Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

Today's topics are are computation on local rings

- 1. Local rings and the Lemma of Nakayama
- 2. Completions and the ring of formal power series

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- 3. Mora division
- 4.

Local rings

Definition. A **local ring** is a ring R which has a unique maximal ideal \mathfrak{m} . The field $k = R/\mathfrak{m}$ is called the **residue field** of the local ring. We write (R, \mathfrak{m}) or even (R, \mathfrak{m}, k) if we want to specify the notation for the maximal ideal and residue field of a local ring.

Examples

1. Let R be a ring and \mathfrak{p} a prime ideal. Then the localization

$$R_{\mathfrak{p}} = \{\frac{g}{h} \mid h \notin \mathfrak{p}\}$$

is a local ring with maximal ideal

$$\mathfrak{m} = \mathfrak{p}R_\mathfrak{p} = \{\frac{g}{h} \mid g \in \mathfrak{p}, h \notin \mathfrak{p}\}$$

and residue field

$$R_\mathfrak{p}/\mathfrak{p}R_\mathfrak{p}\cong Q(R/\mathfrak{p})$$

the quotient field of the integral domain R/\mathfrak{p} .

2. $\mathcal{O}_{\mathbb{A}^n,o} = K[x_1,\ldots,x_n]_{(x_1,\ldots,x_n)}$ has a residue field isomorphic to K.

In general the residue field R/\mathfrak{m} is not a subring of R.

Lemma of Nakayama

A local noetherian ring (R, \mathfrak{m}) is easier to handle than general rings since every element $f \notin \mathfrak{m}$ is a unit in R**Lemma.** Let (R, \mathfrak{m}) be a local noetherian ring and let $N \subset M$ be a submodule of a finitely generated R-module M. Then

$$N + \mathfrak{m}M = M$$
 iff $N = M$.

Proof. By replacing M by M/N we reduce to the case N = 0. So we have to prove $\mathfrak{m}M = M \implies M = 0$. The other direction is trivial. Let m_1, \ldots, m_r be generators of M. Since $\mathfrak{m}M = M$ we find expressions

$$m_i = \sum_{j=1}^r g_{ij}m_j$$
 with $g_{ij} \in \mathfrak{m}$.

In matrix notation

$$(E-B)\begin{pmatrix} m_1\\ \vdots\\ m_r \end{pmatrix} = 0 \text{ with } B = (g_{ij}).$$

Proof of Nakayama's Lemma continued

Multiplying the matrix equation with the cofactor matrix of E - B yields det $(E - B)m_i = 0$ for all *i*. Since det $(E - B) \equiv 1 \mod \mathfrak{m}$ the determinant is a unit. Hence $m_i = 0$ for all *i* and M = 0.

Corollary. Let (R, \mathfrak{m}, k) be a local ring and let $m_1, \ldots, m_r \in M$ be elements of a finitely generated *R*-module *M*. Then m_1, \ldots, m_r generate *M* iff $\overline{m}_1, \ldots, \overline{m}_r$ span the *k*-vector space $M/\mathfrak{m}M$.

Proof. We consider the submodule $N = Rm_1 + \ldots + Rm_r \subset M$.

$$N + \mathfrak{m}M = M$$

holds iff $\overline{m}_1, \ldots, \overline{m}_r \in M/\mathfrak{m}M$ generate $M/\mathfrak{m}M$. Since $M/\mathfrak{m}M$ is a $k = R/\mathfrak{m}$ -vector space, the result follows. In particular, any **minimal set of generators** has precisely $\dim_k M/\mathfrak{m}M$ elements.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Krull' intersection theorem

Theorem. Let (R, \mathfrak{m}) be noetherian local ring. Then

$$\bigcap_{i=1}^{\infty}\mathfrak{m}^{i}=(0).$$

Proof. Consider the subring

$$S = R[\mathfrak{m}t] = R \oplus \mathfrak{m}t \oplus \mathfrak{m}^2 t^2 \oplus \ldots \subset R[t].$$

Since \mathfrak{m} is finitely generated ideal in R, S is a finitely generated R-algebra, hence noetherian as well. Consider now $J = \bigcap_{i=1}^{\infty} \mathfrak{m}^i$ and the ideal

$$J \oplus Jt \oplus Jt^2 \oplus \ldots \subset S$$

is generated by finitely many homogeneous elements. Let r be the maximal degree of a generator. Then

$$\mathfrak{m} t J t^r = J t^{r+1}$$

Thus $\mathfrak{m}J = J$ and J = 0 follows from Nakayma's Lemma.

Formal power series

We want to compute in $\mathcal{O}_{\mathbb{A}^n,o} = K[x_1,\ldots,x_n]_{(x_1,\ldots,x_n)}$. As a first step we regard $\mathcal{O}_{\mathbb{A}^n,o}$ as a subring of the formal power series ring

$$\mathcal{K}[[x_1,\ldots,x_n]] = \{f = \sum_{\alpha \in \mathbb{N}^n} f_\alpha x^\alpha\}.$$

The product $f = \sum_{\alpha \in \mathbb{N}^n} f_{\alpha} x^{\alpha}$ of two elements $g = \sum_{\beta \in \mathbb{N}^n} g_{\beta} x^{\beta}$ and $h = \sum_{\gamma \in \mathbb{N}^n} g_{\gamma} x^{\gamma} \in K[[x_1, \dots, x_n]]$ is well-defined since the sum

$$f_lpha = \sum_{eta+\gamma=lpha} g_eta h_\gamma$$

is finite.

Every fraction $f \in \mathcal{O}_{\mathbb{A}^n,o}$ may be written in the form $f = \frac{g}{1-h}$ with $h \in (x_1, \ldots, x_n)$. We embed

$$\mathcal{O}_{\mathbb{A}^n,o} \hookrightarrow K[[x_1,\ldots,x_n]], \frac{g}{1-h} \mapsto g\sum_{k=0}^{\infty} h^k$$

To make sense out of the infinite sum $\sum_{k=0}^{\infty} h^k \in K[[x_1, \dots, x_n]]$ we need a bit of topology.

The m-adic topology

Definition. Let R be a ring and $\mathfrak{m} \subset R$ an ideal. We define a system of open neighbarhoods of $0 \in R$ as the subsets $\mathfrak{m}^k \subset R$. A sequence of (a_n) of elements of R converges in the m-adic topology to an element $a \in R$ if

 $\forall k \in \mathbb{N} \exists n_0 \in \mathbb{N} \text{ such that } a_n - a \in \mathfrak{m}^k \ \forall n \ge n_0 \text{ holds.}$

A sequence (a_n) is a **Cauchy sequence** with respect to the m-adic topology if

 $\forall k \in \mathbb{N} \exists n_0 \in \mathbb{N} \text{ such that } a_m - a_n \in \mathfrak{m}^k \ \forall m, n \ge n_0 \text{ holds.}$

R is **Hausdorff** with respect to the m-adic topology if $\bigcap_{k=1}^{\infty} \mathfrak{m}^k = 0$. *R* is **complete** with respect to the m-adic topology, if *R* is Hausdorff and every Cauchy sequence converges.

Completions

Definition. For a ring R and the \mathfrak{m} -adic topolog the quotient ring

 $\hat{R} = \{ Cauchy \ sequence \} / \{ zero \ sequences \}$

is called the m-adic completion. This is a ring since the set of zero-sequences is an ideal in the term wise define ring of Cauchy sequences. The map

 $R
ightarrow \hat{R}, \; a \mapsto [ext{constant sequence } (a)]$

is a ring homomorphism, which is injective if and only if $\bigcap_{k=1}^{\infty} \mathfrak{m}_k = 0$. \hat{R} is always complete with respect to the $\hat{\mathfrak{m}} = \mathfrak{m}\hat{R}$ -adic topolology.

Thus we may regard $K[[x_1, \ldots, x_n]]$ as the completion of the polynomial ring $K[x_1, \ldots, x_n]$ with respect to the (x_1, \ldots, x_n) -adic topology and

$$f = \sum_{\alpha \in \mathbb{N}^n} f_{\alpha} x^{\alpha} = \lim_{d \to \infty} \sum_{\alpha : |\alpha| \le d} f_{\alpha} x^{\alpha}.$$

 $R = K[[x_1, \ldots, x_n]]$ is a local ring. Its maximal ideal is $\mathfrak{m} = (x_1, \ldots, x_n)$. Indeed every element $u \notin \mathfrak{m}$ has the form $u = \lambda(1-h)$ with $h \in \mathfrak{m}$ and $\lambda \in K^*$ and

$$u^{-1} = \lambda^{-1} \sum_{k=0}^{\infty} h^k$$

since this series converges by the following proposition. **Proposition.** Let (h_k) be a sequence of power series. Then $\sum_{k=0}^{\infty} h_k$ converges iff the sequence (h_k) is a m-adic zero sequence.

Thus every $u \notin \mathfrak{m}$ is a unit.

Formal power series cannot be evaluated at points $p \neq 0$. For the origin the value $f(0) \in K \cong K[[x_1, \ldots, x_n]]/\mathfrak{m}$ is given by the constant term.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lead terms of power series

Definition. Let > be a **local monomial order** on $K[x_1, ..., x_n]$, i.e., $1 > x_i \forall i$. The lead term of a non-zero power series $f = \sum_{\alpha \in \mathbb{N}^n} f_{\alpha} x^{\alpha}$ with respect to > is the term

$$Lt(f) = f_{\beta} x^{\beta}$$

where $\beta = \max\{\alpha \in \mathbb{N}^n \mid f_\alpha \neq 0\}$. This well defined because β is one of the finitely many generators of the monomial ideal $(\{x^\alpha \mid f_\alpha \neq 0\}) \subset K[x_1, \ldots, x_n]$ since > is a local monomial order. We set Lt(0) = 0.

A D N A 目 N A E N A E N A B N A C N

Grauert division

Let $P = K[[x_1, ..., x_n]]$ denote the power series ring. **Theorem.** Let > be a local monomial order, and let $f_1, ..., f_r \in P$ be non-zero power series. For every $f \in P$ there exists unique power series $g_1, ..., g_r \in P$ and a remainder $h \in P$ such that the following holds:

1) $f = g_1 f_1 + \ldots + g_r f_r + h$ and

2a) No term of $g_i Lt(f_i)$ is divisible by $Lt(f_i)$ for for j < i.

2b) No term of h is divisible by an $Lt(f_i)$.

Proof. Uniqueness follows as before because all non-zero lead terms $Lt(g_i f_i) = Lt(g_i) Lt(f_i)$ and Lt(h) have different monomial parts. For the existence, we note that the result is trivially in case f_1, \ldots, f_r are monomials. Thus there exists a unique expression

$$f = f^{(0)} = g_1^{(0)} \operatorname{Lt}(f_1) + \ldots + g_r^{(0)} \operatorname{Lt}(f_r) + h^{(0)}$$

satisfying condition 2a) and 2b).

Proof of the Grauert division theorem continued Define

$$f^{(1)} = f^{(0)} - (g_1^{(0)}f_1 + \ldots + g_r^{(0)}f_r + h^{(0)}).$$

and write similarly

$$f^{(1)} = g_1^{(1)} \operatorname{Lt}(f_1) + \ldots + g_r^{(1)} \operatorname{Lt}(f_r) + h^{(1)}.$$

Iterating we obtain sequences $(f^{(k)}), (g_1^{(k)}), \ldots, (g_r^{(k)})$ and $(h^{(k)})$ of power series. Define

$$g_i = \sum_{k=0}^{\infty} g_i^{(k)}$$
 and $h = \sum_{k=0}^{\infty} h^{(k)}$.

and the existence follows if we can prove that the sequences are zero sequences in the m-adic topology. It suffices to proof that $(f^{(k)})$ is a m-adic zero sequence.

Proof of the Grauert division theorem continued

Clearly we have

 $Lt(f^{(0)}) > Lt(f^{(1)}) > \ldots > Lt(f^{(k)}) > \ldots$

This does not implies that $f^{(k)}$ is a m-adic zero sequence. However in case that > is a weight order >_w with strictly negative weights (w_1, \ldots, w_n) then $\lim_{k\to\infty} Lt(f^{(k)}) = 0$ implies $\lim_{k\to\infty} f^{(k)} = 0$.

To complete the proof we observe that the procedure only depends on knowing the lead terms $Lt(f_i)$ and use the following fact: **Claim.** There exists a weight order $>_w$ with strictly negative weights such $Lt_{>_w}(f_i) = Lt_>(f_i)$ coincides for the finitely many power series f_1, \ldots, f_r .

We leave the proof of this claim as an exercise.

Remark. In case of $K = \mathbb{C}$ perturbing the local order to a weight order is also a key to the Theorem of Grauert, which says that if $f_1, \ldots, f_r \in \mathbb{C}[[x_1, \ldots, x_n]]$ and f are convergent power series then g_1, \ldots, g_r and h are convergent series as well.

Lead ideal an Gröbner basis in case of $K[[x_1, ..., x_n]]$ Definition. Let $I \subset K[[x_1, ..., x_n]]$ be an ideal. Then $Lt(I) = (\{Lt(f) \mid f \in I\})$

is called the **lead ideal** of I. Lt(I) is finitely generated, since it is a monomial ideal.

Corollary. If $f_1, \ldots, f_r \in I \subset K[[x_1, \ldots, x_n]]$ are elements such that $(Lt(f_1), \ldots, Lt(f_r)) = Lt(I)$ then $I = (f_1, \ldots, f_r)$. In particular $K[[x_1, \ldots, x_n]]$ is noetherian.

Corollary. The monomials $x^{\alpha} \notin Lt(I)$ represent a linearly independent elements of $K[[x_1, \ldots, x_n]]/I$, which are dense in the \mathfrak{m} -adic topology. If $\dim_K K[[x_1, \ldots, x_n]]/I < \infty$ then these elements represent a basis.

The definition of a Gröbner basis and a version of Buchberger's criterium work as before.

The lower bound on intersection multiplicities

Theorem. Let $f, g \in K[x, y]$ be polynomials without a common factor which vanish at the origin $o \in \mathbb{A}^2$. Then

 $i(f,g;o) \geq \operatorname{mult}_o(f)\operatorname{mult}_o(g)$

and equality holds if and only if V(f) and V(g) have no common tangent line at o.

Proof. We choose the local monomial order defined by

$$\begin{split} x^\alpha > x^\beta \Leftrightarrow \deg x^\alpha < \deg x^\beta \text{ or} \\ \deg x^\alpha = \deg x^\beta \text{ and } x^\alpha >_{\mathrm{rlex}} x^\beta. \end{split}$$

Let $\operatorname{mult}_o(f) = m \leq \operatorname{mult}_o(g) = n$. So $f = f_m + \ldots + f_d$ and $g = g_n + \ldots + g_e$. We first assume that V(f) and V(g) have no common factor. Then after a linear change of coordinates and adjusting of the leading coefficient we may assume that $\operatorname{Lt}(f) = x^m$ and after we replace g by an $g_1 = \lambda(g - hf)$ with $\lambda \in K^*$ that $\operatorname{Lt}(g_1) = x^{a_1}y^{b_1}$ with $a_1 + b_1 = n$ and $a_1 < m$.

Taking the remainder of $x^{n-a_1}g - y^{b_1}f$ leads to a new Gröbner basis element g_2 with lead term $Lt(g_2) = x^{a_2}y^{b_2}$ with $a_2 < a_1$ whose degree is $a_2 + b_2 \ge m + b_1$.

After finitely many steps our stair must reach the x-axes with a monomial y^{b_r} .

If f_m and g_n have no common factor then the new lead terms always have degree $a_{k+1} + b_{k+1} = a_{k-1} + b_k$, i.e., lie on the corresponding diagonal. An elementary argument shows that the area under the stair has size $m \cdot n$.

Thus $i(f, g; o) = m \cdot n$ in this case.

An elementary argument shows that the area under the stair has size $m \cdot n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thus $i(f, g; o) = m \cdot n$ in this case.

On the other hand if f_m and g_n have a common factor then the stair for f_m and g_n ends before it reaches the *x*-axes. Hence the stair for f and g which reaches the *x*-axes has a strictly larger area.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Mora's division theorem

The proof of Grauert's division theorem does not yield an algorithm because the the iteration usually does not terminate. For ideals of $K[x_1, \ldots, x_n]_{(x_1, \ldots, x_n)} \subset K[[x_1, \ldots, x_n]]$ their exists an algorithm to compute a Gröbner basis. Without of generality we may assume that an ideal $I \subset K[x_1, \ldots, x_n]_{(x_1, \ldots, x_n)}$ is generated elements of $K[x_1, \ldots, x_n]$, since the denominators are units in $K[x_1, \ldots, x_n]_{(x_1, \ldots, x_n)}$.

Theorem. Let > be a local monomial order and let $f_1, \ldots, f_r \in K[x_1, \ldots, x_n]$. For every further element $g \in K[x_1, \ldots, x_n]$ there exists an element $u \in K[x_1, \ldots, x_n]$ with u(0) = 1, elements $g_1, \ldots, g_r \in K[x_1, \ldots, x_n]$ and a remainder $h \in K[x_1, \ldots, x_n]$ such that following holds:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1) $ug = g_1f_1 + \ldots + g_rf_r + h.$

2a) $Lt(g) \ge Lt(g_i f_i)$ whenever both sides are non-zero.

2b) If $h \neq 0$, then Lt(h) is not divisible by any Lt(f_i).

Mora's algorithm

Definition. Let > be a monomial order. The **ecart** of a non-zero element $f \in K[x_1, ..., x_n]$ is

$$\operatorname{ecart}(f) = \operatorname{deg} f - \operatorname{deg} \operatorname{Lt}(f).$$

Algorithm.

Input. A local monomial order >, polynomials f_1, \ldots, f_r and g **Output.** A remainder h of a Mora division of g by f_1, \ldots, f_r .

1. Set
$$h := g$$
 and $D := \{f_1, \ldots, f_r\}$.

2. while $(h \neq 0 \text{ and } D(h) := \{f \in D \mid Lt(f) \text{ divides } Lt(h)\} \neq \emptyset)$ do

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Choose
$$f \in D(h)$$
 with $ecart(f)$ minimal.

• if
$$\operatorname{ecart}(f) > \operatorname{ecart}(h)$$
 then $D := D \cup \{f\}$.

•
$$h := h - \frac{\operatorname{Lt}(h)}{\operatorname{Lt}(f)} f$$
.

3. return h.