Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

Today's topic is Hilbert's syzygy theorem and the Hilbert polynomial

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1. The syzygy theorem
- 2. Maps between graded modules
- 3. The Hilbert polynomial

Hilbert's syzygy theorem

Theorem. Let *M* be a finitely generated $S = k[x_1, ..., x_n]$ module. Then *M* has a finite free resolution

$$0 \longleftarrow M \longleftarrow F_0 \xleftarrow{\varphi_1}{\varphi_1} F_1 \xleftarrow{\varphi_2}{\dots} \xleftarrow{\varphi_{c-1}}{\varphi_{c-1}} F_{c-1} \xleftarrow{\varphi_c}{\varphi_c} F_c \xleftarrow{\varphi_c}{\varphi_c} 0$$

of length $c \leq n$.

Here the $F_i = S^{b_i}$ are free S-modules and the maps $\varphi_i : F_i \to F_{i-1}$ satisfy

$$\ker(\varphi_i) = \operatorname{\mathsf{im}}(\varphi_{i+1})$$

and the map φ_1 gives a free presentation of $M \cong \operatorname{coker}(\varphi_1)$:

$$0 \longleftarrow M \longleftarrow F_0 \xleftarrow{\varphi_1} F_1 .$$

Proof of the syzygy theorem

We give an algorithm which computes from a presentation

$$0 \longleftarrow M \longleftarrow F_0 \xleftarrow{\varphi_1'}{\varphi_1} F_1$$

of M a finite free resolution. Choose a global monomial order on F_0 and compute a Gröbner basis f_1, \ldots, f_{b_1} of $im(\varphi'_1)$. In first step we replace φ'_1 by $\varphi_1 = (f_1 | f_2 | \dots | f_{b_1})$. The Buchberger test syzygies $G^{(i,\alpha)}$ form a Gröbner basis of ker(φ_1) with respect to the induced order and we take φ_2 as the matrix which has these test syzygies as columns. Computing the Buchberger test syzygies of the $G^{(i,\alpha)}$ yields the φ_3 and continuing in this way produces a free resolution. We still have a lot of choice in this process. We will show that under a suitable ordering of the Gröbner basis elements the process will stop after c < n steps with a matrix φ_c which has a trivial kernel.

Proof of the syzygy theorem continued

Choose ℓ minimal such that

$$\mathsf{Lt}(f_1),\ldots,\mathsf{Lt}(f_{b_1})\in k[x_1,\ldots,x_\ell]^{b_0}\subset k[x_1,\ldots,x_n]^{b_0}.$$

In the worst case $\ell = n$. Now sort f_1, \ldots, f_{b_1} such that for every p

$$x_{\ell}^{p}|\operatorname{Lt}(f_{j}) \implies x_{\ell}^{p}|\operatorname{Lt}(f_{i}) \text{ for } j < i$$

holds. Then

$$\mathsf{Lt}(\mathcal{G}^{(i,\alpha)}) \in k[x_1,\ldots,x_{\ell-1}]^{b_1} \subset k[x_1,\ldots,x_n]^{b_1}$$

because the power of x_{ℓ} in Lt(f_i) is at least as large as the power of x_{ℓ} in any Lt(f_j) with j < i. Sorting the $G^{(i,\alpha)}$ and the higher test syzygies similarly we obtain for the columns $H_j = H^{(i,\alpha)}$ of φ_c

$$\mathsf{Lt}(\mathsf{H}^{(i,\alpha)}) \subset k[x_1]^{b_{c-1}} \subset k[x_1,\ldots,x_n]^{b_{c-1}}$$

after $c \leq \ell \leq n$ steps and there are no more tests to do: Each lead term has a different component part since the column ideal $M_i = (x_1^{\alpha_1}) \subset k[x_1]$ is a principal ideal.

Example

We consider the ideal $J \subset S = k[w, x, y, z]$ generated by the entries of the first column in the following table

$w^2 - xz$	- <i>x</i>	y	0	- <i>z</i>	0	$-y^2 + wz$
wx - yz	W	-x	- <i>y</i>	0	Z	z^2
$x^2 - wy$	- <i>z</i>	w	0	-y	0	0
$xy - z^2$	0	0	w	x	-y	-yz
$y^2 - wz$	0	0	- <i>z</i>	-w	X	w ²
	0	y y	-x	W	-z	1
	$-y^2 + wz$	z^2	-wy	уz	$-w^2$	x

The original generators turn out to be a Gröbner basis and the algorithm produces a free resolution of shape

$$0 \longleftarrow S/J \longleftarrow S \xleftarrow{\varphi_1} S^5 \xleftarrow{\varphi_2} S^6 \xleftarrow{\varphi_3} S^2 \longleftarrow 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

with matrices $\begin{array}{c|c} \varphi_1^t & \varphi_2 \\ \hline & \varphi_3^t \end{array}$ as above.

Free resolution over noetherian rings

Let R be a noetherian ring and M a finitely generated R-module. Then M has a free resolution

$$0 \leftarrow M \leftarrow R^{b_0} \leftarrow R^{b_1} \leftarrow \ldots \leftarrow R^{b_j} \leftarrow \ldots$$

where b_0 is the number of generators and b_1 the number of generators of the kernel of $R^{b_0} \to M$ and so on. What is so remarkable about $k[x_1, \ldots, x_n]$ is that the free resolution ends after finitely many steps. In general this is not true.

Example. Consider R = k[x, y]/(xy) and the *R*-module $M = R/(\overline{x})$. The kernel of the presentation matrix

$$0 \longleftarrow M \longleftarrow R \xleftarrow{\overline{x}} R$$

is generated by \overline{y} . The kernel of the matrix (\overline{y}) is generated by \overline{x} and the free resolution becomes periodic

$$0 \longleftarrow M \longleftarrow R \xleftarrow{\overline{x}} R \xleftarrow{\overline{y}} R \xleftarrow{\overline{y}} R \xleftarrow{\overline{y}} \dots$$

Graded modules

Definition. Let $R = \bigoplus_d R_d$ be a graded ring. A graded *R*-module is an *R*-module with a decomposition

$$M = \bigoplus_{d \in \mathbb{Z}} M_d$$

as abelian group satisfying

$$R_e \cdot M_d \subset M_{e+d}$$

for the multiplication. A homomorphism $\varphi: M \to N$ of graded *R*-modules is an *R*-module homomorphism which respects the degree:

$$\varphi(M_d)\subset N_d.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Degree shift

With this notation, the R-module homomorphism

$$R \xrightarrow{f} R$$

given by multiplication with a homogeneous element $f \in R_d$ of degree $d \neq 0$ is not an homomorphism of graded *R*-modules. To remedy this situation we define M(d) as the graded *R*-module with $M(d)_e = M_{d+e}$. The multiplication with an homogeneous element $f \in R_d$ induces graded *R*-module homomorphisms

$$M \xrightarrow{f} M(d)$$
 and $M(-d) \xrightarrow{f} M(d)$

Example. Let $S = k[x_0, ..., x_n]$ be the standard graded polynomial ring in n + 1 variables. Then S(-j) is the free graded *S*-module with generator in degree *j*:

$$1\in S(-j)_j=S_{-j+j}=S_0.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Hilbert's syzygy theorem in the graded case

Theorem. Let $S = k[x_0, ..., x_n]$ be the standard graded polynomial ring in n + 1 variables and let M be a finitely generated graded S-module. The M has a finite free resolution

$$0 \longleftarrow M \longleftarrow F_0 \xleftarrow{\varphi_1}{\leftarrow} F_1 \xleftarrow{\varphi_2}{\leftarrow} \dots \xleftarrow{\varphi_{c-1}}{\leftarrow} F_{c-1} \xleftarrow{\varphi_c}{\leftarrow} F_c \xleftarrow{} 0$$

of length $c \leq n+1$ where

$$F_i = \bigoplus_j S(-j)^{eta_{ij}}$$

is a free graded S-module with β_{ij} generators in degree j.

Proof. The same procedure as before, we just keep track of the degrees in addition.

The β_{ij} are called **graded Betti numbers** of the the resolution F_{\bullet}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Example

The ideal $J \subset S = k[w, x, y, z]$ from above is generated by homogeneous forms of degree 2

$w^2 - xz$	- <i>x</i>	y y	0	-z	0	$-y^2 + wz$
wx – yz	W	-x	-y	0	Z	z^2
$x^2 - wy$	- <i>z</i>	w	0	-y	0	0
$xy - z^2$	0	0	w	X	-y	-yz
$y^2 - wz$	0	0	-z	-w	X	w ²
	0	y y	-x	W	- <i>z</i>	1
	$-y^2 + wz$	z^2	-wy	уz	$-w^2$	x

and the resolution is graded:

$$0 \leftarrow S/J \leftarrow S \leftarrow S(-2)^5 \leftarrow S(-3)^5 \oplus S(-4) \leftarrow S(-4) \oplus S(-5) \leftarrow 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Hilbert function

Let $S = k[x_0, ..., x_n]$ be the standard graded polynomial ring in n + 1 variables and let M be a finitely generated graded S-module. Then each M_d is a finite-dimensional k-vector space.

Definition. The function

$$h_M \colon \mathbb{Z} \to \mathbb{Z}, \ d \mapsto h_M(d) = \dim_k M_d$$

is called the Hilbert function of M. **Example.**

$$h_{\mathcal{S}}(d) = \binom{d+n}{n}.$$

Proof.

$$\longleftrightarrow x^{\alpha} = x_0^{\alpha_0} \cdot \ldots \cdot x_n^{\alpha_n}$$

Polynomial nature of the Hilbert function

Theorem. Let $S = k[x_0, ..., x_n]$ be the standard graded polynomial ring in n + 1 variables and let M be a finitely generated graded S-module. Then there exists a polynomial $p_M(t) \in \mathbb{Q}[t]$ and an $d_0 \in \mathbb{Z}$ such that

$$h_M(d) = p_M(d)$$
 for all $d \ge d_0$.

 $p_M(t)$ is called the **Hilbert polynomial** of *M*.

Example.

$$p_{S}(t) = \frac{(t+n)(t+n-1)\cdot\ldots\cdot(t+1)}{n!} = \binom{t+n}{n}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

for $t \geq -n$.

Proof

Let

$$0 \longleftarrow M \longleftarrow F_0 \xleftarrow{\varphi_1}{\leftarrow} F_1 \xleftarrow{\varphi_2}{\leftarrow} \dots \xleftarrow{\varphi_{c-1}}{\leftarrow} F_{c-1} \xleftarrow{\varphi_c}{\leftarrow} F_c \xleftarrow{} 0$$

be a finite free resolution of M with $F_i = \bigoplus_j S(-j)^{\beta_{ij}}$. Then for each $d \in \mathbb{Z}$ the sequence

$$0 \leftarrow M_d \leftarrow (F_0)_d \leftarrow (F_1)_d \leftarrow \ldots \leftarrow (F_c)_d \leftarrow 0$$

is an exact complex of finite-dimensional k-vectorspaces. Thus

$$\dim M_d = \sum_{i=0}^c (-1)^i \dim(F_i)_d$$
$$= \sum_{i=0}^c (-1)^i \sum_j \beta_{ij} \binom{d-j+n}{n}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Interpreting the binomial coefficients as polynomials

$$\binom{t-j+n}{n} = \frac{(t-j+n)\cdot\ldots\cdot(t-j+1)}{n!} \in \mathbb{Q}[t]$$

the formula

$$p_M(t) = \sum_{i=0}^{c} (-1)^i \sum_j \beta_{ij} \binom{t-j+n}{n} \in \mathbb{Q}[t]$$

defines the Hilbert polynomial, and $h_M(d) = p_M(d)$ holds for all $d \ge d_0$ with

$$d_0 = \min\{j \mid \exists i \text{ with } \beta_{ij} \neq 0\}.$$

Corollary. S/J and S/Lt(J) have the same Hilbert function and Hilbert polynomial. **Proof.** The graded Betti numbers of our resolution of S/J depend only on Lt(J).

Example: Hypersurfaces

Let X = V(f) be a hypersurface defined by a (square free) homogeneous polynomial of degree d. Then

$$0 < S/(f) < S < S/(-d) < 0$$

is a free resolution and

$$p_{S/(f)}(t) = {\binom{t+n}{n}} - {\binom{t-d+n}{n}}$$

= $\frac{t^n + \frac{n^2+n}{2}t^{n-1}}{n!} - \frac{t^n + (\frac{n^2+n}{2} - dn)t^{n-1}}{n!} + O(t^{n-2})$
= $d\frac{t^{n-1}}{(n-1)!}$ + lower terms.

In particular

$$\deg P_{S/(f)} = n - 1 = \dim X$$

and the leading coefficient has the form $\frac{d}{(n-1)!}$.

Degree of projective varieties

Theorem. Let $J \subset S = k[x_0, ..., x_n]$ be a homogeneous ideal, and let $X = V(J) \subset \mathbb{P}^n$ be the algebraic set defined by J. The Hilbert polynomial of S/J has degree $r = \dim X$ and leading term

for some positive integer d. We call d the **degree** of J.

Definition. For a projective algebraic set $X \subset \mathbb{P}^n$ the degree is defined by

$$\deg X = \deg \mathsf{I}(X)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where $I(X) \subset K[x_0, ..., x_n]$ denotes its homogeneous ideal.

$$d\frac{t^r}{r!}$$

Proof

Let $C(J) \subset \mathbb{A}^{n+1}$ be the cone defined by J. Since the Hilbert function of S/J depends only on Lt(J) we may assume that k = Kis algebraically closed, in particular we may assume that k is an infinite field. Then there exists a triangular linear change of coordinates such that in these new coordinates J satisfies the assumption of the tower of projection theorem: There exist an rsuch that projection $\mathbb{A}^{n+1} \to \mathbb{A}^{r+1}$ onto the last r + 1 coordinates induces a finite surjection

$$C(J) \to \mathbb{A}^{r+1}$$

and the elimination ideals $J_k = K[x_k, ..., x_n] \cap J$ contain an x_k -monic polynomial for k = 0, ..., n - r - 1. Thus S/J is a finite $T = k[x_{n-r}, ..., x_n]$ -module.

Thus as an graded *T*-module S/J has a finite free resolution

$$0 \longleftarrow S/J \longleftarrow G_0 \xleftarrow{\varphi_1} G_1 \xleftarrow{\varphi_2} \ldots \xleftarrow{\varphi_{c-1}} G_{c-1} \xleftarrow{\varphi_c} G_{c'} \longleftarrow 0$$

of length $c' \leq r+1$ where

$$G_i = \bigoplus_j T(-j)^{\beta'_{ij}}$$

is a free graded T-module with β'_{ij} generators in degree j and

$$p_{S/J}(t) = \sum_{i=0}^{c'} (-1)^i \sum_j \beta'_{ij} \binom{t-j+r}{r}$$

is an alternating sum of polynomials of degree r. Thus

$$p_{S/J}(t) = d \frac{t^r}{r!} + \text{ lower terms}$$

with $d \in \mathbb{Z}$.

To see that d > 0 holds, we notice that $T \cdot 1 \subset S/J$ is a T-submodule. Thus

$$h_{S/J}(t) \ge h_T(t) = \begin{pmatrix} t+r \\ r \end{pmatrix}$$

growths at least as fast as a polynomial of degree r for $t \to \infty$.

It remains to identify r with the dimension of X. For this consider the charts $U_i = \{x_i \neq 0\} \cong \mathbb{A}^n$ for i = n - r, ..., n and the corresponding substitution homomorphism

$$\varphi_i: S \to k[x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n], x_i \mapsto 1.$$

 $\varphi_i(J)$ satisfies the assumption of the tower of projections theorem. Thus $X \cap U_i \to \mathbb{A}^r$ is a finite surjection and all the affine algebraic sets $X \cap U_i$ have dimension r.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Since $rad(J + (x_{n-r}, ..., x_n)) = (x_0, ..., x_n)$ due to the monic polynomials in the elimination ideals we see that

 $V(J) \cap V(x_{n-r}, \ldots, x_n) = \emptyset$ equivalently $X \subset U_{n-r} \cup \ldots \cup U_n$

Thus dim X = r if we define

$$\dim X = \max\{\dim X \cap U_j \mid j = 0, \dots, n\}.$$

Corollary. Let $J \subsetneq K[x_0, ..., x_n]$ be a proper homogeneous ideal. Then dimension of the projective algebraic set $V(J) \subset \mathbb{P}^n$ and the affine cone $C(J) \subset \mathbb{A}^{n+1}$ differ by one:

 $\dim C(J) = \dim V(J) + 1.$

Here we use the convention that dim $\emptyset = -1$.