$$
d_{0}=\min \left\{j \mid \exists i \text { with } \beta_{i j} \neq 0\right\}
$$

Corollary. S / J and $S / \operatorname{Lt}(J)$ have the same Hilbert function and Hilbert polynomial.
Proof. The graded Betti numbers of our resolution of S / J depend only on $\operatorname{Lt}(J)$.

Example: Hypersurfaces

Let $X=V(f)$ be a hypersurface defined by a (square free) homogeneous polynomial of degree d. Then

$$
0 \lessdot S /(f) \leftarrow S \leftarrow \stackrel{f}{\leftarrow} S(-d)<0
$$

is a free resolution and

$$
\begin{aligned}
p_{S /(f)}(t) & =\binom{t+n}{n}-\binom{t-d+n}{n} \\
& =\frac{t^{n}+\frac{n^{2}+n}{2} t^{n-1}}{n!}-\frac{t^{n}+\left(\frac{n^{2}+n}{2}-d n\right) t^{n-1}}{n!}+O\left(t^{n-2}\right) \\
& =d \frac{t^{n-1}}{(n-1)!}+\text { lower terms. }
\end{aligned}
$$

In particular

$$
\operatorname{deg} P_{S /(f)}=n-1=\operatorname{dim} X
$$

and the leading coefficient has the form $\frac{d}{(n-1)!}$.

Degree of projective varieties

Theorem. Let $J \subset S=k\left[x_{0}, \ldots, x_{n}\right]$ be a homogeneous ideal, and let $X=V(J) \subset \mathbb{P}^{n}$ be the algebraic set defined by J. The Hilbert polynomial of S / J has degree $r=\operatorname{dim} X$ and leading term

$$
d \frac{t^{r}}{r!}
$$

for some positive integer d. We call d the degree of J.
Definition. For a projective algebraic set $X \subset \mathbb{P}^{n}$ the degree is defined by

$$
\operatorname{deg} X=\operatorname{deg} \mathrm{l}(X)
$$

where $\mathrm{I}(X) \subset K\left[x_{0}, \ldots, x_{n}\right]$ denotes its homogeneous ideal.

Proof

Let $C(J) \subset \mathbb{A}^{n+1}$ be the cone defined by J. Since the Hilbert function of S / J depends only on $\operatorname{Lt}(J)$ we may assume that $k=K$ is algebraically closed, in particular we may assume that k is an infinite field. Then there exists a triangula linear change of coordinates such that in these new coordinates J satisfies the assumption of the tower of projection theorem: There exist an r such that projection $\mathbb{A}^{n+1} \rightarrow \mathbb{A}^{r+1}$ onto the last $r+1$ coordinates induces a finite surjection

$$
C(J) \rightarrow \mathbb{A}^{r+1}
$$

and the elimination ideals $J_{k}=K\left[x_{k}, \ldots, x_{n}\right] \cap J$ contain an x_{k}-monic polynomial for $k=0, \ldots, n-r-1$. Thus S / J is a finite $T=k\left[x_{n-r}, \ldots, x_{n}\right]$-module.

Proof continued 1

Thus as an graded T-module S / J has a finite free resolution

$$
0 \longleftarrow S / J \longleftarrow G_{0} \stackrel{\varphi_{1}}{\leftarrow} G_{1} \stackrel{\varphi_{2}}{\leftarrow} \ldots \stackrel{\varphi_{c-1}}{\leftarrow} G_{c-1} \stackrel{\varphi_{c}}{\longleftarrow} G_{c^{\prime}} \longleftarrow 0
$$

of length $c^{\prime} \leq r+1$ where

$$
G_{i}=\bigoplus_{j} T(-j)^{\beta_{i j}^{\prime}}
$$

is a free graded T-module with $\beta_{i j}^{\prime}$ generators in degree j and

$$
p_{S / J}(t)=\sum_{i=0}^{c^{\prime}}(-1)^{i} \sum_{j} \beta_{i j}^{\prime}\binom{t-j+r}{r}
$$

is an alternating sum of polynomials of degree r. Thus

$$
p_{S / J}(t)=d \frac{t^{r}}{r!}+\text { lower terms }
$$

with $d \in \mathbb{Z}$.

Proof continued 2

To see that $d>0$ holds, we notice that $T \cdot 1 \subset S / J$ is a T-submodule. Thus

$$
h_{S / J}(t) \geq h_{T}(t)=\binom{t+r}{r}
$$

growths at least as fast as a polynomial of degree r for $t \rightarrow \infty$.
It remains to identify r with the dimension of X. For this consider the charts $U_{i}=\left\{x_{i} \neq 0\right\} \cong \mathbb{A}^{n}$ for $i=n-r, \ldots, n$ and the corresponding substitution homomorphism

$$
\varphi_{i}: S \rightarrow k\left[x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right], x_{i} \mapsto 1
$$

$\varphi_{i}(J)$ satisfies the assumption of the tower of projections theorem. Thus $X \cap U_{i} \rightarrow \mathbb{A}^{r}$ is a finite surjection and all the affine algebraic sets $X \cap U_{i}$ have dimension r.

Proof continued 3

Since $\operatorname{rad}\left(J+\left(x_{n-r}, \ldots, x_{n}\right)\right)=\left(x_{0}, \ldots, x_{n}\right)$ due to the monic polynomials in the elimination ideals we see that

$$
V(J) \cap V\left(x_{n-r}, \ldots, x_{n}\right)=\emptyset \text { equivalently } X \subset U_{n-r} \cup \ldots \cup U_{n}
$$

Thus $\operatorname{dim} X=r$ if we define

$$
\operatorname{dim} X=\max \left\{\operatorname{dim} X \cap U_{j} \mid j=0, \ldots, n\right\}
$$

Corollary. Let $J \subsetneq K\left[x_{0}, \ldots, x_{n}\right]$ be a proper homogeneous ideal. Then dimension of the projective algebraic set $V(J) \subset \mathbb{P}^{n}$ and the affine cone $C(J) \subset \mathbb{A}^{n+1}$ differ by one:

$$
\operatorname{dim} C(J)=\operatorname{dim} V(J)+1
$$

Here we use the convention that $\operatorname{dim} \emptyset=-1$.

