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Overview

Today’s topics are are computation on local rings

1. Local rings and the Lemma of Nakayama

2. Completions and the ring of formal power series

3. Mora division

4.



Local rings
Definition. A local ring is a ring R which has a unique maximal
ideal m. The field k = R/m is called the residue field of the local
ring. We write (R,m) or even (R,m, k) if we want to specify the
notation for the maximal ideal and residue field of a local ring.

Examples

1. Let R be a ring and p a prime ideal. Then the localization

Rp = {g
h
| h /∈ p}

is a local ring with maximal ideal

m = pRp = {g
h
| g ∈ p, h /∈ p}

and residue field
Rp/pRp

∼= Q(R/p)

the quotient field of the integral domain R/p.
2. OAn,o = K [x1, . . . , xn](x1,...,xn) has a residue field isomorphic to

K .

In general the residue field R/m is not a subring of R.



Lemma of Nakayama
A local noetherian ring (R,m) is easier to handle than general
rings since every element f /∈ m is a unit in R
Lemma. Let (R,m) be a local noetherian ring and let N ⊂ M be
a submodule of a finitely generated R-module M. Then

N + mM = M iff N = M.

Proof. By replacing M by M/N we reduce to the case N = 0. So
we have to prove mM = M =⇒ M = 0. The other direction is
trivial. Let m1, . . . ,mr be generators of M. Since mM = M we
find expressions

mi =
r∑

j=1

gijmj with gij ∈ m.

In matrix notation

(E − B)

m1
...
mr

 = 0 with B = (gij).



Proof of Nakayama’s Lemma continued
Multiplying the matrix equation with the cofactor matrix of E − B
yields det(E − B)mi = 0 for all i . Since det(E − B) ≡ 1 mod m
the determinant is a unit. Hence mi = 0 for all i and M = 0.

Corollary. Let (R,m, k) be a local ring and let m1, . . . ,mr ∈ M be
elements of a finitely generated R-module M. Then m1, . . . ,mr

generate M iff m1, . . . ,mr span the k-vector space M/mM.

Proof. We consider the submodule N = Rm1 + . . .+ Rmr ⊂ M.

N + mM = M

holds iff m1, . . . ,mr ∈ M/mM generate M/mM. Since M/mM is
a k = R/m-vector space, the result follows. In particular, any
minimal set of generators has precisely dimk M/mM
elements.



Krull’ intersection theorem
Theorem. Let (R,m) be noetherian local ring. Then

∞⋂
i=1

mi = (0).

Proof. Consider the subring

S = R[mt] = R ⊕mt ⊕m2t2 ⊕ . . . ⊂ R[t].

Since m is finitely generated ideal in R, S is a finitely generated
R-algebra, hence noetherian as well. Consider now J =

⋂∞
i=1m

i

and the ideal
J ⊕ Jt ⊕ Jt2 ⊕ . . . ⊂ S

is generated by finitely many homogeneous elements. Let r be the
maximal degree of a generator. Then

mtJtr = Jtr+1

Thus mJ = J and J = 0 follows from Nakayma’s Lemma.



Formal power series
We want to compute in OAn,o = K [x1, . . . , xn](x1,...,xn). As a first
step we regard OAn,o as a subring of the formal power series ring

K [[x1, . . . , xn]] = {f =
∑
α∈Nn

fαx
α}.

The product f =
∑

α∈Nn fαx
α of two elements g =

∑
β∈Nn gβx

β

and h =
∑

γ∈Nn gγx
γ ∈ K [[x1, . . . , xn]] is well-defined since the

sum
fα =

∑
β+γ=α

gβhγ

is finite.
Every fraction f ∈ OAn,o may be written in the form f = g

1−h with
h ∈ (x1, . . . , xn). We embed

OAn,o ↪→ K [[x1, . . . , xn]],
g

1− h
7→ g

∞∑
k=0

hk

To make sense out of the infinite sum
∑∞

k=0 h
k ∈ K [[x1, . . . , xn]]

we need a bit of topology.



The m-adic topology
Definition. Let R be a ring and m ⊂ R an ideal. We define a
system of open neighbarhoods of 0 ∈ R as the subsets mk ⊂ R.
A sequence of (an) of elements of R converges in the m-adic
topology to an element a ∈ R if

∀k ∈ N ∃n0 ∈ N such that an − a ∈ mk ∀n ≥ n0 holds.

A sequence (an) is a Cauchy sequence with respect to the m-adic
topology if

∀k ∈ N ∃n0 ∈ N such that am − an ∈ mk ∀m, n ≥ n0 holds.

R is Hausdorff with respect to the m-adic topology if
∩∞k=1m

k = 0. R is complete with respect to the m-adic topology,
if R is Hausdorff and every Cauchy sequence converges.



Completions
Definition. For a ring R and the m-adic topolog the quotient ring

R̂ = {Cauchy sequence}/{zero sequences}
is called the m-adic completion. This is a ring since the set of
zero-sequences is an ideal in the term wise define ring of Cauchy
sequences. The map

R → R̂, a 7→ [constant sequence (a)]

is a ring homomorphism, which is injective if and only if⋂∞
k=1mk = 0. R̂ is always complete with respect to the

m̂ = mR̂-adic topolology.

Thus we may regard K [[x1, . . . , xn]] as the completion of the
polynomial ring K [x1, . . . , xn] with respect to the (x1, . . . , xn)-adic
topology and

f =
∑
α∈Nn

fαx
α = lim

d→∞

∑
α:|α|≤d

fαx
α.



R = K [[x1, . . . , xn]] is a local ring. Its maximal ideal is
m = (x1, . . . , xn). Indeed every element u /∈ m has the form
u = λ(1− h) with h ∈ m and λ ∈ K ∗ and

u−1 = λ−1
∞∑
k=0

hk

since this series converges by the following proposition.
Proposition. Let (hk) be a sequence of power series. Then∑∞

k=0 hk converges iff the sequence (hk) is a m-adic zero
sequence.
Thus every u /∈ m is a unit.

Formal power series cannot be evaluated at points p 6= 0. For the
origin the value f (0) ∈ K ∼= K [[x1, . . . , xn]]/m is given by the
constant term.



Lead terms of power series

Definition. Let > be a local monomial order on K [x1, . . . , xn],
i.e., 1 > xi ∀i . The lead term of a non-zero power series
f =

∑
α∈Nn fαx

α with respect to > is the term

Lt(f ) = fβx
β

where β = max{α ∈ Nn | fα 6= 0}. This well defined because β is
one of the finitely many generators of the monomial ideal
({xα | fα 6= 0}) ⊂ K [x1, . . . , xn] since > is a local monomial order.
We set Lt(0) = 0.



Grauert division
Let P = K [[x1, . . . , xn]] denote the power series ring.
Theorem. Let > be a local monomial order, and let f1, . . . , fr ∈ P
be non-zero power series. For every f ∈ P there exists unique
power series g1, . . . , gr ∈ P and a remainder h ∈ P such that the
following holds:

1) f = g1f1 + . . .+ gr fr + h and
2a) No term of giLt(fi ) is divisible by Lt(fj) for for j < i .
2b) No term of h is divisible by an Lt(fi ).

Proof. Uniqueness follows as before because all non-zero lead
terms Lt(gi fi ) = Lt(gi ) Lt(fi ) and Lt(h) have different monomial
parts. For the existence, we note that the result is trivially in case
f1, . . . , fr are monomials. Thus there exists a unique expression

f = f (0) = g
(0)
1 Lt(f1) + . . .+ g

(0)
r Lt(fr ) + h(0)

satisfying condition 2a) and 2b).



Proof of the Grauert division theorem continued
Define

f (1) = f (0) − (g
(0)
1 f1 + . . .+ g

(0)
r fr + h(0)).

and write similarly

f (1) = g
(1)
1 Lt(f1) + . . .+ g

(1)
r Lt(fr ) + h(1).

Iterating we obtain sequences (f (k)), (g
(k)
1 ), . . . , (g

(k)
r ) and (h(k))

of power series. Define

gi =
∞∑
k=0

g
(k)
i and h =

∞∑
k=0

h(k).

and the existence follows if we can prove that the sequences are
zero sequences in the m-adic topology. It suffices to proof that
(f (k)) is a m-adic zero sequence.



Proof of the Grauert division theorem continued
Clearly we have

Lt(f (0) > Lt(f (1)) > . . . > Lt(f (k)) > . . .

This does not implies that f (k) is a m-adic zero sequence. However
in case that > is a weight order >w with strictly negative weights
(w1, . . . ,wn) then limk→∞ Lt(f (k)) = 0 implies limk→∞ f (k) = 0.

To complete the proof we observe that the procedure only depends
on knowing the lead terms Lt(fi ) and use the following fact:
Claim. There exists a weight order >w with strictly negative
weights such Lt>w (fi ) = Lt>(fi ) coincides for the finitely many
power series f1, . . . , fr .

We leave the proof of this claim as an exercise.
Remark. In case of K = C perturbing the local order to a weight
order is also a key to the Theorem of Grauert, which says that if
f1, . . . , fr ∈ C[[x1, . . . , xn]] and f are convergent power series then
g1, . . . , gr and h are convergent series as well.



Lead ideal an Gröbner basis in case of K [[x1, . . . , xn]]
Definition. Let I ⊂ K [[x1, . . . , xn]] be an ideal. Then

Lt(I ) = ({Lt(f ) | f ∈ I})
is called the lead ideal of I . Lt(I ) is finitely generated, since it is a
monomial ideal.

Corollary. If f1, . . . , fr ∈ I ⊂ K [[x1, . . . , xn]] are elements such that
(Lt(f1), . . . , Lt(fr )) = Lt(I ) then I = (f1, . . . , fr ). In particular
K [[x1, . . . , xn]] is noetherian.

Corollary. The monomials xα /∈ Lt(I ) represent a linearly
independent elements of K [[x1, . . . , xn]]/I , which are dense in the
m-adic topology. If dimK K [[x1, . . . , xn]]/I <∞ then these
elements represent a basis.

The definition of a Gröbner basis and a version of Buchberger’s
criterium work as before.



The lower bound on intersection multiplicities
Theorem. Let f , g ∈ K [x , y ] be polynomials without a common
factor which vanish at the origin o ∈ A2. Then

i(f , g ; o) ≥ multo(f ) multo(g)

and equality holds if and only if V (f ) and V (g) have no common
tangent line at o.

Proof. We choose the local monomial order defined by

xα > xβ ⇔ deg xα < deg xβ or

deg xα = deg xβ and xα >rlex xβ.

Let multo(f ) = m ≤ multo(g) = n. So f = fm + . . .+ fd and
g = gn + . . .+ ge . We first assume that V (f ) and V (g) have no
common factor. Then after a linear change of coordinates and
adjusting of the leading coefficient we may assume that
Lt(f ) = xm and after we replace g by an g1 = λ(g − hf ) with
λ ∈ K ∗ that Lt(g1) = xa1yb1 with a1 + b1 = n and a1 < m.



Taking the remainder of xn−a1g − yb1f leads to a new Gröbner
basis element g2 with lead term Lt(g2) = xa2yb2 with a2 < a1
whose degree is a2 + b2 ≥ m + b1.

After finitely many steps our stair must reach the x-axes with a
monomial ybr .



If fm and gn have no common factor then the new lead terms
always have degree ak+1 + bk+1 = ak−1 + bk , i.e., lie on the
corresponding diagonal. An elementary argument shows that the
area under the stair has size m · n.

Thus i(f , g ; o) = m · n in this case.



An elementary argument shows that the area under the stair has
size m · n.

Thus i(f , g ; o) = m · n in this case.



On the other hand if fm and gn have a common factor then the
stair for fm and gn ends before it reaches the x-axes. Hence the
stair for f and g which reaches the x-axes has a strictly larger
area.



Mora’s division theorem
The proof of Grauert’s division theorem does not yield an
algorithm because the the iteration usually does not terminate. For
ideals of K [x1, . . . , xn](x1,...,xn) ⊂ K [[x1, . . . , xn]] their exists an
algorithm to compute a Gröbner basis. Without of generality we
may assume that an ideal I ⊂ K [x1, . . . , xn](x1,...,xn) is generated
elements of K [x1, . . . , xn], since the denominators are units in
K [x1, . . . , xn](x1,...,xn).
Theorem. Let > be a local monomial order and let
f1, . . . , fr ∈ K [x1, . . . , xn]. For every further element
g ∈ K [x1, . . . , xn] there exists an element u ∈ K [x1, . . . , xn] with
u(0) = 1, elements g1, . . . , gr ∈ K [x1, . . . , xn] and a remainder
h ∈ K [x1, . . . , xn] such that following holds:

1) ug = g1f1 + . . .+ gr fr + h.
2a) Lt(g) ≥ Lt(gi fi ) whenever both sides are non-zero.
2b) If h 6= 0, then Lt(h) is not divisible by any Lt(fi ).



Mora’s algorithm
Definition. Let > be a monomial order. The ecart of a non-zero
element f ∈ K [x1, . . . , xn] is

ecart(f ) = deg f − deg Lt(f ).

Algorithm.
Input. A local monomial order >, polynomials f1, . . . , fr and g
Output. A remainder h of a Mora division of g by f1, . . . , fr .

1. Set h := g and D := {f1, . . . , fr}.
2. while (h 6= 0 and D(h) := {f ∈ D | Lt(f ) divides Lt(h)} 6= ∅)

do
I Choose f ∈ D(h) with ecart(f ) minimal.
I if ecart(f ) > ecart(h) then D := D ∪ {f }.
I h := h − Lt(h)

Lt(f ) f .

3. return h.


